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Assembly defects of human tRNA splicing
endonuclease contribute to impaired pre-tRNA
processing in pontocerebellar hypoplasia
Samoil Sekulovski 1,9, Pascal Devant 1,2,3,9, Silvia Panizza4,9, Tasos Gogakos5, Anda Pitiriciu1,

Katharina Heitmeier 1, Ewan Phillip Ramsay6, Marie Barth 7, Carla Schmidt 7, Thomas Tuschl 5,

Frank Baas8, Stefan Weitzer4, Javier Martinez 4✉ & Simon Trowitzsch 1✉

Introns of human transfer RNA precursors (pre-tRNAs) are excised by the tRNA splicing

endonuclease TSEN in complex with the RNA kinase CLP1. Mutations in TSEN/CLP1 occur in

patients with pontocerebellar hypoplasia (PCH), however, their role in the disease is unclear.

Here, we show that intron excision is catalyzed by tetrameric TSEN assembled from inactive

heterodimers independently of CLP1. Splice site recognition involves the mature domain and

the anticodon-intron base pair of pre-tRNAs. The 2.1-Å resolution X-ray crystal structure of a

TSEN15–34 heterodimer and differential scanning fluorimetry analyses show that PCH

mutations cause thermal destabilization. While endonuclease activity in recombinant mutant

TSEN is unaltered, we observe assembly defects and reduced pre-tRNA cleavage activity

resulting in an imbalanced pre-tRNA pool in PCH patient-derived fibroblasts. Our work

defines the molecular principles of intron excision in humans and provides evidence that

modulation of TSEN stability may contribute to PCH phenotypes.
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A ll nuclear-encoded transfer RNAs (tRNAs) are processed
and modified to create functional, aminoacylated tRNAs1.
In humans, 28 out of 429 predicted high confidence tRNA

genes contain introns that must be removed from precursor tRNAs
(pre-tRNAs) by splicing2,3 (http://gtrnadb.ucsc.edu/). Some iso-
decoders, e.g. tRNATyr

GTA, tRNAIle
TAT, and tRNALeu

CAA, are only
encoded as intron-containing precursors, for which splicing is
essential for their production4. Intron excision and ligation of the 5′
and 3′ tRNA exons is catalyzed by two multiprotein assemblies: the
tRNA splicing endonuclease (TSEN)5 and the tRNA ligase
complex6, respectively.

The human TSEN complex consists of two catalytic subunits,
TSEN2 and TSEN34, and two structural subunits, TSEN15 and
TSEN54, all expressed at very low copy numbers of ~100 mole-
cules per cell5,7. TSEN2–54 and TSEN15–34 are inferred to form
distinct heterodimers from yeast-two-hybrid experiments, how-
ever, a solution NMR structure of homodimeric TSEN15 has
challenged the proposed model of TSEN assembly8,9. Based on
their quaternary structure, archaeal tRNA endonucleases have
been classified into four types, α4, α′2, (αβ)2, and ε210,11, whereas
the eukaryotic tRNA endonucleases adopt a heterotetrameric
αβγδ arrangement5,8. Homotetramer formation in archaeal α4-
type endonucleases is mediated by a hydrophobic domain inter-
face involving antiparallel β strands of two neighboring α sub-
units and interactions between a negatively charged L10 loop of
one α subunit with a positively charged pocket of an opposing α
subunit. These interactions are conserved in all four types of
archaeal endonucleases and were also suggested to occur in
eukaryotic endonucleases. In humans, TSEN2 and TSEN34 are
each predicted to harbor a catalytic triad, composed of Tyr369/
His377/Lys416 in TSEN2 and Tyr247/His255/Lys286 in TSEN34,
responsible for cleavage at the 5′ and 3′ splice sites,
respectively5,8,12. His377 and His255 are supposed to act as general
acids at the scissile phosphates of the exon-intron junctions of
pre-tRNAs5,12,13. Furthermore, TSEN54 was suggested to func-
tion as a molecular ruler measuring the distance from the mature
domain of the tRNA to define the 5′ splice site8,13–16.

The intron in pre-tRNAs is suggested to allow the formation of
a double helix that extends the anticodon stem in the conven-
tional tRNA cloverleaf structure and presents the 5′ and 3′ splice
sites in single-stranded regions accessible to TSEN17,18. Such a
bulge-helix-bulge (BHB) conformation was postulated to act as a
universal recognition motif in archaeal pre-tRNA splicing
allowing for intron recognition at various positions in pre-
tRNAs19. In contrast, eukaryotic introns strictly locate one
nucleotide 3′ to the anticodon triplet in the anticodon loop with
varying sequence and length3,14. Experiments using yeast and
Xenopus tRNA endonucleases showed that cleavage at the exon-
intron boundaries requires the presence of an anticodon–intron
(A–I) base pair that controls cleavage at the 3′ splice site besides
positioning of the 5′ splice site via the mature domain of the pre-
tRNA14,20,21. The X-ray crystal structure of an archaeal endo-
nuclease with a BHB-substrate showed that two arginine residues
at each active site form a cation-π sandwich with a flipped-out
purine base of the pre-tRNA to position the substrate for an
SN2-type in line-attack12,13,16. However, biochemical experiments
using the yeast endonuclease showed that the cation-π sandwich
is only required for cleavage at the 5′ splice site, whereas it is
dispensable for catalysis at the 3′ splice site12.

Specific to mammals is the association of TSEN with the RNA
kinase CLP15,22. Mutations in CLP1 were shown to impair tRNA
splicing in vitro and to cause neuropathologies involving the
central and peripheral nervous system23–25. Mutations in all four
subunits of the TSEN complex have been associated with the
development of pontocerebellar hypoplasia (PCH), a hetero-
geneous group of inherited neurodegenerative disorders with

prenatal onset characterized by cerebellar hypoplasia and
microcephaly26–31.

The most common mutation causing a type 2 PCH phenotype
is a homozygous TSEN54 c.919 G > T mutation that leads to an
A307S substitution in TSEN5426,27,32. Several other substitutions,
e.g. S93P in TSEN54, R58W in TSEN34, Y309C in TSEN2, and
H116Y in TSEN15, have also been identified as causative for
PCH26,30. None of the described disease mutations is located in
or in close proximity to the predicted catalytic sites of human
TSEN, or in other highly conserved regions of the proteins, and
how they contribute to disease development remains unclear.
Here we present the biochemical and structural characterization
of recombinant human TSEN. We analyze PCH-associated
mutations at the structural and biochemical levels in reconstitu-
tion experiments and reveal biochemical features of the TSEN
complex in PCH patient-derived cells.

Results
Assembly of recombinant human tRNA splicing endonuclease.
To gain functional insights into human TSEN/CLP1, we designed
an expression vector series based on the MultiBac system33 that
allows combinatorial protein complex production in insect and
mammalian cells by utilizing a CMV/p10 dual promoter34

(Fig. 1a, b, and Supplementary Fig. 1a). Using this system, we
were able to assemble and purify functional heterotetrameric
TSEN and a heteropentameric complex including the RNA kinase
CLP1 from infected insect cells (Fig. 1b, c and Supplementary
Fig. 1b). The structural integrity of the purified complexes was
verified by native mass spectrometry (MS), showing a stoichio-
metric TSEN2–15–34–54 heterotetramer (165.6 kDa) and a
TSEN/CLP1 heteropentamer (213.0 kDa) (Fig. 1c, Supplementary
Fig. 1b, and Supplementary Tables 1,2). These data are in line
with a recent study showing reconstitution of TSEN/CLP1 from
bacterial and eukaryotic expression hosts35. We also identified
TSEN/CLP1 complexes harboring two CLP1 molecules (Supple-
mentary Fig. 1b). Recombinant TSEN54 showed a high degree of
phosphorylation as reported for the endogenous protein (Sup-
plementary Fig. 1c)36.

Endonuclease activity of tetrameric TSEN was observed in a pre-
tRNA cleavage assay using Saccharomyces cerevisiae (S.c.) pre-
tRNAPhe

GAA as a substrate, whereas mature S.c. tRNAPhe
GAA

remained unaffected (Fig. 1d). The absence of endonucleolytic
activity on mature tRNA confirms the specificity of the complex for
its native pre-tRNA substrate. Yeast-two-hybrid experiments with
S.c. orthologues suggested that strong interactions exist between
TSEN15 and TSEN34, as well as between TSEN2 and TSEN54, and
that the human endonuclease assembles from preformed dimeric
subcomplexes8. Using combinatorial co-expression analyses, we
identified the formation of stable TSEN15–34 and TSEN2–54
heterodimers (Fig. 1e). Individual heterodimers did not show
endonuclease activity, whereas specific endonucleolytic cleavage was
observed after stoichiometric mixing of TSEN15–34 and TSEN2–54
in the absence of ATP (Fig. 1e). Size exclusion chromatography
confirmed that a stable tetrameric assembly formed upon mixing
the individual heterodimers (Supplementary Fig. 1d, e). In line with
data from reconstituted TSEN recombinantly produced in
Escherichia coli35, these observations indicate that active human
TSEN assembles from non-functional, heterodimeric submodules
independently of CLP1 and ATP.

Human TSEN binds precursor and mature tRNAs with similar
affinities. It has been postulated that eukaryotic splicing endo-
nucleases recognize pre-tRNAs via their mature domain14,15. To
define tRNA binding parameters of human TSEN, we performed
interaction studies using catalytically inactive tetramers
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(TSENinactive), in which the active site histidines of TSEN2
(His377) and TSEN34 (His255) were substituted for alanines (Fig. 2
and Supplementary Fig. 2). Alanine substitutions of His377 of
TSEN2 and His255 of TSEN34 abolished cleavage at the 5′ and 3′
splice sites, respectively, and purified TSENinactive did not cleave
pre-tRNA substrates at all (Fig. 2a and Supplementary Fig. 2b).

To perform fluorescence anisotropy and pull-down experi-
ments, we site-specifically labeled precursor and mature yeast
tRNAPhe

GAA at the terminal 3′ ribose. Despite the inability to cut
its native substrate, TSENinactive interacted stably and specifically
with the fluorescently labeled pre-tRNA in a pull-down assay
(Fig. 2b). Binding studies using fluorescence anisotropy revealed
dissociation constants (KD) of 173 ± 11 nM and 149 ± 20 nM for
fluorescently labeled pre-tRNAPhe

GAA and mature tRNAPhe
GAA,

respectively (Fig. 2c, d). We determined an inhibition constant
(Ki) of 197 nM (95% confidence interval of 168–231 nM) in a
competition assay confirming the specific interaction, whereas
a fluorescent electrophoretic mobility shift assay corroborated a
dissociation constant between TSEN and pre-tRNA in the high
nanomolar range (Supplementary Fig 2c, d). Our determined KD

values are in good agreement with previously deduced Michaelis
constants (KM) of ~30 and 250 nM for intron excision by the
yeast and an archaeal tRNA endonuclease, respectively37. Taken
together, our results show that substrate recognition by human
TSEN is primarily mediated by the mature domain of pre-tRNAs
which positions intron-containing anticodon stems for cleavage.

