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Reproducibility is essential to open science, as there is limited relevance for findings that can

not be reproduced by independent research groups, regardless of its validity. It is therefore

crucial for scientists to describe their experiments in sufficient detail so they can be repro-

duced, scrutinized, challenged, and built upon. However, the intrinsic complexity and con-

tinuous growth of biomedical data makes it increasingly difficult to process, analyze, and

share with the community in a FAIR (findable, accessible, interoperable, and reusable)

manner. To overcome these issues, we created a cloud-based platform called ORCESTRA

(orcestra.ca), which provides a flexible framework for the reproducible processing of multi-

modal biomedical data. It enables processing of clinical, genomic and perturbation profiles of

cancer samples through automated processing pipelines that are user-customizable.

ORCESTRA creates integrated and fully documented data objects with persistent identifiers

(DOI) and manages multiple dataset versions, which can be shared for future studies.
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The demand for large volumes of multimodal biomedical
data has grown drastically, partially due to active research
in personalized medicine, and further understanding

diseases1–3. This shift has made reproducing research findings
much more challenging because of the need to ensure the use of
adequate data-handling methods, resulting in the validity and
relevance of studies to be questioned4,5. Even though sharing of
data immensely helps in reproducing study results6, current
sharing practices are inadequate with respect to the size of data
and corresponding infrastructure requirements for transfer and
storage2,7. As computational processing required to process bio-
medical data is becoming increasingly complex3, expertise is now
needed for building the tools and workflows for this large-scale
handling1,2. There have been multiple community efforts in
creating standardized workflow languages, such as the Common
Workflow Language (CWL) and the Workflow Definition
Language (WDL), along with associated workflow management
systems such as Snakemake8 and Nextflow9, in order to promote
reproducibility10,11. However, a steep learning curve is encoun-
tered for these programming-heavy solutions, in comparison to
user-friendly data-processing platforms like Galaxy, which pro-
vide both storage and computational resources but have limited
features and scalability12–14. While sharing these computational
workflows, along with metadata, is of utmost importance, they are
often missing15, negatively impacting data provenance and
transparency16. There is a dire need for reproducible and trans-
parent solutions for processing and analyzing large multimodal
data that are scalable while providing full data provenance.

Biomedical data can expand into a plethora of data types such
as in vitro and in vivo pharmacogenomics, toxicogenomics,
radiogenomics, and clinical genomics. These data are a prime
example of multimodal biomedical data with a long history of
sharing in the field of biomarker discovery. Preclinical pharma-
cogenomics involves the use of a genome-wide association
approach to identify correlations between compound/treatment
response and molecular profiling, such as gene expression17–19. In
addition, omics technologies have also been utilized in tox-
icological profiling for identifying the effect of compound toxicity
on humans20, and in radiogenomics data to uncover genomic
correlates of radiation response21. These rich preclinical data are
often combined with clinical genomics data generated over the
past decades22 with the aim to test whether preclinical biomarkers
can be translated in clinical settings to ultimately improve patient
care. Given the diversity of human diseases and therapies,
researchers can hardly rely on a single dataset and benefit from
collecting as much data as possible from all possible sources,
calling for better sharing of data that are highly standardized and
processed in a transparent and reproducible way.

The generation of large volumes of data has led to a sharing
paradigm in the research community, where data are more
accessible and open for public use. For studies to be reproduced
and investigated for integrity and generalization by other
researchers, the sharing of raw and processed data is crucial.
However, providing open access to data is not enough to achieve
full reproducibility. To increase the value of open data, one must
clearly describe how the data are being curated and made
amenable for analysis, and the shared data must be findable,
accessible, interoperable, and reusable, as outlined in the FAIR
data principles23. These foundational principles include providing
rich metadata that is detail-oriented, including a persistent unique
identifier (findability), accessing (meta)data with authentication
and the unique identifier using a communications protocol
(accessibility), assigning (meta)data with a commonly understood
format/language (interoperability), and achieving data prove-
nance with an accessible usage-license (reusability). The Massive
Analysis and Quality Control (MAQC) Society24 has been

established to promote the use of a community-agreed standard
for sharing multimodal biomedical data in order to achieve
reproducibility in the field, such as through the FAIR principles.
Therefore, when translated into practice, these principles would
promote the reproducible and transparent handling and sharing
of data and code, which would allow researchers to utilize and
build from each other’s work and accelerate new discoveries.
However, there are many genomic data maintainers and reposi-
tories that do not meet the FAIR data principles for sharing data
and pipelines. A common prevalent example of this is the use of
one pipeline for data processing, with no documentation pro-
viding justification for the pipeline choice, impacting the dataset
released, which is often only a single version.

