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Turn-key constrained parameter space exploration
for particle accelerators using Bayesian active
learning
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Particle accelerators are invaluable discovery engines in the chemical, biological and physical

sciences. Characterization of the accelerated beam response to accelerator input parameters

is often the first step when conducting accelerator-based experiments. Currently used

techniques for characterization, such as grid-like parameter sampling scans, become

impractical when extended to higher dimensional input spaces, when complicated mea-

surement constraints are present, or prior information known about the beam response is

scarce. Here in this work, we describe an adaptation of the popular Bayesian optimization

algorithm, which enables a turn-key exploration of input parameter spaces. Our algorithm

replaces the need for parameter scans while minimizing prior information needed about the

measurement’s behavior and associated measurement constraints. We experimentally

demonstrate that our algorithm autonomously conducts an adaptive, multi-parameter

exploration of input parameter space, potentially orders of magnitude faster than conven-

tional grid-like parameter scans, while making highly constrained, single-shot beam phase-

space measurements and accounts for costs associated with changing input parameters. In

addition to applications in accelerator-based scientific experiments, this algorithm addresses

challenges shared by many scientific disciplines, and is thus applicable to autonomously

conducting experiments over a broad range of research topics.
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Particle accelerators have enabled ground-breaking dis-
coveries in the fields of chemistry1, biology2, and physics3,4.
They are also increasingly deployed for societal applica-

tions, such as in medical5 or industrial6 fields. During operation,
accelerator parameters need to be tuned to produce beams with
specific characteristics that match the needs for front-end appli-
cations. Measuring these beam properties as a function of one or
more input parameters using limited diagnostics and time-
consuming measurements is a necessary part of operations,
experimental planning, and tolerance determination. This comes
at the expense of reducing accelerator availability for experi-
menters. These challenges are shared by many different scientific
fields, which try to characterize complex, highly nonlinear and
correlated systems, using difficult to execute scientific measure-
ments and complicated diagnostics7,8.

Due to the complex and time-consuming nature of accelerator
measurements, characterization of the beam response to input
parameters is often limited to simple, uniformly spaced, grid-like
parameter scans in one or two dimensions. This limitation results
from the poor scaling of grid-like scans to higher-dimensional
spaces, where the number of samples grows exponentially with
the number of input parameters. Furthermore, despite its sim-
plicity at face value, it is often difficult to determine the ideal
properties of parametric scans which will result in successful and
efficient sampling. A predefined grid spacing ultimately limits the
ability to resolve fine features while potentially oversampling slow
variations of the measured parameters. As a result, specifying the
scan parameters a priori requires prior information about the
measurement’s functional dependence on each parameter. This
slows down frequent routine studies and makes characterization
of novel measurements difficult to execute successfully.

The existence of tight constraints in input space which deter-
mine if measurements are viable further complicates this process.
Upper and lower input parameter limits are often determined by
practical constraints of conducting measurements. For example,
transverse beam size measurements on diagnostic screens are
limited by the screen size (available field of view), which in turn,
imposes limits on the strength of upstream focusing magnet
parameters. Simulation studies or extra measurements are needed
beforehand to determine these limits. Even when simulations are
available, they do not necessarily represent realistic machine
behavior. Measurements, on the other hand, may become inac-
curate due to time dependent changes in the accelerator, further
complicating this problem. Furthermore, while these limits can be
easily determined for a single parameter experimentally, it
becomes practically infeasible to efficiently determine limits in
higher-dimensional input spaces, as they are often correlated with
multiple parameters. Limitations such as these are shared among
many types of scientific experiments9.

Finally, it is desirable to prevent rapid changes in accelerator
input parameters during operation. In some cases, it is temporally
expensive to make changes in parameters, such as when
mechanical actuators are used to change the phase of accelerating
cavities. In other cases, fast feedback algorithms used in accel-
erator subsystems rely on adiabatic changes in external para-
meters to maintain system stability. Large jumps in parameter
space can delay convergence of these feedback systems or worse,
cause them to fail entirely. Practical experimental considerations
such as these must be taken into account when automated
sampling algorithms are used, striking a balance between costs
associated with changing input parameters and the expec-
ted information gained by candidate samples.