The A–I base pair coordinates cleavage at the 3′ splice site in
human TSEN. Cleavage of archaeal introns strictly relies on the

tRNA BHB motif, whereas the only preserved feature of human
tRNA introns is a pyrimidine in the 5′ exon at position −6 from
the 5′ splice site which forms a conserved A–I base pair with a
purine base at position −3 from the 3′ splice site (Fig. 2e). Studies
on the Xenopus tRNA endonuclease showed that the A–I base
pair is critically involved in the cleavage reaction at the 3′ splice
site20,21,38. To find out whether the same regulatory principles
exist for intron excision in humans, we tested the impact of A–I
base pair mutants on endonucleolytic cleavage by tetrameric
TSEN (Fig. 2e, f, Supplementary Fig. 2e, and Supplementary
Fig. 3). Changing the guanine base G54 to cytosine in S.c. pre-
tRNAPhe

GAA produced a pre-tRNA substrate with a disrupted
A–I base pair (Fig. 2e, f). Cleavage of this pre-tRNA by wild-type
(wt) human TSEN resulted in a 5′ exon and an intron-3′-exon
intermediate (Fig. 2f). Cleavage at both splice sites was observed
when base pairing at the A–I position was restored by mutating
cytosine C32 to guanine in the C54 background (Fig. 2e, f). The
same effect was observed when human pre-tRNATyr

GTA8-1 har-
boring equivalent mutations were used as substrate (Supple-
mentary Fig. 2e). These findings imply that the presence of an
A–I base pair, but not the strict identity of the bases, is essential
for cleavage at the 3′ splice site by human TSEN20,21.

The molecular architecture of TSEN is evolutionarily con-
served. Our interaction studies using recombinant proteins
showed that active human TSEN assembles from inactive
TSEN15–34 and TSEN2–54 heterodimers (Fig. 1e). To gain
detailed insights into the molecular architecture of the human
TSEN complex, we characterized the TSEN15–34 heterodimer by
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GAA and mature tRNAPhe
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denominations are given on the right. e Pre-tRNA cleavage assay with TSEN heterodimers and S.c. pre-tRNAPhe
GAA. SDS-PAGE of the indicated

heterodimers and the reconstituted TSEN tetramer is shown on the left (InstantBlue stain), urea-PAGE of the cleavage products on the right (Toluidine blue
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X-ray crystallography (Fig. 3 and Supplementary Fig. 4). Despite
extensive crystallization trials, full-length TSEN15–34 did not
crystallize. To define a crystallizable core complex, we subjected
the TSEN15–34 complex to limited proteolysis with subsequent
size exclusion chromatography and MS analysis (Supplementary
Fig. 4a, b and Supplementary Tables 2–4). We observed two
comigrating polypeptide species corresponding to residues
23–170 of TSEN15 and residues 208–310 of TSEN34 covering the
predicted conserved nuclease domains (Supplementary Fig. 4b, c
and Supplementary Fig. 5)8.

We re-cloned, co-expressed and purified the proteolytically
characterized fragments, which readily formed rod-shaped
crystals in space group P21 and diffracted X-rays to a resolution
of 2.1 Å (Supplementary Fig. 4d and Supplementary Table 5). The
asymmetric unit is composed of two domain-swapped TSEN34
molecules, each binding one TSEN15 protomer at their
C-terminal domains (Supplementary Fig. 4e, f). The domain
swap is brought about by a short, structured N-terminal α-helix/
β-hairpin element of TSEN34 that is liberated to hook onto the
neighboring protomer, presumably due to the truncated
N-terminus of the molecule. The domain swap is most likely a
crystallization artifact, since TSEN15–34 migrates as a hetero-
dimer during size exclusion chromatography (Supplementary
Fig. 4d) and forms dimers of dimers at high protein concentration
as shown by size exclusion chromatography multi-angle light
scattering (SEC-MALS) (Supplementary Fig. 4g). The two

TSEN15 and the two TSEN34 molecules in the asymmetric unit
are very similar with average overall RMSDs of 0.37 and 0.50 Å,
respectively. In one TSEN15 protomer, an elongated C-terminal
region (residues 162–170) is visible, which is stabilized by crystal
contacts (Supplementary Fig. 4f).

TSEN15 and TSEN34 display the typical endonuclease fold with
the latter harboring the Tyr247/His255/Lys286 catalytic triad as also
found in archaeal and eukaryotic endonucleases (Fig. 3a, b and
Supplementary Fig. 4h)13. The dimeric TSEN15–34 complex is
characterized by an elongated central twisted β-sheet connected by
the C-terminal β-strands of TSEN15 and TSEN34 with a buried
surface area of ~1980Å2 between the protomers (Fig. 3a, b). Each
face of the individual twisted β-sheets of TSEN15 and TSEN34 is
mainly stabilized by hydrophobic interactions to an alpha helix
(Fig. 3a, c, d). In the interface between TSEN15 and TSEN34, two
structural water molecules are found, which are coordinated by
hydrogen bonds to backbone oxygens or amide groups of Ile110,
Ala112, and Leu114 of TSEN15, Ile269, Leu271, and Gln272 of TSEN34,
and the side-chain oxygen of Gln272 (Fig. 3c). Furthermore, a YY
motif in TSEN15 (Tyr152/Tyr153), which is conserved in eukaryotic
endonucleases and archaeal α4- and (αβ)2-type endonucleases
(Supplementary Fig. 6) both stabilizes TSEN15 by hydrophobic
interactions and the dimer interface by hydrogen bonds to the main-
chain carbonyl oxygen of Leu274 and the side-chain oxygen of Ser283

of TSEN34 (Fig. 3a, c). In contrast to a previous solution NMR
structure of homodimeric TSEN159, our biochemical and structural
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analyses show that the assembly and architecture of TSEN are
conserved and support the hypothesis that tRNA splicing endonu-
cleases arose from a common ancestor through gene duplication and
differentiation events39.

PCH-causing mutations destabilize recombinant TSEN. A
previous genetic study identified a His-to-Tyr substitution at posi-
tion His116 of TSEN15 in patients with PCH type 2 (Fig. 3d)30. The
imidazole group of His116 is central to a hydrogen bond network
involving Asn117, Arg120, and Asp157 of TSEN15 and Ser292 and
Thr302 of TSEN34 (Fig. 3d). We tested the impact of this sub-
stitution in a pull-down experiment using full-length TSEN15 and
TSEN34 and also in a pre-tRNA cleavage assay in the context of the
tetrameric assembly (Fig. 3e, f). We hypothesized that the

substitution impairs complex formation and activity due to steric
clashes in the dimer interface and loss of the hydrogen bond net-
work. However, TSEN15 carrying the His-to-Tyr mutation engaged
in complex formation with TSEN34 similar to the wt protein, and
no impairment of catalytic activity was observed (Fig. 3e, f). We
assumed that the large hydrophobic interface compensates for the
loss of the hydrogen bond network. To assess the effects of the
TSEN15H116Y mutation on the thermal stability of TSEN, we
compared the mutant complex to wt by differential scanning
fluorimetry (DSF, Fig. 3g)40. This assay reported apparent dena-
turing temperatures of 50.0 ± 0.5 °C and 47.4 ± 0.5 °C for wt and
mutant TSEN, respectively (Fig. 3g and Supplementary Fig. 4i).
These data suggest that destabilization of TSEN might be a general
effect of PCH-causing mutations.
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It is not known how mutations in TSEN subunits lead to
disease, given that the complex is essential for cell physiology and
survival and yet only a subset of specific cell types is impacted31.
It has been suggested that PCH-associated mutations interfere
with complex assembly, stability, or enzymatic activity leading to
a general decrease of TSEN functionality which is eventually
exacerbated in specific cellular or tissue contexts. Given that the
His-to-Tyr mutation in TSEN15 thermally destabilized the
endonuclease complex, we produced heterotetrameric TSEN
complexes carrying the PCH-causing mutations TSEN2Y309C,
TSEN34R58W, TSEN54S93P, and TSEN54A307S in HEK293 cells
and performed pull-down experiments to assess complex
assembly and integrity (Fig. 4a). Despite subtle differences in
expression levels of the individual subunits, pull-down via
TSEN15 co-precipitated TSEN2, TSEN34, and TSEN54, irrespec-
tive of the introduced PCH-causing mutation (Fig. 4a). Control
pull-downs from HEK293 cells overexpressing only His-tagged
TSEN15 showed that endogenous subunits of TSEN do not
associate with overexpressed TSEN15, probably due to their very
low copy numbers (Supplementary Fig. 7a). We produced and
purified recombinant heterotetrameric TSEN complexes carrying
the pathogenic missense mutations from baculovirus-infected
insect cells (Fig. 4b) and also did not see obvious deleterious
effects on subunit composition or pre-tRNA cleavage kinetics
(Fig. 4b, c and Supplementary Fig. 7b).

Considering the low abundance of TSEN molecules in cells5,8

and that PCH mutations phenotypically affect only cerebellar
neurons, we reasoned that expression levels in our reconstitution
systems might be too high to reveal subtle alterations in TSEN
assembly and function. To assess the effects of PCH-causing
mutations on complex stability, we used the DSF assay (Fig. 3g,
Supplementary Fig. 4i, and Supplementary Fig. 7c). Most
PCH-causing mutations led to substantial shifts towards

lower denaturation temperatures (e.g. Td of 43.9 ± 0.9 °C for
TSEN2Y309C compared to Td of 50.4 ± 0.5 °C for wt TSEN) when
exposed to thermal gradients indicating that mutant TSEN
complexes have compromised structural integrity (Fig. 4d and
Supplementary Fig. 7c). The relative changes in thermostability
(TΔ) of the mutant complexes compared to wt TSEN ranged from
6.5 °C for the TSEN2Y309C mutation to 1.2 °C for the
TSEN54A307S mutation and might explain different severities of
disease phenotypes (Fig. 4d and Supplementary Fig. 7c)26. DSF
data also revealed two-state unfolding behaviors for all TSEN
complexes when analyzed by the ProteoPlex algorithm41

suggesting cooperativity of unfolding transitions for the indivi-
dual subunits (Supplementary Table 6), thus explaining why
mutations in different subunits lead to an overall destabilization
of TSEN. Our data suggest that PCH phenotypes in patients
potentially develop due to destabilized TSEN complexes.