In order to address these issues, we developed ORCESTRA
(orcestra.ca), a cloud-based platform that provides a transparent,
reproducible, and flexible computational framework for processing
and sharing large multimodal biomedical data. The ORCESTRA
platform orchestrates data-processing pipelines in order to curate
customized, versioned, and fully documented data objects, which
can be extended to a multitude of data types. This includes 11
pharmacogenomic (in vitro), 3 toxicogenomic, 1 xenographic
pharmacogenomic (in vivo), 1 compendium of clinical genomic
(21 studies), and 1 radiogenomics data objects that can be explored
for a wide range of analyses. ORCESTRA is publicly accessible via
orcestra.ca.

Results
The increasing utilization and demand for big data have resulted
in the need for effective data orchestration25, which is a process
that involves organizing, gathering, and coordinating the dis-
tribution of data from multiple locations across a cluster of
computational resources (e.g., virtual machines) with specific
processing requirements. An ideal orchestration platform for
handling large-scale heterogeneous data would consist of the
following: (1) a defined workflow; (2) a programming model/
framework25, (3) broad availability of computing infrastructure
(e.g., virtual machines with storage systems), and (4) a security
framework to prevent unauthorized access to data and compu-
tational resources. At the workflow level, data from different
sources/lineages, including data that are not static, must be
effectively managed through the definition of workflow compo-
nents (tasks) that interact and rely on one another25. Moreover, a
programming model should be utilized for the workflow com-
ponents responsible for handling the respective data (static and
dynamic), such as a batch processing model (e.g., MapReduce)25.
Lastly, the utilization of a scalable computational environment,
such as academic and commercial cloud-computing platforms,
would allow for the management and processing of big data,
providing the necessary computational resources, ability to
transfer data, and monitoring of executed workflows and
respective components/tasks, further enabling tracking data
provenance. There exist multiple orchestration tools with various
features, to our knowledge, that are currently being used for the
storage, processing, and sharing of genomic data, namely
Pachyderm, DNAnexus, Databricks, and Lifebit (Table 1). We
opted for Pachyderm, an open-source orchestration tool for
multi-stage language-agnostic data-processing pipelines, main-
taining complete reproducibility and provenance through the use
of Kubernetes, as it provides the following functionalities:

Programming language: Pachyderm supports creating and
deploying language-agnostic pipelines across on-premise or cloud
infrastructures, a feature also supported by DNAnexus, Databricks,
and Lifebit.

Large dataset support: Users can upload and process large
datasets through the use of the Pachyderm file system (PFS),
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where the data are exposed in its respective container for utili-
zation in pipelines while being placed in an object storage (e.g.,
Azure Blob, AWS bucket).

Automatic pipeline triggering: Reproducibility and provenance
are guaranteed via automatic pipeline triggering when existing
data are modified or newly added, which results in the generation
of new versions of an output data object. However, because
automatic triggering requires the state of each pod within the
Kubernetes cluster to be saved, there is a permanent allocation of
CPU/RAM for each pod (and therefore each pipeline), which
requires a user to create a cluster with potentially costly resources.
The other platforms do not require permanent allocation of
resources, as for example, Lifebit allows users to spin up instances
on-demand to meet the computational requirements for a given
pipeline.

Reprocessing: A feature that is found in Pachyderm, DNA-
Nexus, and Lifebit is the prevention of recomputation for each
pipeline trigger, which comes in handy when a pipeline contains
processed raw data that does not need to be reprocessed if there is
a change in metadata such as an annotation file.

Docker utilization: Each pipeline can be equipped with a
Docker image connected to Docker Hub for running various
toolkits, which allows for simplistic pipeline updating when
there are future updates to any component of the Docker image.
Docker usage is also translated across the other platforms
as well.

Versioning of data and pipelines with unique identifiers: Each
commit, an operation for submitting and tracking changes to a
data source, is supplied with a unique identifier, which is updated
with each new commit (parent–child system). This allows users to
track different versions of a pipeline and dataset with ease.
However, with Databricks and Lifebit, this feature is partially
supported, as not every pipeline and respective input/output
file(s) are provided with a unique identifier, even when data are
updated through commits.

Parallelism support: A pipeline can be parallelized via a con-
stant or coefficient strategy in Pachyderm using workers, which is
useful for workloads with large computational requirements.
When a constant is set Pachyderm will create the exact number of
workers specified (e.g., constant: 5; 5 workers), that will parallelize
across nodes in the cluster. The coefficient will result in Pachy-
derm creating a number of workers based on the number of
nodes available (multiple nodes), which will also specify the
number of workers per node (e.g., coefficient: 2.0; 20 nodes; 40
workers; 2.0 workers per node). The other platforms also support
parallelization, including automatic parallelization of samples
across instances.

Data-versioning system: Pachyderm provides direct GitHub
integration for data versioning, which enables users to track
changes at the file level and submit updates to Pachyderm
through commits triggered through webhooks on GitHub. In
addition, this also provides users with the ability to publicly view,
track, and share all updates made to a pipeline or file connected to
Pachyderm with ease.

Open access: Pachyderm provides a free and open-source
version of the tool that contains all the functionalities required to
develop a platform ensuring transparent and reproducible pro-
cessing of multimodal data.