In this work, we construct an algorithm that replaces simple
parametric scans for characterizing a target function of interest,
while meeting poorly understood requirements for practical
measurements in a flexible manner. The algorithm is “turn-key”,

requiring as little prior information about the target function and
measurement constraints as possible. As a result, our algorithm
reduces beamline tuning time during normal operations, while
enabling efficient exploration of novel or poorly characterized
systems. Our algorithm, coined “Constrained Proximal Bayesian
Exploration” (CPBE), starts from an initial valid observation and
sequentially samples points in input space that maximize infor-
mation gain of the target function at each observation step. It
dynamically adapts its sampling strategy to measured functional
behavior with respect to each parameter and respects necessary
constraints for successful measurements. Finally, the algorithm is
biased towards making small jumps in input space, balancing the
trade-off between exploration and costs associated with changing
input parameters. While our focus here is the application of this
method towards parametric accelerator exploration, this algo-
rithm can be applied in any experimental scenario that requires
parametric scans.

Results
Our algorithm is an adaptation of Bayesian optimization
(BO)10,11, applied to maximizing information gain12, which is
often referred to as active learning or uncertainty sampling13–16.
Bayesian optimization generally consists of two components. The
first component of BO is a probabilistic surrogate model that
predicts the probability distribution of the value f as a function of
the input parameter vector x. Gaussian Processes (GPs)17 are a
popular model choice for Bayesian optimization. The behavior of
a GP model is determined by a kernel function, which describes
the correlation between function values based on their location in
input space relative to previous measurements. The kernel func-
tion itself can depend on a collection of hyperparameters, which
often includes a length scale hyperparameter. This parameter
describes the effective smoothness of the model, where small and
large values correspond to rapidly and slowly varying functional
behavior respectively. An independent length scale hyperpara-
meter can be specified for each input parameter, in a process
known as automatic relevance determination (ARD)18. These
hyperparameters are determined by maximizing the marginal log
likelihood of the GP model17, conditioned on experimental
measurements, which balances model accuracy and complexity.

The second component of BO is an acquisition function, which
characterizes the value gained by observing a particular point in
input space. Bayesian optimization selects the next experimental
sample by finding the point in input space which maximizes the
acquisition function. Several different acquisition functions that
are commonly used for optimization are Probability of
Improvement19, Expected Improvement20, and Upper Confidence
Bound (UCB)12. The UCB acquisition function is defined as

αðxÞ ¼ μðxÞ þ
ffiffiffi
β

p
σðxÞ ð1Þ

where μ(x) is the predicted mean of the function value and σ(x) is
the predicted uncertainty, both determined by the GP model. This
acquisition function is of particular interest as it allows the user to
specify the optimization parameter β, which represents the trade-
off between exploitation (sampling to take advantage of predicted
extrema) and exploration (sampling to reduce prediction uncer-
tainty). An optimizer with a small value of β prefers exploitation,
while a large value of β prioritizes exploration. It has been shown
that maximum information gain of the GP model occurs when the
acquisition function is only comprised of the uncertainty factor
α(x)= σ(x)12, effectively choosing β→∞. The uncertainty pre-
dicted by the GP model is dependent only on the locations of
previously sampled points in input space (see Eq. (7) in Methods
Section for details).
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Figure 1 shows the effect of kernel length scales on Bayesian
optimization when we use this exploratory acquisition function. If
the GP kernel has a single length scale, then the acquisition
function is maximized at points that are the largest distance away
from all previous observations. The sampling algorithm will
choose points that form a grid-like pattern in input space,
dependent on where initial samples were taken. However, if the
length scale is different along each input axis, the exploration
algorithm will be biased towards sampling points along the axis
associated with the shortest length scale. This leads to an efficient
sampling strategy, as more samples are needed to resolve rapidly
changing features of the function, while fewer samples are used
when the function changes slowly. We use this behavior as a
starting point for creating the CPBE acquisition function.