Pre-tRNA processing is impaired in PCH patient cells. To
determine if the pre-tRNA processing activity is compromised in
PCH patients we derived primary skin fibroblasts from PCH
patients, their healthy parents (when available), and unrelated
controls (Supplementary Table 7). We chose the common
TSEN54 c.919 G >T (TSEN54A307S) mutation, which is reported
in ~90% of recognized TSEN-linked PCH cases31,32 and for
which a large cohort of patient samples is available. The cell lines
we created did not show any morphological differences compared
to control cells. However, when we assayed lysates derived from
homozygous TSEN54 c.919 G >T cell lines, we observed a drastic
reduction in pre-tRNA splicing efficiency compared to control
cell lysates (Fig. 5a). Subtle differences in ligation efficiency, as
observed for cell line Ba2, may result from the fibroblasts having
different genetic backgrounds.
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This result is reminiscent of our observations in patient-
derived cell lines carrying a homozygous CLP1 c.419 G >A
(CLP1R140H) mutation, which leads to severe motor-sensory
defects, cortical dysgenesis, and microcephaly24,25. In contrast to
homozygous CLP1R140H cells, in which introns accumulate,
intron accumulation did not occur in either heterozygous or
homozygous TSEN54A307S backgrounds as judged by northern
blot analysis using a probe specific for the intron of pre-
tRNAIle

TAT1-1 (Fig. 5b). These results suggest an impairment in
intron excision rather than a defect in downstream processes of

the tRNA splicing reaction, which might lead to the accumulation
of pre-tRNAs in patient cells.

To test this hypothesis, we compared levels of intron-
containing pre-tRNAs in cell lines carrying the homozygous
TSEN54 c.919 G >T mutation to heterozygous cell lines and
controls by hydro-tRNAseq4 (Fig. 5c and Supplementary Fig. 8).
Despite some variation among cell lines of the same TSEN
genotype, we observed an accumulation (~2–6 fold) of intron-
containing pre-tRNAs in homozygous TSEN54 c.919 G >T cell
lines compared to control cell lines, albeit global levels of mature

a

d

b

c

T1 T3 Ba
13

Ba
12

Ba
8

Ba
9

Ba
20

Ba
17

- tRNAIle
TAT

*

- pre-tRNAIle
TAT1-1

- intron (19 nts)

- U6 snRNA

TSEN54A307S

ho
m.

ctr
l.

he
t.

ho
m.

he
t.

Autoradiograms

CLP1R140H

ho
m.

he
t.

cell line

0.0 0.1 0.2 0.3 0.4

0.0

0.1

0.2

0.3

0.4

Controls (average ratios)

Pa
tie

nt
s 

(a
ve

ra
ge

 ra
tio

s)

Ba1 Ba2 Ba3 Ba13 Ba5 Ba8

Controls
TSEN54A307S

homozygous

0 3015 45 3015 45 3015 45 3015 45 3015 45 3015 45 min

- pre-tRNA (95 nts)

- tRNA (76 nts)

- 3'-exon (39 nts)
- 5'-exon (37 nts)

Autoradiogram

cell line

e
Ba

13

Ba
14

Ba
15

Ba
16

13

Ba
16

14

Ba
12

Ba
17

Ba
15

97

Ba
19

Ba
5

Ba
8

Ba
9

Ba
10

Ba
24

5

Ba
12

30

Control heterozygous
TSEN54A307S

- pre-tRNAIle
TAT1-1

- tRNAIle
TAT

- U6

R
at

io
 (n

or
m

al
iz

e d
 to

Ba
13

)

pre-tRNAIle
TAT1-1 / tRNAIle

TAT

pre-tRNAIle
TAT1-1 / U6

homozygous

Ba
13

Ba
14

Ba
15

Ba
16

13

Ba
16

14

Ba
12

Ba
17

Ba
15

97

Ba
19

Ba
5

Ba
8

Ba
9

Ba
10

Ba
24

5

Ba
12

30

cell line

100 -

80 -
70 -

Autoradiograms

Con
tro

ls

Hete
roz

yg
ote

s

Pati
en

ts
0

1

2

3

4

R
at

io
(n

or
m

al
iz

ed
 to

Ba
13

)

Con
tro

ls

Hete
roz

yg
ote

s

Pati
en

ts
0

1

2

3

4

5

R
at

io
(n

or
m

al
iz

ed
 to

Ba
1 3

)

n.s.
*

n.s.
*

~1.2x ~1.3x

pre-tRNAIle
TAT1-1 / tRNAIle

TAT pre-tRNAIle
TAT1-1 / U6

nts

0

2

4

6

Fig. 5 TSEN54 c.919 G >T fibroblasts exhibit reduced splicing activity in vitro and accumulation of intron-containing pre-tRNAs. a Pre-tRNA splicing
assay (time course) with radioactively labeled S.c. pre-tRNAPhe

GAA and cell extracts derived from control and PCH patient fibroblasts. Splicing products
were separated by urea-PAGE and monitored by phosphorimaging. b Comparison of pre-tRNAIle

TAT1-1 intron abundance between control cells and
fibroblasts carrying the heterozygous or homozygous TSEN54 c.919G >T (TSEN54A307S) or the CLP1 c.419G > A (CLP1R140H) mutation by northern
blotting. c Average ratios of pre-tRNAs to mature tRNAs derived from Hydro-tRNAseq for all intron-containing tRNAs comparing PCH patients to wild-type
control samples. The black line indicates a slope of 1. d Northern blot analysis comparing pre-tRNAIle

TAT1-1 levels to levels of mature tRNAIle
TAT or

U6 snRNA in control fibroblasts and fibroblasts carrying the heterozygous (het.) or homozygous (hom.) TSEN54 c.919G > T mutation. The data are
representative of three independent experiments. Signal intensities were quantified and displayed as ratios normalized to Ba13 in the bottom panel. Data are
presented as mean values ± SD. e Statistical representation of northern blot analysis in d. Mean ratios of signal intensities for pre-tRNAIle

TAT1-1 to
tRNAIle

TAT (left panel) or to U6 snRNA (right panel) were normalized to Ba13, and grouped into control, heterozygous, and homozygous patient classes
(n= 3, different control fibroblast cell lines; n= 4, different heterozygous fibroblast cell lines; n= 8, different homozygous PCH patient fibroblast cell lines
carrying the TSEN54 c.919 G > T mutation). Unpaired Student´s t-test (two-tailed) for ratios of pre-tRNAIle

TAT1-1 to mature tRNAIle
TAT or to U6 snRNA

revealed a significant difference between control and patient cell lines of 1.2-fold (*P= 0.0371) or 1.3-fold (*P= 0.0344), respectively. Data are presented
as mean values ± SD. Panels in a and b are representative of at least two independent experiments. Source data for a, b, c, and e, are provided as Source
Data files.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25870-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5610 | https://doi.org/10.1038/s41467-021-25870-3 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


tRNAs remained largely unaffected (Fig. 5c and Supplementary
Fig. 8). The distributions of the ratios of precursor over mature
tRNA reads showed that there was no bias for the enrichment of
any specific precursor tRNA among samples (Supplementary
Fig. 8a). The difference in ratio medians between homozygous
TSEN54 c.919 G >T and control cell lines was statistically
significant (P <0.0001, two-tailed paired Wilcoxon signed-rank
test). We also analyzed pre-tRNA levels by northern blotting and
found that TSEN54 c.919 G >T cells indeed show higher levels of
intron-containing pre-tRNAs than control cells (Fig. 5d, e),
although by lower margins than those observed by hydro-
tRNAseq. We measured by northern blot analysis a 1.2- or 1.3-
fold increase of pre-tRNAIle

TAT1-1 levels, standardized to mature
tRNAIle

TAT or U6 snRNA, respectively, and a ~2–6-fold increase
by hydro-tRNAseq. Thus, despite differences in the sensitivity of
the two techniques, we conclude that the TSEN54 c.919 G >T
mutation results in an increase of the steady-state levels of intron-
containing tRNAs in PCH patients fibroblasts. Furthermore, our
data indicate that defects in pre-tRNA processing by mutated
TSEN are unrelated from those involving mutated CLP1.

Pre-tRNA processing defects are linked to altered TSEN sta-
bility. To investigate whether the reduction of pre-tRNA pro-
cessing in cell extracts of homozygous TSEN54 c.919 G >T
patients was due to altered TSEN assembly or stability, we per-
formed quantification and co-immunoprecipitation experiments
of endogenous TSEN using rabbit polyclonal antibodies raised
against peptides of TSEN2 (α-TSEN2), TSEN34 (α-TSEN34), and
TSEN54 (α-TSEN54)36. Immunoblot analyses showed that the
homozygous TSEN54 c.919 G >T mutation does not impact
steady-state levels of TSEN54, suggesting that no changes in
either mRNA stability, transcription rate, or protein turnover
occur (Fig. 6a).

To evaluate TSEN complex composition and pre-tRNA
cleavage activity, we performed immunoprecipitation experi-
ments from patient-derived and control fibroblasts using α-
TSEN2 or α-TSEN34 antibodies (Fig. 6b, c and Supplementary
Fig. 9). Immunoprecipitation using an α-TSEN34 antibody
showed a substantial reduction of co-immunoprecipitated TSEN2
and TSEN54 from patient cell lines (Fig. 6b and Supplementary
Fig. 9a, b), while at the same time pre-tRNA cleavage activity was
strongly diminished in α-TSEN2 and α-TSEN34 immunopreci-
pitates (Fig. 6c and Supplementary Fig. 9c, d). These results
indicate that TSEN assembly defects lead to reduced pre-tRNA
cleavage in PCH patient cells. Since the association of TSEN2 and
TSEN54 is likewise affected but steady-state levels of the
individual proteins are not, we conclude that lower TSEN activity
is a consequence of altered complex formation in patient cells.