Despite these advantages, the choice of Pachyderm is not
without compromises. We list below the functionalities that
Pachyderm is lacking but would have been beneficial to develop
our platform:

Direct mounting of the data: Pachyderm (v.1.9.3) does not
allow for direct mounting of data from a cloud storage system
(e.g., bucket) to a Pachyderm repository. Data must be manually
transferred to the tool’s own file system using the Pachyderm put
file command, resulting in essentially an additional copy of the
data within a cloud environment. Databricks and Lifebit enable
decreasing computation time and cost by not copying data into a
file system for it to be used by the platform. This is important
when large data sizes will be used in an analysis, which allows a
user to simply store their data in a bucket/blob storage account,
and mount it to the platform of interest, giving the user the ability
to also use the data with other platforms or cloud services without
having to repeatedly copy it in an inefficient manner.

Cost-efficiency: Pachyderm utilizes VM’s through a Kubernetes
cluster of deployment on a cloud environment, which are
costly to keep running indefinitely. Therefore, utilizing Pachy-
derm on a cloud infrastructure impacts cost-efficiency, in com-
parison to an on-premise high-performance computing (HPC)
infrastructure. A notable feature that is supported by Lifebit, is
cost-efficiency through low-priority instance utilization on a
cloud provider, allowing for users to execute large-scale analyses
at a reduced cost.

Resource allocation: Pachyderm requires persistent RAM/CPU
allocation for each pipeline within the Kubernetes cluster, even
after a pipeline is successfully executed, which permits automatic
pipeline triggering. Thus, an increased amount of computational
resources (VM’s scaled up/out) may be required for specific
pipelines, which also impacts cost-efficiency.

The ORCESTRA platform. Building on the strengths of the
Pachyderm orchestration tool, we have developed ORCESTRA, a
cloud-based platform for data sharing and processing of

Table 1 Data-processing platforms and their respective features for handling multimodal data.

Features ORCESTRA (Pachyderm) DNAnexus Databricks Lifebit

Create language-agnostic pipelines in the cloud ✓ ✓ ✓ ✓
Large dataset support (TB in size) ✓ ✓ ✓ ✓
Automatic pipeline triggering with updated data (out-of-the-box) ✓ X X X
Prevents recomputation of entire dataset with each new pipeline trigger ✓ ✓ X ✓
Docker utilization ✓ ✓ ✓ ✓
Every pipeline run and data sources are versioned with a unique identifier ✓ ✓ a a

Parallelism support ✓ ✓ ✓ ✓
Versioning system (e.g., GitHub) for pipelines and input data ✓ ✓ ✓ ✓
Open access (free) ✓ X X X
Direct mounting of data (no copying into file system) X X ✓ ✓
Automatic cost-efficiency implementation for instances (low-priority) X X X ✓
No permanent resource allocation for a pipeline (memory/CPU) X ✓ ✓ ✓

aIndicates partial support of the feature.
Each feature was tested against each platform using biomedical data as an input data source.
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biomedical data based on automation, reproducibility, and
transparency. ORCESTRA allows users to create a custom data
object that stores molecular profiles, perturbation (chemical and
radiation) profiles, and experimental metadata for the respective
samples and patients, allowing for integrative analysis of the
molecular and perturbation and clinical data (Fig. 1). The plat-
form utilizes datasets from the largest biomedical consortia,
including 17 curated data objects containing genomics, pharma-
cological, toxicological, radiation, and clinical data (Supplemen-
tary Table 1). The data objects can accommodate all types of
molecular profile data, however, ORCESTRA currently integrates
gene expression (RNA-sequencing, microarray), copy number
variation, mutation, and fusion molecular data. For RNA-seq
data, users can select a reference genome of interest, a combi-
nation of quantification tools and their respective versions, along
with reference transcriptomes from two genome databases
(Ensembl, Gencode) to generate custom RNA-seq expression
profiles for all of the cell lines in the dataset. Therefore, each data
object will be generated through a custom orchestrated Pachy-
derm pipeline path, where each piece of input data, pipeline, and
output data option is tracked and given a unique identifier to

ensure the entire process is completely transparent and repro-
ducible. To ensure data-object generation is fully transparent and
that provenance is completely defined, each data object is auto-
matically uploaded to Zenodo and given a public DOI, where the
DOI is shared via a persistent web page that possesses a detailed
overview of the data that each DOI-associated data object con-
tains and how it was generated. This includes publication sources,
treatment sensitivity information and source, raw data source,
exact pipelines parameters used for the processing tools of choice,
and URLs to reference genomes and transcriptomes used by the
tool(s). Moreover, a BioCompute Object is automatically gener-
ated alongside each data object, which is a standardized record
supported by the U.S. Food and Drug Administration (FDA) for
communicating bioinformatic pipelines and verifying/validating
them in order to aid in the reproducibility of experiments26. This
includes sharing information such as pipeline steps, data input/
output sources, and software utilized with their respective ver-
sions and parameters. In addition, release notes are also provided
by ORCESTRA where the number of samples, treatments, sen-
sitivity experiments, and molecular profile data are tracked
between versions of a dataset, allowing users to identify changes
between each new data update that were released from the
respective consortium and pushed to the platform. This metadata
page gets automatically sent to each user via email, providing
users with one custom page that hosts all of the information
required to understand how the data object was generated.
Therefore, all of the data used in the data object is shared in a
transparent manner, where researchers can identify the true
origins of all data used with confidence and effectively reproduce
results.