We define the CPBE acquisition function to be

αðx; x0Þ ¼ σðxÞΨðx; x0Þ
YN
i¼1

Pi½giðxÞ≥ hi� ð2Þ

Ψðx; x0Þ ¼ exp � 1
2
ðx � x0ÞTΣ�1ðx � x0Þ

� �
ð3Þ

where the two additional terms have the following effects.

The factor Ψ(x, x0) in Eq. (2) represents a proximal biasing
factor where x0 is the most recently sampled point in input space.
The covariance matrix Σ specifies the length scale at which points
are biased, where a smaller element in the matrix leads to a
stronger biasing towards the most recently observed point. By
including the proximal term, we bias the acquisition function
away from points that are not within a close proximity to the
most recently observed point, while still allowing exploration in
cases where large jumps in input space result in highly valued
observations. This factor is included for two reasons. First,
changing parameters in a real accelerator generally incurs a
temporal cost, proportional to the change in the parameter.
Second, changing accelerator parameters quickly can disrupt
rapid feedback systems used to maintain supporting accelerator
subsystems (such as those which stabilize the phase and ampli-
tude of radio-frequency fields in accelerating cavities).

The last factor,
QN

i¼1 Pi½giðxÞ≥ hi� represents the multiplicative
probability that N operational constraints are satisfied,
following21. This factor weights the CPBE acquisition function by
the probability that a constraining function gi(x) is greater than a
predetermined scalar value hi. As a result, this factor will bias our
acquisition function against sampling in regions of input space
that are not likely to satisfy the constraints. The probability is
calculated based on GP model predictions of μi(x) and σi(x) of the
individual constraining functions gi(x), giving

Pi½giðxÞ≥ hi� ¼ 1� Φ
hi � μiðxÞ
σ iðxÞ

� �
ð4Þ

where Φ(x) is the Gaussian cumulative distribution function.

Experimental demonstration. We conducted an experiment at
the Argonne Wakefield Accelerator (AWA) to demonstrate the
application of Bayesian exploration to enable beamline char-
acterization with a single-shot emittance measurement. The
AWA beamline accelerates electrons to ~42MeV using a pho-
toinjector electron source, combined with a normal-conducting
linear accelerator22. The transverse phase-space area or “emit-
tance” of beams produced by the accelerator is an important
figure of merit that must be minimized to ensure ideal transport
of the beam through the accelerator and meet specific experi-
mental criteria. The emittance ultimately sets the beam bright-
ness, a critical parameter in accelerator-based light sources23 and
colliders24. The emittance is sensitive to several beamline para-
meters summarized in Fig. 2, including the magnetic field
strength of a pair of solenoidal lenses surrounding the photo-
injector (referred to here as the “focusing” solenoid and char-
acterized by the scaling parameter K0) and a solenoid in between
the photoinjector and the first accelerating cavity (referred to here
as the “matching solenoid” and controlled via the scaling para-
meter K1). Our goal is to explore the emittance response to these
solenoids, as well as two quadrupole magnets located downstream
of the accelerating structures (DQ4, DQ5). We use a single-shot
multislit diagnostic25, also shown in Fig. 2, to measure the beam
emittance. The principal challenge of conducting this measure-
ment is that the beamline elements, while effecting the beam
emittance, also modify the beam size and divergence at the
diagnostic. Unfortunately, emittance measurements with this
multislit emittance diagnostic have a finite dynamical range,
limited to a narrow range of beam sizes and divergences. Such a
limited dynamical range is a common problem shared by many
types of diagnostics across accelerator facilities.