Discussion
Here we report the recombinant expression, purification, and
assembly of functional human TSEN/CLP1 complex, and reveal
that TSEN stability and activity are perturbed in PCH patient
cells. We show that heterotetrameric TSEN is assembled from
heterodimeric TSEN15–34 and TSEN2–54 subcomplexes, which
combine to form the composite active sites for catalysis (Fig. 1e).
The nuclease fold seen in our TSEN15–34 X-ray crystal structure
is conserved (Fig. 3b)13,16 suggesting that the TSEN2–54 het-
erodimer — and the entire TSEN complex — likely forms
through interactions similar to those seen in the TSEN15–34
heterodimer, as well as related interactions previously observed in
archaeal tRNA endonucleases. Our interaction studies with cat-
alytically inactive TSEN mutants show that substrate recognition
occurs through interactions with the mature tRNA fold, including
the aminoacyl acceptor stem, the D-loop, and the Ψ-loop, and

support the ruler model of substrate recognition (Fig. 2c, d)8. The
similar affinities TSEN shows for pre-tRNAs and tRNAs suggest
that thermodynamic effects are unlikely to play a role in substrate
selection (Fig. 2c, d). Instead, we speculate that different binding
kinetics should contribute to the selection of pre-tRNAs over
mature tRNAs, thereby ensuring efficient scanning and proces-
sing of the large pre-tRNA pool. Alternatively, a higher con-
centration of intron-containing pre-tRNAs in the nucleus might
contribute to TSEN substrate specificity. TSEN was shown to
cleave artificial intron-containing anticodon stem-loop
structures35. A three-dimensional structure of TSEN with sub-
strate RNA will help define how eukaryotic TSEN recognizes pre-
tRNAs and anticodon stem-loop structures in particular35,42.

The tRNA splicing machinery is involved in the processing of
other RNA species43–46. Eukaryotic tRNA endonucleases are
involved in the processing of mRNAs and rRNAs5,43,47,48. TSEN
and CLP1 are key factors in the generation of tRNA intronic
circular (tric) RNAs, a poorly characterized class of short non-
coding RNAs in Drosophila and humans35,46. Archaeal tRNA
endonucleases are capable of binding and cutting any RNA
fragment that adopts a BHB motif19. tRNA splicing in Xenopus
necessitates a purine/pyrimidine base pair at the A–I base pair
positions for 3′ splice site recognition and cleavage. Our data
show that requirements for cleavage at the 3′ splice site by human
TSEN are more relaxed and only need the A–I base pair, whereas
the purine/pyrimidine identities of the bases are negligible (Fig. 2f
and Supplementary Fig. 2e). The relaxed specificity may facilitate
the recognition and cleavage of non-canonical substrates. How-
ever, structures of human tRNA endonucleases with bound pre-
tRNA substrate confirming this hypothesis are still missing.
Nonetheless, our data suggest that substrate recognition and
cleavage by human TSEN are two distinct processes with different
structural requirements regarding the RNA.

While we show that the assembly and enzymatic function of
recombinant human TSEN complexes are not hampered by
PCH-associated mutations, these mutations cause thermal
destabilization in vitro and affect complex assembly and activity
in patient cells. Structural studies on archaeal tRNA endonu-
cleases show that there are two major interaction interfaces: the β-
β-interaction, mainly driven by hydrophobic interactions, and the
L10 loop, involving hydrogen bonds and salt bridges. The
hydrophobic interface has a higher degree of plasticity and
thereby could accommodate mutations to a certain extent,
whereas interactions within the hydrophilic interface are less
tolerant to changes. Given the low estimated abundance of TSEN
subunits (~100 molecules per cell)7, destabilization by PCH-
associated mutations may have a strong effect on the assembly of
the heterotetramer, whereas the individual heterodimers might be
sufficiently stable to escape protein degradation. In line with this
hypothesis, we find decreased levels of TSEN2 and TSEN54 in α-
TSEN34 immunoprecipitates from PCH patient cells (Fig. 6b and
Supplementary Fig. 9a).

By investigating TSEN activity in patient fibroblasts, we
obtained evidence that the TSEN54A307S mutation significantly
impacts complex stability and pre-tRNA splicing efficiency. We
detected only a modest increase of pre-tRNA levels, indicating
that residual TSEN activity is sufficient to sustain the necessary
tRNA production, in agreement with the fact that these cells do
not exhibit any obvious phenotype. These observations are likely
to extend also to other PCH-related, mutation-containing com-
plexes, for which we measured an even larger reduction of ther-
mal stability.

How TSEN mutations lead to a disease phenotype only in a
subset of neurons, resulting in the selective degeneration of cer-
ebellar and – to a variable extent – anterior cortical structures, is
not understood27,49. Our results demonstrate that these
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mutations cause a significant complex destabilization in vitro and,
at least in the case of TSEN54A307S, in patient fibroblasts. A
reduction in TSEN activity, tolerated in most cell types, could
have dramatic consequences in neurons. Such a model has
already been proposed to explain the observation that defects in
many mRNA and tRNA processing pathways often result in
various types of neuronal diseases50–52.

Several factors could potentially act as neuron-specific triggers
of the disease. For instance, although an adequate supply of
tRNAs is essential for protein biosynthesis in all cell types50,
neurons may be particularly susceptible to subtle translation
defects and, consequently, defects in proteostasis53. Neurons
require rapid and localized protein synthesis for synaptic plasti-
city, which needs coordinated transport of the translational
machinery, mRNAs, and tRNAs themselves. Changes in tRNA
levels could influence the local speed of mRNA translation in a
tissue-specific manner depending on the availability of cognate
tRNAs54. Balanced kinetics of tRNA accumulation could be
crucial in tissues or cell subpopulations with a high metabolism,
so that an otherwise modest defect in production rate might be
deleterious where there is a temporally and spatially restricted
high demand55,56.

Another possibility is that impaired TSEN function may
selectively impact the processing of cerebellum-specific pre-

tRNAs. It has been shown that changes in tRNA repertoires
correlate with the codon usage of genes implicated in cell pro-
liferation or differentiation, to fine-tune their translation57–59. In
mammals, expression of tRNA isodecoder families (tRNAs with
the same anticodon but sequence differences in the tRNA body)
varies among tissues and during development and can be altered
under disease conditions57,60–62. In this scenario, neuron-specific
isodecoders could be critically reduced in PCH patients, as a
result of TSEN failure to cleave specific precursors. Such event has
for instance been described in mouse, where a mutation in a
tRNA gene specifically expressed in the central nervous system
exhibits a synthetic effect with the loss of a ribosome recycling
factor, selectively inducing cerebellar neurodegeneration of cere-
bellar granules, without affecting other cell types63. In a similar
scenario, neuron-specific isodecoders could be critically reduced
in PCH patients, due to TSEN failure to cleave specific precursors.
A secondary, potentially deleterious consequence of this failure
could be the aberrant accumulation of pre-tRNAs, at levels much
higher than those we measured in fibroblasts.

tRNAs also function as signaling molecules in the regulation of
numerous metabolic and cellular processes, or as stress sensors
and in tRNA-dependent biosynthetic pathways64. Transfer RNA-
derived fragments (tRFs) have been identified as small non-
coding RNAs contributing to translational control, gene
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Fig. 6 Reduced pre-tRNA cleavage activity in PCH patient-derived cell extracts is associated with altered composition of TSEN. a Comparison of
TSEN54 protein levels between control and heterozygous or homozygous PCH patient fibroblasts analyzed by immunoblotting. GAPDH served as a loading
control. M, protein size marker. b Co-immunoprecipitation (IP) assay using an α-TSEN34 antibody with cell lysates derived from control and heterozygous
or homozygous TSEN54 c.919G > T fibroblasts analyzed by immunoblotting. The asterisk indicates the heavy chain of the α-TSEN34 antibody. c On-bead
pre-tRNA cleavage assay (time course) with radioactively labeled S.c. pre-tRNAPhe

GAA and immunoprecipitated TSEN complexes (α-TSEN34 antibody-
coupled resin) derived from control fibroblasts and from fibroblasts carrying heterozygous or homozygous TSEN54 c.919 G > T mutation shown in
(b). Unspecific bands are indicated by asterisks. Data are representative of at least two independent experiments. Source data for a, b, and c, are provided
as Source Data files.
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regulation, and silencing, as well as progressive motor neuron
loss65,66. Therefore, in another potential mechanism leading to
PCH, impaired TSEN activity could result in unbalanced tRF
levels, with deleterious effects on cell physiology.

In summary, our data link a pre-tRNA splicing defect to PCH,
but additional factors and cellular mechanisms are likely to be
involved in the development of the disease. Splicing of pre-tRNAs
may require spatial regulation and local confinement. In this
regard, altered complex stability might affect interactions between
TSEN, CLP1, or other cellular components. For instance, TSEN
activity has been linked to mRNA processing in yeast45,47,48.
Thus, certain neuron-specific mRNA transcripts might require
some so-far-uncharacterized functions of TSEN and CLP1, which
are impaired by the disease mutations. Clearly, future studies will
be needed to address these questions in vivo and to build disease
models.

Methods
Plasmid constructs. To enable recombinant protein production in insect and
mammalian cells using a single set of transfer vectors, we modified the MultiBac
expression vector suite33,67 by replacing existing promoters with a dual CMV-p10
promoter34 to derive the acceptor vector pAMI, and the three donor vectors
pMIDC, pMIDK, and pMIDS (Supplementary Fig. 1). Open reading frames
encoding the TSEN subunits TSEN2 (UniProtKB Q8NCE0), TSEN15 (UniProtKB
Q8WW01), TSEN34 (UniProtKB Q9BSV6), TSEN54 (UniProtKB Q7Z6J9), and
CLP1 (UniProtKB Q92989) were amplified by polymerase chain reaction (PCR)
and cloned into the modified MultiBac vectors leading to pAMI_CLP1,
pAMI_TSEN2, pMIDC_TSEN54, pMIDK_TSEN15, and pMIDS_TSEN34. An
N-terminal His6-tag followed by a Tobacco Etch Virus (TEV) protease cleavage site
was engineered in vectors encoding CLP1, TSEN2, and TSEN15, leading to
pAMI_His6-TEV-CLP1, pAMI_His6-TEV-TSEN2, and pMIDK_His6-TEV-
TSEN15, respectively. Furthermore, a pMIDK plasmid encoding TSEN15 with an
N-terminal TEV protease-cleavable Streptavidin-binding peptide (SBP) tag was
generated (pMIDK_SBP-TEV-TSEN15). The PCH-causing mutations Tyr309Cys
(TSEN2), His116Tyr (TSEN15), Arg58Trp (TSEN34), Ser93Pro (TSEN54), and
Ala307Ser (TSEN54), and the active site mutations His255Ala (TSEN34), and
His377Ala (TSEN2) were introduced via QuikChange mutagenesis. For crystal-
lographic purposes, the coding sequences of TSEN34 (residues 208–310) and
TSEN15 (residues 23–170) were cloned into pAMI and pMIDK, respectively,
attaching an N-terminal His10-tag followed by a TEV protease cleavage site to
TSEN15. Prior to integration into the EMBacY baculoviral genome via Tn7
transposition67, acceptor and donor vectors were concatenated by Cre-mediated
recombination utilizing the LoxP sites present on each vector. For co-expression of
the TSEN15–34 heterodimer, the vectors pMIDK_His6-TEV-TSEN15 and
pMIDS_TSEN34 were concatenated with the vector pADummy, which was gen-
erated by removing the CMV-p10-SV40 expression cassette from pAMI by clea-
vage with AvrII and SpeI restriction enzymes and re-ligation of the backbone.