Data-object generation. ORCESTRA comes with a web-
application interface allowing users to interact with the data-
processing and data-sharing layers. Users can search existing data
objects in the “Search/Request” view by filtering existing data
objects with the “data object Parameters” panel. Users can filter
existing data objects by selecting datasets with associated drug
sensitivity releases, genome references, RNA-seq transcriptomes,
RNA-seq processing tools with respective versions, which
associates with other respective DNA data types (mutation or
CNV) and RNA data types (microarray or RNA-seq). Changes in
the parameter selections trigger the web app to submit a query
request to a MongoDB database which returns a filtered list of
data objects (Fig. 2). The data-object table is then re-rendered
with an updated list of data objects. This allows users to search
through existing data objects to determine if a data object that
satisfies users’ parameter selections already exists, preventing
recomputation. Information about the datasets and tools used to
generate a data object can be viewed by clicking on a data-object
name and navigating to its data-object metadata web page. Users
can obtain information such as associated publications, links to
the raw drug sensitivity and molecular profile data as well as a
Zenodo DOI. In addition, the individual data-object view pro-
vides users with the option to download the data object of choice
directly from the view.

Users can request a customized data object in the “Search/
Request” view by turning the “Request data object” toggle on.
This action reconfigures the dropdown options in the “data object
Parameters” panel to be in request mode, and displays, on the
“Summary” panel, two text input fields for entering a custom
name for the data object and a user’s email to receive a
notification upon data-object pipeline completion, with the
accompanied Zenodo DOI and custom ORCESTRA metadata
page link. Pachyderm continuously scans for a new request from
the web-app, which will automatically trigger the respective

Fig. 1 Summary of samples, treatments, and molecular profiles utilized
for data-object generation in ORCESTRA. Molecular data, sample, and
treatment information are combined to yield 17 unique data objects from a
variety of biomedical data types.
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pipelines to build the custom data object, while storing a unique
ORCESTRA ID, Pachyderm pipeline commit ID, and Zenodo
DOI into the MongoDB database, which increases the level of
data provenance and reproducibility, as each data object can be
identified through three unique identifiers after creation (Fig. 2).
The data-object filtering process as described above continues to
function as users select the request parameters, which displays
existing data object(s) that satisfy users’ parameter selections.
Upon selecting all the required parameters, the “Submit Request”
button becomes active for users to submit the pipeline request.

Data-object usage. The data objects generated by ORCESTRA
can be utilized to execute large-scale analyses for advancing
biomedical research (Supplementary Methods). The platform
harnesses various open-source R Bioconductor packages within
its Pachyderm workflows in order to create the data objects for
each biomedical data type offered. These packages include
PharmacoGx for pharmacogenomics data27, ToxicoGx for tox-
icogenomics data20, Xeva for xenographic pharmacogenomics
data19, MetaGxPancreas for clinical data22, and RadioGx for
radiogenomics data28. The GRAY, UHNBreast, CCLE, and
GDSC2 pharmacogenomic data objects were utilized to showcase
the strong association between ERBB2 mRNA expression and
Lapatinib drug response (AAC) across all datasets (Supplemen-
tary Fig. 1)29,30. In addition, the consistency of Lapatinib response
was investigated between CTRPv2 and GDSC1/2, where a
stronger consistency was observed between CTRPv2 and GDSC2,
as they use the same pharmacological assay (Cell Titre Glo), in
comparison to CTRPv2 and GDSC1 (Supplementary Fig. 2)31. To
highlight drug compound toxicity, the Open TG-GATEs Human
data object was used to identify top differentially expressed genes
for “most drug-induced liver injury” (DILI) drug acetaminophen
and “no DILI” drug chloramphenicol on primary human hepa-
tocytes (Supplementary Fig. 3)20. For xenographic pharmacoge-
nomics, the Novartis patient-derived xenograft encyclopedia
(PDXE) data object expressed a strong correlation between tras-
tuzumab response and ERBB2 expression from breast cancer
patient-derived xenograft models (Supplementary Fig. 4)19. The
prognostic value of the Pancreatic Cancer Overall Survival Pre-
dictor (PCOSP) and clinical models was investigated across
pancreatic cancer patients in the MetaGxPancreas data object
(Supplementary Fig. 5)32. Lastly, for radiogenomics, the Cleve-
land data object highlighted the correlation between gene
expression and radiosensitivity (AUC—area under the fitted
radiation survival curve) across tissue types (Supplementary
Fig. 6)28. All analyses/figures can be reproduced via a Code

Ocean custom compute capsule (https://codeocean.com/capsule/
9215268/tree), which hosts the data objects, respective code, and
generated figures, allowing for full transparency.