As a baseline for comparison we conducted a two-dimensional
scan of the solenoid parameters (K0, K1). A 10 × 10 point grid,
shown in Fig. 3, was created with upper and lower bounds
determined from prior experimentation. For each set of

Fig. 1 Plots showing Bayesian optimization (BO) sampling patterns
depending on radial basis function (RBF) kernel length scales and using
α(x)= σ(x) as the acquisition function. Blue points are initial samples and
orange points are sampled during Bayesian optimization. a Length scales
for both [x1, x2] set to 1. b Length scales for variables [x1, x2] set to [0.25, 1].
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parameters, five observations of the beam emittance were
conducted while windowing the fluctuating bunch charge
between 5.0 and 6.0 nC. In some cases, points in input space
result in both valid and invalid measurements due to accelerator
noise. We use these observations to train GP models of the
vertical beam emittance εy and a single constraining function g(x)
that models the measurement validity (see Methods Section),
which is set to one for a successful measurements and zero
otherwise.

From Fig. 3(a), we observe that the invalid region of input
space (denoted by shaded regions), defined as P[g(x) ≥ 0.5], is
roughly half the input space domain. As a result, approximately
half of our samples are wasted, as they provide no information on
the beam emittance. We observe that in the valid region the
emittance is strongly dependent on K1 relative to K0. If we
normalize the input domain to the unit cube, the length scales of
the GP kernel for each of these parameters is seen in Table 1. The
length scales inferred from the data are consistent with what is
seen in Fig. 3 where the emittance changes slowly as a function of
the focusing solenoid strength (K0) and quickly with respect to
the matching solenoid strength (K1).

We then used CPBE to explore a similar input space, varying
the two solenoid magnet strengths (K0, K1) and two quadrupole-
magnet strengths (DQ4, DQ5). We initialized the algorithm with
two initial valid measurements, randomly generated from within

the valid subdomain, determined from earlier experimentation.
The sigma matrix for the proximal factor (given in normalized
coordinate space) is set to Σ= 0.01I where I is the identity matrix.
This was chosen to reduce the acquisition function by 1/e over
10% of the input domain, which was identified to work well in
practice. As in the 2D uniform scan, we use a single constraining
inequality g(x) ≥ 0.5 where the constraint function g(x)= 1 if the
emittance measurement is valid and zero otherwise.

The results from this exploration, projected onto the 2D
subspace where DQ4= 0, DQ5= 0 (focusing magnets are off),
appear in Fig. 3(b). We again plot the posterior predictive mean
of the emittance GP model in this subspace, trained on the
sampled data. Estimated length scales from this model are shown

Fig. 2 Cartoon depicting the emittance exploration experiment at the Argonne Wakefield Accelerator facility. Conceptual view of emittance diagnostic
is shown on the right. Beam travels from left to right.

Fig. 3 Comparison between uniform grid sampling and CPBE. a A 10 × 10 grid is sampled over an operational subdomain identified by prior
experimentation. Color mesh represents the posterior predicted mean of a Gaussian process trained on the valid measurements. Stacked histograms show
sampling density of measurements along each axis. b 2D projected samples from Bayesian exploration after 66 iterations with 4 parameters (K0, K1, DQ4,
DQ5). In both plots, shading with dashed line denotes invalid region in subdomain with 50% confidence, calculated from uniform grid sampling.

Table 1 Trained hyperparameter length scales (normalized).

Parameter Uniform grid sampling CPBE

Focusing solenoid (K0) 0.82 0.77
Matching solenoid (K1) 0.40 0.30
Drive Quadrupole 4 (DQ4) N/A 1.03
Drive Quadrupole 5 (DQ5) N/A 1.40

Kernel length scales of GP models trained on experimental data collected by both uniform grid
sampling and Constrained Bayesian Exploration, normalized to unit cube input space.
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in Table 1. Similar to the uniform grid model, the length scale for
K0 is significantly longer than the length scale for K1, implying
that the function varies faster along K1, which is consistent with
what is observed in Fig. 3. Further, we observe that the length
scales for K0, K1 are similar when comparing the two models.
The difference between length scales for K1 is slightly larger,
which could be explained by the larger average separation
between points during grid sampling, relative to CPBE sampling.
Grid sampling places limits on the fitted length scale, where the
spacing of uniform samples determines the fastest changes in the
target function that can be observed. Finally, the length scales for
variables DQ4, DQ5 are larger than the normalized domain,
implying that the emittance is weakly correlated with quadrupole-
magnet strength, as expected by first order beam dynamics26. We
even observe that the length scale for DQ5 is significantly larger
than the length scale associated with DQ4, which possibly results
from the magnet’s location in the beamline, closer to the
emittance diagnostic, that further reduces the impact of
potential higher order effects from the magnet on the emittance.