For two-color pre-tRNA cleavage assays, TSEN/CLP1-FLAG and TSEN-STREP
wt complexes were cloned into pBIG2ab and pBIG1a expression vectors,
respectively, using the biGBac cloning system68. ORFs for each TSEN subunit were
synthesised into pUC57 vectors and then cloned using BamHI and HindIII into
pLIB. TSEN2H377A and TSEN34H255A point mutants were generated using the Q5
site-directed mutagenesis kit (New England Biolabs) prior to assembly into biGBac
vectors, generating both the TSEN/CLP1-FLAG (TSEN2H377A) and TSEN/CLP1-
FLAG (TSEN34H255A) pBIG2ab constructs.

Yeast and human pre-tRNA genes were amplified by PCR from genomic DNA
of Saccharomyces cerevisiae strain S288C and human embryonic kidney (HEK293)
cells, respectively. Pre-tRNA sequences were optimized for in vitro transcription
(GG at the starting position, CC at pairing position in acceptor stem) and flanked
by a preceding T7 promoter sequence and a BstNI cleavage site at the 3′ end of each
pre-tRNA. DNA fragments were cloned into a pUC19 vector via sticky end ligation
using BamHI and HindIII restriction sites. Mature tRNA sequences were obtained
by deleting the intron sequence using the Q5 Site-Directed Mutagenesis kit (New
England Biolabs). All constructs in this study were verified by Sanger sequencing. A
list of all primers used in this study is provided in Supplementary Table 8.

Production and purification of human TSEN complexes. Recombinant human
TSEN complexes were overexpressed in Spodoptera frugiperda (Sf) 21 cells
essentially as described33,67,69. In brief, transfer plasmids encoding TSEN subunits
were created by Cre-mediated recombination and recombinant baculoviral BACs
were generated by Tn7 transposition in Escherichia coli DH10EMBacY cells
(Geneva Biotech). Sf21 cells were grown in Sf-900 II SFM medium (Thermo
Fischer Scientific), transfected with recombinant EMBacY BACs using
X-tremeGENE DNA Transfection Reagent (Roche), and incubated for 72 h at
28 °C. Recombinant initial baculoviruses (V0) were harvested from cell super-
natants and used for the production of amplified baculovirus (V1) in

Sf21 suspension cultures at a multiplicity of infection (MOI) <1. Typically, TSEN
complexes were produced in 1.6 liters of Sf21 suspension culture at a cell density of
1 × 106 cells ml−1 by infection with 0.5–1% (v/v) of V1 baculovirus supernatant.
72 h post cell proliferation arrest, insect cells were harvested by centrifugation at
800 × g for 5 min. Cell pellets were flash-frozen in liquid nitrogen and stored at
−80 °C until further use.

Insect cell pellets were resuspended in 10 ml of lysis buffer comprising 50 mM
HEPES-NaOH, pH 7.4, 400 mM NaCl, 10 mM imidazole, 1 mM
phenylmethanesulfonyl fluoride (PMSF), 1 mM benzamidine, per 100 ml
expression volume, and lysed by sonication. Lysates were cleared by centrifugation
at 50,000 × g for 40 min in a Type 45 Ti fixed-angle rotor (Beckman Coulter). Pre-
equilibrated Ni2+- nitrilotriacetic acid (NTA) agarose resin (Thermo Fisher
Scientific) was added to the soluble fraction and incubated for 45 min at 4 °C under
agitation. Agarose resin was recovered by centrifugation and washed extensively in
lysis buffer without protease inhibitors. Bound proteins were eluted in 50 mM
HEPES-NaOH, pH 7.4, 400 mM NaCl, 250 mM imidazole. Eluates of immobilized
metal ion affinity chromatography (IMAC) were diluted to 150 mM NaCl and
loaded onto a HiTrap Heparin HP column (GE Healthcare). Protein complexes
were eluted by a linear salt gradient from 150 mM to 2M NaCl. TSEN complexes
were subjected to TEV protease cleavage (1:50 protease to protein mass ratio) at
4 °C to remove the His-tag, concentrated by ultrafiltration using Amicon Ultra
centrifugal filters (Merck) with a molecular weight cut-off (MWCO) of 30 kDa and
polished by size exclusion chromatography on a Superdex 200 Increase 10/300 GL
column (GE Healthcare) equilibrated in 50 mM HEPES-NaOH, pH 7.4, 400 mM
NaCl. Peak fractions were pooled, concentrated by ultrafiltration, and flash-frozen
in liquid nitrogen after supplementation with 15% (v/v) glycerol.

TSEN15–34 was typically purified from 1.6 liters of infected Sf21 suspension
culture as stated above but leaving out the heparin chromatography step. IMAC
eluates were buffer exchanged into 25 mM HEPES-NaOH, pH 7.4, 400 mM NaCl
on a PD-10 desalting column (GE Healthcare), supplemented with TEV protease
(1:50 protein to protease mass ratio), concentrated by ultrafiltration using Amicon
Ultra (10 kDa MWCO) centrifugal filters (Merck) and polished on a Superdex 200
Increase 10/300 GL column (GE Healthcare) in 25 mM HEPES-NaOH, pH 7.4,
500 mM NaCl. Peak fractions were pooled, concentrated at room temperature to
25 mgml−1 by ultrafiltration, and diluted to 250 mM NaCl and a final protein
concentration of 12 mgml−1 for crystallization trials.

For two-color pre-tRNA cleavage assays, viral bacmids encoding wt TSEN-
STREP, wt TSEN/CLP1-FLAG, TSEN/CLP1-FLAG (TSEN2H377A), and TSEN/
CLP1-FLAG (TSEN34H255A) pBIG2ab constructs were generated using the Tn7
transposition system in DH10EMBacY cells. The resulting bacmids were
transfected into Sf9 insect cells using cellfectin II (Gibco). The virus was harvested
after 3 days and used to further amplify the viral concentration in larger Sf9 cell
culture. Following amplification, protein complexes were expressed in High Five
cells for 72 h at 28 °C and 130 rpm which were subsequently harvested by
centrifugation at 1000 × g. Cell pellets were resuspended in a purification buffer
comprising 20 mM HEPES, pH 8.0, 150 mM NaCl, 1 mM MgCl2, and lysed using
multiple passes through a dounce homogenizer followed by sonication. The lysate
was cleared via centrifugation at 28,000 × g for 40 min at 4 °C followed by filtration
through a 0.45 μm filter. Purification of TSEN/CLP1-FLAG, TSEN/CLP1-FLAG
(TSEN2H377A), and TSEN/CLP1-FLAG (TSEN34H255A) constructs was carried out
via FLAG purification, using the FLAG tag carried by the CLP1 subunit. The lysate
was incubated with anti-DYKDDDDK G1 affinity beads (Genscript) for 3 h at 4 °C
and washed with 20 column volumes of purification buffer. The recombinant
protein was eluted using 20 column columns purification buffer supplemented with
1 μM DYKDDDDK FLAG peptide (Genscript). Affinity purification of the TSEN-
STREP construct was carried out using the STREP tag carried by the
TSEN2 subunit. Cleared lysate was loaded onto a StrepTrap HP column (GE
Healthcare) pre-equilibrated with purification buffer. Protein was eluted using a
purification buffer supplemented with 5 mM D-desthiobiotin (Sigma). Following
affinity purification, protein-containing fractions were pooled and loaded onto a
HiTrap Q column. Protein complexes were eluted in a linear gradient from
150 mM to 2M NaCl in 20 mM HEPES, pH 8.0, 1 mM MgCl2. TSEN-containing
fractions were pooled and loaded onto a Superose 6 Increase 10/300 GL column
(GE Healthcare) pre-equilibrated in purification buffer. Purified TSEN complexes
were analyzed by SDS-PAGE and western blotting.

For overproduction of heterotetrameric TSEN-SBP and TSEN-SBP
(TSEN15H116Y), adherent human embryonic kidney (HEK) 293 T cells were
transfected with the expression plasmids with branched polyethylenimine (PEI,
Sigma-Aldrich). In detail, 4 × 106 HEK293T cells were seeded the day before
transfection in 100 mm dishes in DMEM medium (Gibco Life Technologies) with
10% fetal bovine serum (FBS, Capricorn Scientific) and incubated at 37 °C, 5%
CO2, and 90% humidity. After 24 h, cells were transfected with 13 μg of DNA and a
1:4 ratio of PEI per 100 mm dish. Transfected cells were further incubated for 48 h,
detached by addition of Trypsin-EDTA (Sigma-Aldrich), and harvested by
centrifugation at 500 × g for 5 min. The cell pellets were flash-frozen in liquid
nitrogen and stored at −80 °C until further use. Frozen cell pellets were thawed and
resuspended in 1 ml of lysis buffer containing 50 mM HEPES-NaOH, pH 7.4,
400 mM NaCl, 0.5 mM PMSF, 1.25 mM benzamidine, per 100 mm dish and lysed
by sonication. Lysates were cleared by centrifugation at 20,817 × g for 1 h. Pre-
equilibrated High Capacity Streptavidin agarose resin (Pierce) was added to the
soluble fraction and incubated for 1 h at 4 °C under agitation. Agarose resin was
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recovered by centrifugation and washed extensively in lysis buffer without protease
inhibitors. Bound proteins were eluted in 50 mM HEPES-NaOH, pH 7.4, 400 mM
NaCl, 2.5 mM biotin. TSEN complex eluates were subjected to TEV protease
cleavage (1:20 protease to protein mass ratio) at 4 °C to remove the SBP-tag and
polished by size exclusion chromatography on a Superdex 200 Increase 3.2/300
column (GE Healthcare) equilibrated in 50 mM HEPES-NaOH, pH 7.4, 400 mM
NaCl. Peak fractions were pooled and subjected to pre-tRNA cleavage assays and
differential scanning fluorimetry.