Data-object metrics. The platform provides several usage metrics
for users. These metrics can be accessed through “Home”, “Sta-
tistics”, and “Request Status” views. The “Home” view provides
an overview of currently available datasets, tools and references to
generate data objects, most downloaded data objects, and a
number of pending or in-process data-object requests. The
“Statistics” view provides a visualized data-object popularity
ranking, along with a plot of the number of cell lines, drugs, and
genes for the canonical data objects, including intersection, which
can be accessed by clicking the “View Statistics” button in the
“Home” view. The “Request Status” view displays a tabulated list
of data-object requests that are either “pending” (the request has
been submitted and saved, but has not been processed in
Pachyderm), or “in-process” (the request has been submitted and
is processed in Pachyderm).

User accounts for data-object tracking. The platform offers
users the option to register for an account with a valid email
address. Registered users are able to select existing data objects in
the “Search/Request” view and save them as their “favorites”
which can be accessed in the “User Profile” view. However, the
web application keeps track of data-object requests submitted by
users based on their email addresses even without registration.
These data objects are automatically added to a user’s favorite
data objects and can be viewed in the “User Profile” view.

External data uploading and sharing. The platform enables users
to request the processing of their own research data into a curated
dataset through the “Data Submission” feature. This feature is
accessible only to the registered users. In order to submit their data,
the users are asked to complete the data submission form, with the
help of data submission guideline documentation and sample data
files provided in the documentation section. Upon submitting the
request, an email notification is sent to ORCESTRA administrator.
The administrator then verifies the submitted data and configures
Pachyderm to process the submitted data.

Platform security. In order to prevent unauthorized access to our
computational resources, including data and virtual machines,
security measures have been implemented throughout our Azure
ecosystem. Because Pachyderm resides within a Kubernetes
cluster, it is important to prevent outside access to the Kubernetes

Fig. 2 ORCESTRA web-application connectivity with data-processing layer through commit identifier (ID) scanning for user-selected pipeline
requests, and subsequent data-object DOI tracking with MongoDB queries. The web-application layer receives pipeline requests under the form of
JavaScript Object Notation (JSON) file and updates the ORCESTRA database with each data-object digital object identifier (DOI) and commit ID. The
orchestration functionality scans for new pipeline requests and executes them to generate a versioned data object, which is uploaded to Zenodo to retrieve
a DOI in the data-sharing layer.
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API server, which was executed through Azure Active Directory.
This enforces role-based access control (RBAC) to the cluster,
allowing selective access to it. RBAC is also extended to the
storage solutions utilized by ORCESTRA, allowing us to monitor
data that is imported and accessed while preventing unauthorized
access.

Discussion
The high-dimensionality, complexity, and scale of multimodal data
present unprecedented challenges for researchers in the biomedical
field, in regard to their ability to effectively manage, track, and
process the data. The nature of heterogeneous and complex data
negatively impacts data provenance, through incomplete or no
accompaniment of metadata for a dataset, resulting in the uncer-
tainty of a data lineage33–35. Because the granularity of metadata is a
determinant of the value of a dataset36, it should provide a rich
description of dataset content, following the FAIR data principles,
which includes information about dataset origin, how it was gen-
erated, if there were any modifications that were made to it from
precedent versions, and what these modifications were23,37,38.
When the FAIR data principles are not met, issues with reprodu-
cibility in the biomedical sciences follow, where data are either not
shared or results/estimates and claims cannot be checked for cor-
rectness. However, datasets published online, including ones that
reside in repositories and from journals, are often not accompanied
by sufficient metadata39. In the field of genomics, issues with
metadata often include mislabelling or misannotation of data (e.g.,
incorrect identification numbers), improper data characterization
(e.g., mapping files to respective samples and protocols), and
inconsistency in the way metadata are presented (nonuniform
structure used across consortia)16. Provenance also extends to the
computational workflows that are developed to process datasets2, as
sharing relevant source code is often not provided15 along with
relevant documentation about the workflow, such as in graphical-
user interface (GUI) based systems like Galaxy, affecting the ability
to reproduce results2. In addition, data maintainers and consortia,
such as the Cancer Cell Line Encyclopedia (CCLE)40 and the
Genomics of Drug Sensitivity in Cancer (GDSC), often only process
the dataset using one pipeline that they believe is the most suitable,
without documenting supporting evidence as to why the chosen
processing pipeline was selected over other competing ones in the
field41,42. This issue is also present in other data types such as
xenographic or metagenomics data, where the molecular data are
processed and normalized using only one pipeline22,43. Therefore,
only a single version of the dataset is released, which makes it
difficult for other researchers to perform a diverse set of analyses
that require the use of different processing pipelines on the dataset.
Lastly, it is important to note that datasets evolve and are therefore
not static, as new data are added and respectively depreciated,
which further highlights the need for transparent data-sharing
practices, especially at the file level where updates can be easily
identified.