From the projected histograms of K0 samples, we see that
several regions of parameter space are avoided by the algorithm.
This is due to the long length scale associated with K0, which
reduces model uncertainty in between previous measurements.
The algorithm skips over sampling these regions, as they do not
significantly reduce uncertainty of our model if observed. On the
other hand, samples along the K1 axis, which has a much shorter
length scale, are continuously distributed in the valid region. This
results in a better characterization the functional dependence on
K1 since it shows rapidly changing behavior.

As a result, our sampling algorithm in 4D space significantly
speeds up target function characterization over a hypothetical
grid parameter scan. If we were to use the grid scan sampling
algorithm in the 4D case, the number of samples needed grows
exponentially up to 104 samples. However, after only 66 samples
taken by CPBE, we were able to produce a qualitatively similar
model of the target function when compared to the previous 2D
scan, representing a 150× speed increase. Furthermore, a larger
portion of samples taken by the exploration algorithm are valid
compared to uniform grid sampling (77% vs. 52%), providing
more information about the emittance per sample on average.
Note that invalid samples which appear inside the valid region
shown in Fig. 3(b) are invalid due to correlations with the
unplotted variables DQ4, DQ5.

The difference in sampling behavior is also observed in Fig. 4
where we plot the normalized trace of each parameter value
during exploration. As a result of the short length scale associated
with K1, the algorithm effectively scans back and forth across the

valid input region for this parameter while other parameters are
slowly modified. The maximum and minimum values of the scan
are dynamically determined when the algorithm encounters an
invalid region. This is important, as we clearly see that the valid
region for K1 changes as a function of the other variables. Finally,
we observe that for variables with long length scales (K0, DQ4,
DQ5), CPBE ignores intermediate regions that do not signifi-
cantly reduce model uncertainty, reducing redundant measure-
ments as it learns the associated length scale of the target function
along these axes.

Discussion
Here we have described and demonstrated an algorithm for
autonomously and efficiently exploring input parameter spaces
with limited prior information, while adapting to measurements
that are potentially invalid or unsuccessful. This is achieved
without the need for prior information about the target function
or measurement constraints. We experimentally demonstrated
our algorithm’s ability to efficiently explore the functional
dependence of the beam emittance on four accelerator parameters
automatically, while navigating a practically difficult to execute
measurement. The Bayesian exploration algorithm was able to
achieve similar model prediction accuracy as a grid-based scan,
with a significantly smaller number of samples and two extra
input parameters. The advantages this algorithm confers over
traditional methods of characterizing particle accelerator
responses are substantial, and we expect it to have broad impact
across accelerator-based science facilities. While we demonstrated
this algorithm’s effectiveness in the context of particle accel-
erators, CPBE is a flexible, lightweight, turn-key algorithm that
replaces the need for grid type parameter scans in any field. In
particular, the addition of a proximal biasing factor in our sam-
pling strategy has advantages over previously described active
learning algorithms when exploring spatially dependent systems
(robotics, surveying etc.) that encounter costs associated with
travel through input space.