Native mass spectrometry. The buffer of purified TSEN complexes (50 µl at
1.09 mgml−1 for wt TSEN and 1.88 mgml−1 for wt TSEN/CLP1) was exchanged
for 200 mM ammonium acetate buffer, pH 7.5, using 30 kDa MWCO centrifugal
filter devices (Vivaspin, Sartorius). Native MS experiments were performed on a
Quadrupole Time-of-flight (Q-ToF) Ultima mass spectrometer modified for
transmission of high mass complexes (Waters, Manchester, UK)70. For data
acquisition, 3–4 μl of the sample were loaded into gold-coated capillary needles
prepared in-house71. Mass spectrometric conditions were capillary voltage, 1.7 kV;
cone voltage, 80 V; RF lens voltage, 80 V; collision energy, 20 V; Aperature3, 13.6.
Mass spectra were processed using MassLynx 4.1. At least 100 scans were com-
bined. Acquired mass spectra were calibrated externally using 100 mgml−1 cesium
iodide solution. Mass spectra were processed in MassLynx and analyzed using
Massign72.

Phosphoprotein analysis. To analyze the phosphorylation state of TSEN subunits,
50 μg of purified protein complexes were treated with 2000 U of Lambda Protein
Phosphatase (New England Biolabs) in 200 μl dephosphorylation buffer (50 mM
HEPES-NaOH, pH 7.4, 400 mM NaCl, 1 mM DTT, 1 mM MnCl2) for 2 h at 30 °C.
Untreated and dephosphorylated complexes were analyzed via SDS-PAGE. Gels
were stained with ProQ Diamond Phosphoprotein Gel Stain (Thermo Fisher Sci-
entific) according to the manufacturer’s instructions and imaged on a Typhoon
Bioimager (GE Healthcare) at excitation and emission wavelengths of 532 and
560 nm, respectively. Imaged gels were subsequently stained with InstantBlue
Coomassie (Expedeon).

Nuclear extracts. To assay pre-tRNA splicing using patient fibroblasts, we pre-
pared nuclear extracts. Cells from at least four confluent 15 cm dishes were tryp-
sinized, the cell pellet was washed once with PBS and spun for 2 min at 300 × g.
The pellet was resuspended in 1 ml 1 × PBS and transferred to a 1.5 ml tube. The
tubes were centrifuged for 5 min at 137 × g. The pellet was resuspended in one
volume Buffer A (10 mM HEPES-KOH pH 8.0, 1 mM MgCl2, 10 mM KCl, 1 mM
DTT) and incubated for 15 min on ice. A 1-ml syringe (fitted with a 0.5 mm ×
16mm needle) was filled with Buffer A and thereafter fully displaced by the
plunger to remove all the remaining air within the syringe. Cells were lysed by
slowly drawing the suspension into the syringe followed by rapidly ejecting against
the tube wall. This step was repeated five times for complete lysis to occur. The
sample was then spun for 20 s at 16,200 × g. The pellet was resuspended in two-
thirds of one packed cell volume in Buffer C (20 mM HEPES-KOH, pH 8.0,
1.5 mM MgCl2, 25 % (v/v) glycerol, 420 mM NaCl, 0.2 mM EDTA, 0.1 mM PMSF,
1 mM DTT) and incubated on ice with stirring for 30 min. The suspension was
centrifuged for 5 min at 16,200 × g. The supernatant (corresponding to nuclear
extracts) was dialyzed for 1 h against 30 mM HEPES-KOH, pH 7.4, 100 mM KCl,
5 mM MgCl2, 10% (v/v) glycerol, 1 mM DTT, 0.1 mM AEBSF using dialysis
membranes (Millipore ‘V’ series membrane). Afterwards, protein concentrations
were determined (BioRad Bradford reagent), normalized using dialysis buffer, and
immediately used for enzymatic assays or snap-frozen and stored at −80 °C.

Pre-tRNA cleavage assays. For non-radioactive assays, pUC19 vectors encoding
S.c. pre-tRNAPhe

GAA2-2, human pre-tRNATyr
GTA8-1, S.c. tRNAPhe

GAA2-2 and
human tRNATyr

GTA8-1 were linearized using BstNI and template DNA was isolated
by agarose gel electrophoresis. RNA substrates were produced by run-off in vitro
transcription using T7 RNA polymerase (New England Biolabs) and purified via
anion exchange chromatography as described before with slight modifications37,73.
Briefly, 1 μgml−1 of template DNA was mixed with 1000Uml−1 of T7 polymerase
and 1.5mM of each rNTP (New England Biolabs) in 40mM Tris-HCl, pH 7.9, 9 mM
MgCl2, 2 mM spermidine, 1mM DTT, and incubated for 4 h at 37 °C. To isolate
transcribed RNAs, the reaction mixture was diluted in a 1:1 ratio (v/v) with AEX
buffer comprising 50mM sodium phosphate, pH 6.5, 0.2mM EDTA, and loaded
onto a HiTrap DEAE FF column (GE Healthcare) equilibrated in AEX buffer and
eluted by a linear gradient from 0–700mM NaCl. RNA containing fractions were
analyzed via denaturing urea-PAGE with subsequent toluidine blue staining. RNAs
were concentrated by ultrafiltration using Amicon Ultra 3 MWCO centrifugal filters
(Merck) and stored at −20 °C. 1 μg TSEN complexes were mixed with the respective
RNA in a 1:5 molar ratio in 50mM HEPES-NaOH, pH 7.4, 100mM NaCl, 2mM
MgCl2, 1 mM DTT in a 20 μl reaction volume and incubated at 37 °C for 45min.
Reactions were stopped by the addition of a 2× RNA loading buffer (95% formamide,
0.02% SDS, 1mM EDTA) and incubation at 70 °C for 10min. Reaction products were
separated by denaturing urea-PAGE and visualized by toluidine blue staining.

For pre-tRNA cleavage assays using radioactive probes, S.c. pre-tRNAPhe
GAA

(plasmid kindly provided by C. Trotta) was transcribed in vitro using the T7

MEGAshortscript kit (Ambion) including 1.5 MBq [α32P]-guanosine-5′-
triphosphate (111 TBq/mmol, Hartmann Analytic) per reaction. The pre-tRNA
was resolved in a 10% denaturing polyacrylamide gel, visualized by
autoradiography, and passively eluted from gel slices overnight in 0.3 M NaCl.
RNA was precipitated by the addition of three volumes of ethanol and dissolved at
0.1 μM in buffer containing 30 mM HEPES-KOH, pH 7.3, 2 mM MgCl2, 100 mM
KCl. To assess pre-tRNA splicing, one volume of 0.1 μM body labeled S. cerevisiae
pre-tRNAPhe, pre-heated at 95 °C for 60 sec and incubated for 20 min at room
temperature, was mixed with four volumes of reaction buffer (100 mM KCl,
5.75 mM MgCl2, 2.5 mM DTT, 5 mM ATP, 6.1 mM Spermidine-HCl, pH 8.0
(Sigma), 100 Uml−1 RNasin RNase inhibitor (Promega)). Equal volumes of this
reaction mixture and cell extracts with a total protein concentration of 6 mgml−1

were mixed and incubated at 30 °C. At given time points, 5 μl of the mix were
deproteinized with proteinase K, followed by phenol/chloroform extraction and
ethanol precipitation. Reaction products were separated on a 10% denaturing urea-
polyacrylamide gel, and tRNA exon formation was monitored by
phosphorimaging. Quantification of band intensities was performed using
ImageQuant software.

For two-colored pre-tRNA cleavage assays, 5′-cyanine5 (Cy5) and 3′-Fluorescin
(FITC) labeled human pre-tRNATyr

GTA 3-1 was purchased from Dharmacon. Pre-
tRNA was resuspended in nuclease-free water (New England Biolabs) at 100 μM
stock concentration. Prior to use, the pre-tRNA stock was diluted 1 in 2 into RNA
loading buffer (New England Biolabs) and separated on a 10% acrylamide urea-
TBE denaturing gel, with the band corresponding to pre-tRNA excised. The excised
bands were crushed using a pipette tip in a 1.5 ml Eppendorf tube and incubated in
300 μl of 20 mM Tris-HCl, pH 8.0, 250 mM KCl, overnight at room temperature.
Gel fragments were removed by centrifugation at 17,000 × g. The supernatant was
transferred to a fresh Eppendorf tube and tRNA precipitated through the addition
of 4 μl RNA-grade glycogen (Thermo Fisher Scientific) and 1 ml of 100%
isopropanol. The precipitate was collected through centrifugation at 17,000 × g and
the pellet was washed in 75% ethanol. The resulting pellet was resuspended in
nuclease-free water (New England Biolabs) and RNA was quantified through
measurement of A260 prior to storage at −80 °C. Purified pre-tRNA was diluted
1:10 in cleavage buffer (20 mM HEPES, pH 8.0, 100 mM KCl, 2.5 mM
Dithiothreitol, 5 mM Spermidine-HCl, 5 mM MgCl2). Pre-tRNA was incubated at
90 °C for 1 min and cooled to room temperature for 20 min to ensure folding. 20
pmols of folded pre-tRNA substrate were incubated with a final concentration of
5 Uml−1 RNasin plus inhibitor (Promega), 5 mM ATP, and 8 pmol of TSEN
complex in a final reaction volume of 20 μl for 1 h at 30 °C. RNA was extracted
through the addition of 150 μl of cleavage buffer followed by 150 μl of 25:24:1
phenol:chloroform:isoamyl alcohol solution (Thermo Fisher Scientific). Samples
were mixed and centrifuged at 17,000 × g for the separation of RNA and protein
layers. The top layer was transferred to a fresh Eppendorf tube and RNA
precipitated through the addition of 4 μl RNA-grade glycogen (Thermo Fisher
Scientific) and 1 ml of 100% isopropanol. Precipitated RNA was centrifuged at
17,000 × g and the pellet was washed in 75% ethanol solution. RNA was
resuspended in 10 μl of nuclease-free water (New England Biolabs). 5 μl of RNA
solution was suspended in 5 μl of RNA loading buffer (95% (v/v) formamide,
10 mM EDTA). Samples were boiled at 95 °C for 10 min prior to loading on a 10%
acrylamide urea-TBE denaturing gel. Results were visualized using a Typhoon FLA
9000 (GE Healthcare).