There are multiple data portals created for accessing and sharing
biomedical data, but with limitations in regard to reproducibility
(Supplementary Table 2). Below, are sharing practices that are
adopted across various data types, such as pharmacogenomics,
toxicogenomics, radiogenomics, xenographic pharmacogenomics,
and clinical genomics data:

Pharmacogenomics. The Genomic Data Commons Data Portal
(NIH/NCI GDC) hosts raw data for the Cancer Cell Lines
Encyclopedia (CCLE) from the Broad Institute, including RNA,
whole-exome, and whole-genome sequencing data, allowing users
to select and download the data type(s) of interest. Obtaining the
data can be done through direct download or their GDC Data

Transfer Tool by providing a manifest file that possesses the
unique identifiers (UUID) of each file, which also allow users to
locate the files again through the portal, along with their corre-
sponding run, analysis, and experimental metadata. This is
advantageous, as all the raw data (public and controlled access),
for both datasets, are located within one portal and can be
accessed in an efficient manner. However, the recent addition of
new CCLE data (e.g., additional RNA-seq cell lines)41, is found on
the European Nucleotide Archive (ENA), but not on GDC,
resulting in data source inconsistency that becomes difficult to
manage and follow for users. Current and previous versions of
other CCLE data (i.e., annotation, drug response) are hosted on a
Broad Institute portal, with no release notes or documentation
present with each version, forcing researchers to manually iden-
tify changes within each file after every release. GRAY, a dataset
generated by Dr. Joe Gray’s lab at the Oregon Health and Science
University, has had three updates with raw data hosted on NCBI,
with drug response and annotation data hosted on SYNAPSE,
DRYAD, and/or the papers supplementary section44–46. In
addition, drug-response data can also be found on the LINCS
data portal. Because each version of the dataset is associated with
a different respective paper, the data are scattered among various
repositories, which makes it challenging to keep track of each
source, and for each source to ensure that the data remain readily
available, as one failed link would make it difficult for a researcher
to reproduce any results. However, for the GRAY dataset, NCBI
provides detailed information about the methodology used for the
experiments, SYNAPSE provides a wiki and contact source for
the dataset and a provenance tracker for each file that is uploaded,
and DRYAD stores each publications data as a package organized
with subsequent descriptions to keep data organized. A promi-
nent example in effective data-sharing practices is DepMap
(depmap.org)47, which provides a portal to download molecular
and pharmacological data from a variety of consortia, with an
interface that allows users to dive into the multiple data releases
for a given dataset, which is accompanied by descriptive metadata
such as associated publications and file-level descriptions. This
provides users with the ability to download a dataset directly from
a source or combine them together to form a custom dataset, all
while being able to compare different updates/versions in an
interactive manner. However, the portal does not allow users to
select different processing pipelines and lacks details regarding
the pipelines used for some of the processed data hosted, such as
molecular data (e.g., genomic tools used), which highlights a need
for increased granularity in the portal.

Toxicogenomics. The Life Science Database (LSDB) Archive is
a database that hosts datasets by Japanese researchers (https://
dbarchive.biosciencedbc.jp/), such as the TG-GATE toxicogenomics
dataset48. The database provides rich metadata for users such as a
DOI and clickable sections that provide granular details about each
file in the dataset, which includes a description of the file contents
and file attributes (e.g., data columns and respective descriptions for
each column). In addition, the database allowed for TG-GATE to
provide a timeline of updates to the dataset, where data corrections
are posted with accompanying corrected files and a description of
the update, which allows maintainers to be transparent with users
about the dataset lineage. However, even though the maintainers for
TG-GATE have indicated that the dataset was updated, detailed
file-level changes are not provided, along with the processing
pipelines and/or information regarding how the data was generated/
processed into their resulting formats.

Xenographic and radiogenomics. The largest datasets for patient-
derived tumor xenograft and radiogenomics studies are available
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through supplementary materials attached to their scientific
publications21,43. These supplementary data provide users with
information about the methods used to generate the data; however,
access is dependent on the journal itself, which raises issues
regarding the potential of broken data links. In addition, the
amount of data that can be added to a publication via a supple-
mentary section may be limited due to journal restrictions, which
increases the likelihood of files being distributed across other data-
sharing platforms (e.g., SYNAPSE), increasing the difficulty in
locating and keeping track of dataset updates, or resulting in a
reliance of contacting authors to obtain a complete dataset that
cannot be otherwise shared via the journals web interface.

Clinical genomics. Over the years, clinical genomics data has
been stored and shared across a wide range of consortia such as
NCBI (GEO/EGA) and/or as supplementary material to a pub-
lication. However, this inconsistency has led to the development
of several data compendia to consolidate the data for transparent
mining/managing, sharing, and analysis, such as Oncomine49,
MultiAssayExperiments R package for multiple experimental
assays50, and curatedData R packages for molecular profile
analysis51. In addition, the MetaGx R packages were developed to
allow users to retrieve a compendium of transcriptomic data and
standardized metadata from a wide array of studies and cancer
types (pancreas, breast, ovarian), allowing for integrative analysis
of the data for biomarker discovery22.