Fluorescent 3′ end labeling of RNA. RNAs were labeled site-specifically at their 3′
ends using periodate chemistry and a hydrazide derivate of cyanine5 (Cy5)
fluorophore (Lumiprobe) as described previously74. Typically, 5 μM of RNA were
mixed with 2.5 μl of 400 mM NaIO4, 13.3 μl of 3 M KOAc, pH 5.2, in a total
volume of 400 μl and incubated for 50 min on ice to oxidize the 2′−3′ diols of the
terminal ribose to aldehydes. Oxidized RNAs were ethanol precipitated and
resuspended in 400 μl of diethylpyrocarbonate (DEPC)-treated water containing
1 mM of Cy5-hydrazide and 13.3 μl of 3 M KOAc, pH 5.2. After incubation at 4 °C
overnight in the dark under agitation, RNA was ethanol precipitated and buffer
exchanged to fresh DEPC-treated water using a Zeba Spin desalting column
(Thermo Fisher Scientific) to remove the unreacted dye. The optical density at
wavelengths of 260 and 650 nm was measured using a NanoDrop 1000 spectro-
photometer (Thermo Fisher Scientific) to determine the frequency of incorporation
(FOI; the number of incorporated fluorophores per 1000 nucleotides) and labeling
efficiency.

tRNA pull-down assays. 25 μl of the monoclonal α-His antibody (Catalog-ID
H1029, Sigma-Aldrich) were mixed with 100 μl buffer comprising 50 mM HEPES-
NaOH, pH 7.4, 400 mM NaCl (HS buffer) and coupled to 25 μl of Protein G
Agarose (Thermo Fischer Scientific) for 30 min at 4 °C under agitation. Beads were
washed twice with 1 ml HS buffer (1500 × g, 3 min) and incubated with 8 μg of
inactive His-tagged tetrameric TSEN complex (His6-tag on TSEN15) in a total
volume of 100 μl for 1 h at 4 °C. After washing three times with 150 μl buffer
comprising 50 mM HEPES-NaOH, pH 7.4, 100 mM NaCl (LS buffer), 100 ng of
Cy5-labeled RNA were added to the beads and incubated for 1 h at 4 °C under
agitation. After binding, beads were washed again 3× in 150 μl LS buffer and bound
macromolecules were eluted by addition of 5 μl 4× SDS loading buffer plus 20 μl LS
buffer and incubation at 70 °C for 3 min. Eluted components were separated by
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SDS-PAGE and visualized by in-gel fluorescence on an ImageQuant LAS
4000 system and immunoblotting. As positive and negative controls, the pull-down
assay was performed without the addition of inactive tetrameric TSEN to the
antibody-coupled beads or in the presence of an excessive amount (2 μg) of
unlabeled RNA, respectively.

Electrophoretic mobility shift assays. 3′-Cy5-labeled pre-tRNA substrates
(10 nM final) were mixed with increasing amounts of inactive tetrameric TSEN
complexes (typically 10 nM up to 1 μM) in a total volume of 20 μl EMSA buffer
comprising 50 mM HEPES-NaOH, pH 7.4, 100 mM NaCl, 1 mM DTT, 4% (v/v)
glycerol in DEPC-treated water. After incubation for 30 min on ice in the dark,
samples were loaded onto a 4% Tris-Borate-EDTA native polyacrylamide gel,
which had been pre-run for 15 min at 180 V in 0.5× TBE buffer. Free and complex
RNAs were separated for 1 h at 180 V at 4 °C in the dark. In-gel fluorescence was
detected on an ImageQuant LAS4000 or Typhoon 9400 device (GE Healthcare) to
visualize labeled RNA.

Fluorescence anisotropy measurements. Fluorescence anisotropy measurements
were conducted on a Fluorolog-3 spectrofluorometer (Horiba) equipped with
automated polarization filters at a controlled temperature of 22 °C. 120 μl of Cy5-
labeled RNA with a concentration of 70 nM in 50 mM HEPES-NaOH, pH 7.4,
100 mM NaCl were titrated with TSEN complexes (1.5 μM stock) in a micro
fluorescence cuvette. To avoid dilution effects, the titrant solution contained
identical concentrations of the labeled RNAs. After each titration step, the solution
was mixed carefully and fluorescence anisotropy was continuously assessed in 15 s
increments over a period of 450 s. Anisotropy values of each data point were
averaged, plotted in dependency of the protein concentration, and dissociation
constants (KD) were obtained by non-linear curve fitting according to a quadratic
equation in Prism 5 (GraphPad Software) to compensate for non-negligible
receptor concentrations. Experiments were performed in at least biological
duplicates.

Differential scanning fluorimetry. TSEN complexes were mixed to a final con-
centration of 1 or 3 μM with 4x SYPRO Orange (Merck) stock in 50 mM HEPES-
NaOH, pH 7.4, 400 mM NaCl. Protein unfolding was assessed on a PikoReal96
thermocycler (Thermo Fisher) by measuring SYPRO Orange fluorescence over a
temperature gradient from 20–95 °C (temperature increment 0.2 °C, hold time
10 s) in a 96-well plate format. Values of technical triplicates were averaged, blank
corrected, and apparent unfolding temperatures were determined as the half
maximum of a sigmoidal Boltzmann fit in Prism 8 (GraphPad Software).
Unfolding temperatures of PCH mutants were compared to wt TSEN complex in
technical triplicates to assess their impact on stability and are representative of
biological duplicates.

Size exclusion chromatography multi-angle light scattering. Multi-angle light
scattering coupled with size exclusion chromatography (SEC-MALS) was done using
a Superdex 200 Increase 10/300 GL column (GE Healthcare) at a flow rate of
0.5mlmin−1 on an HPLC system composed of PU-2080 pumps, PU-2075 UV
detector and degaser (JASCO) connected to a 3-angle miniDAWN TREOS light
scattering detector (Wyatt Technology Corporation) and an Optilab T-rEX refractive
index detector (Wyatt Technology Corporation). A BSA sample (400 μg) for cali-
bration and 330 μg of TSEN15–34 complex at a concentration of 1.65mgml−1 were
run on a pre-equilibrated column in 25mM HEPES-NaOH, pH 7.5, 250mM NaCl
filtered through a 0.1 μm pore size VVLP filter (Millipore). The refractive index
increment (dn/dc) of the TSEN15–34 complex was predicted to be 0.188ml g−1 using
its amino acid composition75. The extinction coefficient of the TSEN15–34 complex
at 280 nm was calculated using the ProtParam server (https://web.expasy.org). Data
analysis was accomplished using the ASTRA software package (Wyatt Technology
Corporation) across individual peaks using Zimm’s model for data fitting76.

Limited proteolysis. Purified, full-length TSEN15–34 complex (0.9 mgml−1) was
incubated with trypsin (15 μg ml−1) in 50 mM HEPES-NaOH, pH 7.4, 400 mM
NaCl for 1 h at room temperature. The reaction was stopped by the addition of
1 mM PMSF and the proteolyzed complex was applied to a Superdex 200 Increase
10/300 GL column (GE Healthcare) equilibrated in 50 mM HEPES-NaOH, pH 7.4,
400 mM NaCl. Peak fractions were run out on denaturing 11% SDS-PAGE and
visualized by staining with InstantBlue Coomassie (Expedeon).

Denaturating mass spectrometry. The buffer of TSEN15–34 complexes (10 µl at
1.05 mgml−1 in 10 mM HEPES, pH 7.4, 400 mM NaCl, 0.3× Protease Inhibitor)
derived from limited proteolysis was exchanged for 200 mM ammonium acetate,
pH 7.5, using 3 kDa MWCO Amicon centrifugal filters (Merck Millipore). For
protein denaturation, isopropanol was added to a final concentration of 1% (v/v).
Subsequently, the sample was analyzed by direct infusion on a Q Exactive Plus
Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific)
equipped with a Nanospray Flex ion source (Thermo Fisher Scientific). For this,
2–3 μl were loaded into gold-coated capillary needles prepared in-house. Spectra
were recorded in positive ion mode using the following settings: capillary voltage,

2 kV; capillary temperature, 250 °C; resolution, 70.000; S-lens RF level, 50; max
injection time, 50 ms; automated gain control, 1 × 106; MS scan range
1000–6000m/z. Approximately 300 scans were combined, and the peaks were
assigned manually.

Identification of proteins and protein fragments. Gel electrophoresis was per-
formed using 4–12% NuPAGE Bis-Tris gels according to the manufacturer’s
protocols (NuPAGE system, Thermo Fisher Scientific). Protein gel bands were
excised, and the proteins were hydrolyzed as described previously77. Briefly, pro-
teins were reduced with 10 mM dithiothreitol, alkylated with 55 mM iodoaceta-
mide, and hydrolyzed with Trypsin (Roche). Extracted peptides were dissolved in
2% (v/v) acetonitrile, 0.1% (v/v) formic acid, and separated using a DionexUltiMate
3000 RSLCnano System (Thermo Fisher Scientific). For this, the peptides were first
loaded onto a reversed-phase C18 pre-column (μ-Precolumn C18 PepMap 100,
C18, 300 μm I.D., particle size 5 μm pore size; Thermo Fisher Scientific). 0.1%
formic acid (v/v) was used as mobile phase A and 80% (v/v) acetonitrile, 0.1% (v/v)
formic acid, as mobile phase B. The peptides were then separated on a reversed-
phase C18 analytical column (HPLC column Acclaim® PepMap 100, 75 μm I.D.,
50 cm, 3 μm pore size; Thermo Fisher Scientific) with a gradient of 4−90% B over
70 min at a flow rate of 300 nl min−1. Peptides were directly eluted into a Q
Exactive Plus Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher
Scientific). Data acquisition was performed in data-dependent and positive ion
modes. Mass spectrometric conditions were: capillary voltage, 2.8 kV; capillary
temperature, 275 °C; normalized collision energy, 30%; MS scan range in the
Orbitrap, m/z 350–1600; MS resolution, 70,000; automatic gain control (AGC)
target, 3e6. The 20 most intense peaks were selected for fragmentation in the HCD
cell at an AGC target of 1e5. MS/MS resolution, 17,500. Previously selected ions
were dynamically excluded for 30 s and singly charged ions and ions with unrec-
ognized charge states were also excluded. Internal calibration of the Orbitrap was
performed using the lock mass m/z 445.12002578. Obtained raw data were con-
verted to .mgf files and were searched against the SwissProt database using the
Mascot search engine 2.5.1 (Matrix Science).