In order to address these issues of primary data acquisition and
sharing pertaining to multiple studies across a range of biomedical
data types, ORCESTRA harnesses a flexible framework that allows
for sharing the respective data in a transparent manner. More
specifically, all data sources and associated publications are clearly
communicated to users for a specified data object, in order to limit
the need to execute additional source searches outside of the
platform. In addition, all pipelines are shared with users via a direct
GitHub link on the metadata web pages, ensuring that users can re-
create the objects themselves from the respective data sources. This
also includes the Docker image used for each data-object creation,
ensuring that computational environments remain consistent for
data-object generation outside of the platform, if needed. All data
objects also have a persistent identifier (DOI), allowing them to be
referenced back to one source, increasing data transparency and
provenance, unlike other consortia. Lastly, the platform provides
credit and data disclaimers to all primary data generators, which are
packaged with data sources, respective pipeline code, associated
publications, and persistent identifiers, into one package/environ-
ment that is beneficial, as it promotes the FAIR principles in the
platform. However, it must be noted that one platform solution
alone will not be sufficient to solve all issues with data sharing,
which is still facing multiple sociopolitical challenges in the
scientific community. ORCESTRA provides a space that enables

the unification of all primary data sources across multiple studies
into one location, which is a step forward in standardizing the
manner in which these data are processed and shared within the
research community.

To encourage user uptake, we plan on regularly updating the
platform with additional datasets and data types. In addition, we
plan on automating the manner in which users can upload their
own data for processing through standardized processing pipelines,
which will further limit human intervention for generating data
objects. Due to the open-source nature of the platform, we hope to
invoke more community involvement by allowing users to run local
instances of the platform to process their own data in a reproducible
and transparent manner using built-in pipelines. Lastly, we aim to
implement a metrics system to keep track of data objects used in
future publications, in order to demonstrate its impact in the
research community.

In conclusion, the ORCESTRA platform provides a new
paradigm for sharing ready-to-analyze multimodal data while
ensuring full transparency and reproducibility of the curation,
processing, and annotation processes. ORCESTRA provides the
data provenance and versioning tools necessary to maximize the
reusability of data, a cornerstone of Open Science.

Methods
In order for the platform to be as transparent as possible, it harnesses an archi-
tecture with three distinct layers that not only works independently to process and
interpret precedent data, but also have the capacity to scale (Fig. 3).

Web-app layer. The first layer contains the web application which was developed
using a Node.js API and React front-end with MongoDB as a database. The layer
provides the user with an interaction point to the ORCESTRA platform, allowing
users to first select the data type they wish to explore, either Pharmacogenomics;
Toxicogenomics; Xenographic pharmacogenomics; Radiogenomics; or Clinical
genomics. They can then search for existing data objects, request a new data object
by entering pipeline parameters, view data-object request status, and register a
personal account to save existing data objects of choice.

Data-processing layer. The second data-processing layer encompasses a Kuber-
netes cluster on Microsoft Azure that hosts Pachyderm, which utilizes Docker
images for running R packages. All of the RNA-seq raw data have been pre-
processed with Kallisto and Salmon Snakemake pipelines using an HPC environ-
ment, and subsequently pushed to assigned data repositories on Pachyderm,
allowing for specified selection from the web-app (transcriptome and tool version).
Microarray, cnv, mutation, and fusion data are either processed directly with
Pachyderm due to low computational requirements or aggregated into the data
objects from public sources. The Pachyderm pipelines aggregate repositories that
host data generated on an HPC environment or on GitHub (https://github.com/
BHKLAB-Pachyderm) into a Docker image that builds a data object based on user
specifications (e.g., RNA-seq data processed by Kallisto v.0.46.1, inclusion of only
CNV data) (Fig. 4). The GitHub hosted files can be viewed at the file level for
changes and edited which automatically triggers the Pachyderm pipeline with the
new modifications to produce a new data object. A unique feature of Pachyderm is
the prevention of reprocessing computed data, such as where an update of RNA-
seq annotations will not trigger the reprocessing of thousands of drug-response
data, which reduces computation time. In addition, Pachyderm can be turned on/
off by shutting on/off the computational resources that it utilizes in a cloud

Fig. 3 The ORCESTRA framework layers for pipeline selection, data-object generation, and digital object identifier (DOI) sharing with a custom
metadata web page. The web-application layer allows users to request custom data objects, which are generated through Pachyderm in a Kubernetes
cluster within the data-processing layer. Each versioned data object is automatically pushed to the data-sharing layer and uploaded to Zenodo to obtain a
DOI. Data objects that have already been processed result in the immediate sharing of custom metadata web pages with users via email.
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environment (e.g., virtual machines). Therefore, ORCESTRA can control costs by
preventing the need for the resources to be constantly running, as it will only
generate data objects when needed, including requests sent in by users. The
ORCESTRA costs for both virtual machines and storage per year on average is
collectively ~$2800 CAD. Virtual machines contribute to ~$1300 CAD of this cost,
while storage contributes to ~$1500 CAD.