Crystallization, structure determination, and validation of a minimal
TSEN15–34 complex. Crystals of truncated TSEN15–34 complex (TSEN15 resi-
dues 23–170 and TSEN34 residues 208–310) were refined manually at 18 °C by
mixing equal volumes of protein solution containing 12–15 mgml−1 TSEN15–34
in 25 mM HEPES-NaOH, pH 7.4, 250 mM NaCl, and crystallization solution
containing 0.1 M Imidazole/MES, pH 6.5, 20% PEG3350, and 0.2 M MgCl2 in a
vapor diffusion setup. Crystals were cryoprotected by adding 20% (v/v) glycerol to
the reservoir solution and flash-frozen in liquid nitrogen. Diffraction data were
collected at 100 K to a resolution of 2.1 Å on beamline P14 of the Deutsches
Elektronen-Synchrotron (DESY) and were processed and scaled using the X-ray
Detector Software (XDS) package79. Crystals belong to the monoclinic space group
P21 with two complexes in the asymmetric unit. The structure of TSEN15–34 was
solved by molecular replacement with Phaser80 within the Phenix software
package81 using a truncated poly-Ala model of the Aeropyrum pernix endonuclease
(residues 83–169 of the I chain and residues 93–168 of the J chain) (PDB 3P1Z)82

as a search model. The structures of the two domain-swapped TSEN15–34 dimers
were manually built with Coot83 and refined with Phenix84 with good stereo-
chemistry. The statistical quality of the final model was assessed using the program
Molprobity85. Structure figures were prepared using PyMOL.

Cell culture. Human fibroblasts were cultured at 37 °C, 5% CO2 in Dulbecco’s
modified Eagle’s medium (Sigma) supplemented with 10% fetal bovine serum
(Gibco), 100 Uml−1 penicillin, and 100 μg ml−1 streptomycin sulfate (Lonza).
Cells were split and/or harvested at 80–90% confluency using 0.05%
Trypsin–EDTA.

Northern blotting. Isolation of total RNA from cell lines was performed using the
Trizol Reagent (Invitrogen) according to the manufacturer’s instructions. Typically,
4–5 μg of RNA was separated in a 10% denaturing urea-polyacrylamide gel
(20 × 25 cm; Sequagel, National Diagnostics). The RNA was blotted on Hybond-
N+membranes (GE Healthcare) and fixed by ultraviolet cross-linking. Mem-
branes were pre-hybridized in 5× SSC, 20 mM Na2HPO4, pH 7.2, 7% SDS, and
0.1 mgml−1 sonicated salmon sperm DNA (Stratagene) for 1 h at 80 °C (for DNA/
LNA probes) or 50 °C (for DNA probes). Hybridization was performed in the same
buffer overnight at 80 °C (for DNA/LNA probes) or 50 °C (for DNA probes)
including 100 pmol of the following [5′-32P]-labeled DNA/LNA probe (Exiqon,
Denmark; LNA nucleotides are indicated by “*X”): tRNAIle

TAT1-1 5′ exon probe,
5′-TA*T AA*G TA*C CG*C GC*G CT*A AC-3′, or the following DNA probe:
tRNAIle

TAT1-1 intron probe, 5′-TGC TCC GCT CGC ACT GTC A-3′. Blots were
subsequently washed twice at 50 °C with 5× SSC, 5% SDS and once with 1× SSC,
1% SDS and analyzed by phosphorimaging. Membranes were re-hybridized at
50 °C using a DNA probe (5′-GCA GGG GCC ATG CTA ATC TTC TCT GTA
TCG-3′) complementary to U6 snRNA to check for equal loading. Quantification
of band intensities was performed using ImageQuant software.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25870-3

12 NATURE COMMUNICATIONS |         (2021) 12:5610 | https://doi.org/10.1038/s41467-021-25870-3 | www.nature.com/naturecommunications

https://web.expasy.org
www.nature.com/naturecommunications


Antibodies. Rabbit polyclonal antibodies raised against TSEN2 (N-
NGDSGKSGGVGDPREPLG-C), TSEN34 (N-QASGEQEEAGPSSSQAGPSNG-C),
and TSEN54 (N-RSRSQKLPQRSHGPKDFLPD-C)23 (Gramsch Laboratories,
Schwabhausen, Germany) were affinity-purified from rabbit sera and eluted
sequentially by addition of 1.5 M MgCl2 and 0.1 M glycine, pH 2.5. Eluates were
dialyzed against HEPES-buffered saline (HBS, pH 7.9) overnight, supplemented
with 10% (v/v) glycerol, and stored at −80 °C. Small-scale pilot experiments were
set up to assess the suitability of the affinity-purified antibodies for immunopre-
cipitation experiments using total cell lysate from HEK 293 cells. Antibodies used
in western blotting (WB) and immunoprecipitation (IP) were: anti-TSEN15 (rabbit
polyclonal, Atlas Antibodies, HPA029237; WB dilution 1:1000), anti-TSEN34 (IP,
WB dilution 1:5000), anti-TSEN54 (WB dilution 1:5000), anti-TSEN2 (IP, WB
dilution 1:5000), anti-GAPDH (rabbit monoclonal, 14C10, Cell Signaling Tech-
nology, #2118; WB dilution 1:1000), anti-β-actin (mouse monoclonal, clone AC-74,
Sigma-Aldrich, A2228; WB dilution 1:3000), anti-mouse IgG–peroxidase conjugate
(secondary goat polyclonal, Sigma-Aldrich, A2554; WB dilution 1:20.000), anti-
rabbit IgG–peroxidase conjugate (secondary goat polyclonal, Sigma-Aldrich,
AP307P; WB dilution 1:20.000), anti-polyHistidine (mouse monoclonal, clone
HIS-1, Sigma-Aldrich, H1029; IP).

Immunoprecipitation of TSEN components. Affinity-purified antibodies against
TSEN2, TSEN34, and TSEN5436 were cross-linked to agarose beads, as described86.
Briefly, bead-bound antibodies were incubated in 20 mM dimethylphenol (DMP),
200 mM sodium tetraborate at RT, and the reaction was then stopped by trans-
ferring the beads to 200 mM Tris-HCl, pH 8.0. After washing 3× with TBS/0.04%
Triton-X-100, beads were stored at 4 °C. For immunoprecipitation (IP), total cell
lysates were prepared from fresh or frozen cell pellets of non-immortalized
fibroblasts as described87. Upon centrifugation at 16,000 × g, clear lysates were
collected, protein concentration was measured, and equal amounts of total protein
for each sample were used for the IPs. Upon incubation with cell lysates for 90 min
at 4 °C while rotating in 1.5 ml tubes, TSEN complex-bound beads were washed 3×
in 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 10% (v/v) glycerol, 0.1% (v/v) NP40,
2 mM MgCl2 and split into two aliquots; one was used for a pre-tRNA splicing
assay and the other was boiled in SDS-PAGE loading buffer. Pre-tRNA splicing
assay was performed as described above, omitting the proteinase K treatment and
the phenol/chloroform extraction and ethanol precipitation steps. Instead, aliquots
were collected at indicated time-points in tubes already containing an equal
amount of 2 × loading buffer and stored at −20 °C. Protein samples were analyzed
by SDS-PAGE and immunoblotting.

Hydro-tRNA sequencing. tRNA sequencing was performed using the hydro-
tRNAseq protocol, as described previously4. Briefly, total RNA from human-
derived fibroblasts was resolved on 12% urea-polyacrylamide gel, followed by
recovery of the tRNA fraction within a size window of 60–100 nt. The eluted
fraction was subjected to limited alkaline hydrolysis in 10 mM Na2CO3 and
NaHCO3 at 60 °C for 1 h. The hydrolyzed RNA was dephosphorylated and
rephosphorylated to reconstitute termini amenable for sequential adapter ligation.
Fragments of 19–35 nt were converted into barcoded cDNA libraries, as described
previously88, and sequenced on an Illumina HiSeq 2500 instrument. Adapters were
trimmed using cutadapt (http://journal.embnet.org/index.php/embnetjournal/
article/view/200/458). Sequence read alignments and analysis were performed as
described previously4. Split read counts were used for multi-mapping tRNA reads.
Precursor tRNA reads spanned the junctions between mature sequences and lea-
ders, trailers, or introns. Analysis for Fig. 5c, and Supplementary Fig. 8a,b was
conducted in R (version 4.0.4, https://www.r-project.org/), Python (version 3.7,
http://www.python.org), and Perl (version 5.18.4, https://www.perl.org/). Custom
scripts are available upon request. Figures were produced using the R package
ggplot2 and Prism 8 (Graphpad Software).

Sequence alignments. Sequence alignments were done with Clustal Omega89 and
visualized using ESPript 3.090. Alignments of pre-tRNAs and tRNAs were manu-
ally edited in Jalview91.

Statistical analysis. Student’s two-tailed unpaired t-tests were carried out to
determine the statistical significance of differences between samples. A P-value less
than 0.05 was considered nominally statistically significant for all tests.

Patient recruitment and ascertainment. Patients suspected for PCH were sub-
mitted to the pediatric neurology of the Academic Medical Centre (AMC) for
diagnostics. Primary fibroblast cell lines were generated from skin biopsies taken
for diagnostic procedures. As soon as DNA diagnostics became available, patient
DNA was subjected to genetic analyses. DNA sequencing confirmed the diagnosis,
and the mutations were confirmed in the fibroblast lines. All procedures were
performed with the full consent of the legal representative and approval of the
Institutional Review Board (IRB), Amsterdam UMC, The Netherlands
(#W17_090# 17.098).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding author upon
reasonable request. Atomic coordinates and structure factors were deposited to the
Protein Data Bank (http://www.rcsb.org) under accession number PDB ID 6Z9U. The
mass spectrometry proteomics data were deposited to the ProteomeXchange Consortium
via the PRIDE partner repository with the dataset identifier PXD019034. Hydro-
tRNAseq data were deposited with the Gene Expression Omnibus (GEO) repository
under accession code GSE151236. Source data for Figs. 1–6 and Supplementary Figs. 1–9
are provided with this paper. Source data are provided with this paper.

Code availability
Custom scripts for R (version 4.0.4, https://www.r-project.org/), Python (version 3.7,
http://www.python.org), and Perl (version 5.18.4, https://www.perl.org/) are available
upon request.
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