Pipelines are located in ORCESTRAs GitHub page (https://github.com/BHKLAB-
Pachyderm), which are executed by running pachtl create-pipeline on their respective
JSON file. Each JSON file has specified inputs that are accessed by the pipeline, along
with a command section that runs a given script. These scripts are responsible for data
generation, which is output into a storage container on Azure. Pipeline repositories
are denoted by a “pipelines” suffix in the repository name.

Data-sharing layer. Each generated data object enters the third data-sharing layer
where the data object gets automatically uploaded to an online data-sharing
repository known as Zenodo, with a DOI so that the data object can be given a
persistent location on the internet to be uniquely identified. The generated DOI is
then associated with a custom metadata web page that is generated based on the
contents of the data object. A BioCompute Object is also generated alongside the
data objects, which are automatically deposited to Zenodo, where their DOI is also
shared via the custom metadata web pages. Data disclaimers, usage policies, and
credits to the original data generators are communicated to users in order to ensure
the data is accessed and shared in an acceptable manner.

In addition to publicly sharing curated datasets, the platform leverages Zenodo’s
access control feature to enable users to keep their curated dataset access restricted.
Users may choose to keep the dataset “private” when submitting their own data for
curation through the Data Submission feature. When pachyderm uploads the
processed dataset to Zenodo by using their API, it adds a set of parameters to the
upload request to keep access right of the uploaded data to the “restricted” status.
The uploaded data with “restricted” status is only accessible upon request.
Similarly, on the ORCESTRA web application, the information about the private
dataset is only accessible to the user who submitted the data. The user may choose
to grant access to view information about the private dataset by using the shareable
link generation feature that is available on the private dataset page. Finally, the
platform offers users an ability to publish the dataset by clicking the “Publish
Dataset” button on the private dataset page. Upon receiving this request, the web
application updates the database to indicate that the visibility of the dataset is
“public”, and executes a series of API requests to Zenodo to change the access right
to “open”, making the dataset publicly accessible.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The GRAY dataset used in this study has been deposited at https://doi.org/10.5061/
dryad.03n60 and is provided under CC0 1.0 Universal (CC0 1.0) Public Domain
Dedication license. The CCLE dataset used in this study has been deposited at https://

data.broadinstitute.org/ccle_legacy_data and is provided under the Creative Commons
Attribution 4.0 license. The CTRPv2 dataset used in this study has been deposited at
https://portals.broadinstitute.org/ctrp and is provided under the Creative Commons
Attribution 4.0 license. The gCSI dataset used in this study has been deposited at http://
research-pub.gene.com/gCSI_GRvalues2019/ and is provided under the Creative
Commons BY 4.0 license. The FIMM dataset used in this study has been deposited at
https://doi.org/10.1038/nature20171 and is provided under the Creative Commons BY
4.0 license. The GDSC dataset used in this study has been deposited at https://
www.cancerrxgene.org and has the following data-usage policy: https://
depmap.sanger.ac.uk/documentation/data-usage-policy/. The UHNBreast dataset used in
this study has been deposited at https://codeocean.com/capsule/6718332/ and is provided
under the Creative Commons BY 4.0 license. The Open TG-GATEs dataset used in this
study has been deposited at Lifescience Database Archive: https://
dbarchive.biosciencedbc.jp/en/open-tggates/download.html and are provided under
Creative Commons Attribution-Share Alike 2.1 Japan. The EMEXP2458 dataset used in
this study has been deposited at https://www.ebi.ac.uk/arrayexpress/experiments/E-
MEXP-2458/ and is provided under permissive license at https://www.ebi.ac.uk/
arrayexpress/help/FAQ.html#data_restrictions. The DrugMatrix dataset used in this
study has been deposited at (diXa Data Warehouse—www.dev.ebi.ac.uk/fg/dixa/—study
ID DIXA-033) and is attributed to the National Toxicology Program and may be copied
and distributed without permission. The PDXE dataset used in this study has been
deposited at https://pubmed.ncbi.nlm.nih.gov/26479923/ and may be utilized under
NCBI and author guidelines. The MetaGxPancreas dataset used in this study has been
deposited at http://bioconductor.org/packages/release/data/experiment/html/
MetaGxPancreas.html and is provided under Creative Commons Attribution 4.0
International License. All of the data objects are publicly available on ORCESTRA
(orcestra.ca) via dedicated documented web pages, which include respective digital object
identifiers (DOI) and Zenodo links for each data object generated. Data for the case
studies in the manuscript can be accessed in a custom compute capsule on Code Ocean at
https://codeocean.com/capsule/9215268/tree.

Code availability
All of the code used by ORCESTRA is publicly available on GitHub via the Apache 2.0
license: https://github.com/BHKLAB-Pachyderm. All analyses performed using the data
objects can be reproduced through a custom compute capsule on Code Ocean: https://
codeocean.com/capsule/9215268/tree.
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