While our demonstration here involved a relatively low-
dimensional input space, there are a variety of methods that can
be used to scale this algorithm to higher-dimensional parameter
spaces. The main challenge facing this method is the computa-
tional cost associated with training and making predictions using
the Bayesian model when the number of training points is large17,
as is often the case when operating in high dimensional input
spaces. While the exact inference implementation of our algo-
rithm is limited to lower dimensional spaces, several methods
have been proposed to overcome this limitation. Of particular
interest is the LOVE algorithm27, which can compute covariances

Fig. 4 Tracing exploration path through input parameter space. Normalized parameter values as a function of sample index during Bayesian exploration
for all four input parameters. Corresponding sample density histograms are shown on the right.
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used in our algorithm up to 2000 times faster than existing
methods, without sacrificing accuracy. If approximate modeling
can be tolerated, stochastic methods can be used with variational
models that use a limited number of inducing points to
approximate the posterior model distribution28. Finally, if sam-
ples can be evaluated in parallel, as in simulated exploration
contexts, batched style methods could be used to generate batches
of samples at each optimization step, similar to the acquisition
functions implemented in29.

Methods
Beam emittance diagnostic. The geometric emittance of a beam can be deter-
mined experimentally using a multislit emittance diagnostic. This diagnostic
consists of a transverse mask with a number of horizontal slits that divides the
beam into multiple “beamlets”. A downstream transverse diagnostic screen is used
to image the beamlets and the center of mass, size, and integrated intensity of each
beamlet is measured. This information is used to calculate aspects of the beam
envelope, and thus the geometric beam emittance. To simplify our analysis, we
used a slight modification of the emittance formulas derived in ref. 25. Instead of
calculating the emittance using the correlated divergence, we used a calculation of
the uncorrelated divergence to determine the emittance. While this analysis pre-
vents us from assessing the position-divergence correlation of the beam, it still
provides us with an accurate emittance measurement.

Our experiment used a laser etched stainless steel mask with 25 slits. The slit
pattern had a separation of 2 mm, a vertical slit width of 50 μm, and a horizontal
slit length of 40 mm. The circular beam imaging screen, which had a diameter of
50 mm, was located 2.84 m downstream of the transverse mask. The screen was
imaged using an optical camera with a spatial resolution of 46 μm per pixel.

Emittance measurements were only considered valid if the measurement
satisfied three conditions: we required that (i) at least five beamlets were
produced at the observation screen, (ii) all the beamlets were contained within a
predefined region of interest on the screen to prevent biasing due to potential
clipping, and (iii) the projection of each beamlet onto the vertical axis did not
overlap with any other beamlet projections, in order to properly measure the size
of each beamlet. If any of these requirements were not met, we assigned the
constraining function at that location in input space a value of zero, tagging the
measurement as “invalid”.

Gaussian process model creation. Nonparametric Gaussian process surrogate
models are used to predict the value of a target function f(x) using Bayesian
statistics17. These models are specified by a covariance function, kðx; x0;ϕÞ with
hyperparameters ϕ and a constant mean function C, such that we can write
f ðxÞ � GPðC; kðx; x0ÞÞ. In an experimental setting, an observation y is the target
function corrupted by noise: y= f(x)+ ϵ where we assume that ϵ � N ð0; σ2noiseÞ.
Given N previous measurements D ¼ fðx1; y1Þ; ¼ ; ðxN ; yN Þg the predictive
probability distribution of the function value f= f(x) is given by

pðf jD; xÞ ¼ N ðμðxÞ; σ2ðxÞÞ ð5Þ
where

μðxÞ ¼ kT ½K þ σ2noiseI�
�1ðy � CÞ þ C ð6Þ

σðxÞ ¼ kðx; xÞ � kT ½K þ σ2noiseI�
�1
k ð7Þ

k ¼ ½kðx; x0Þ; ¼ ; kðx; xN Þ�T ð8Þ

K ¼
kðx1; x1Þ � � � kðx1; xN Þ

..

. . .
. ..

.

kðxN ; x1Þ � � � kðxN ; xN Þ

2
664

3
775: ð9Þ

The model hyperparameters θ= {ϕ, σnoise, C} are determined by maximizing the
log marginal likelihood, θ ¼ argmaxθ log ½pðD; θÞ�, which balances model accuracy
and complexity when choosing hyperparameters. A Matérn kernel (ν= 3/2) was
used for the GP models in this paper. During experimentation the hyperparameters
were retrained after each observation.

Data availability
The observation data generated in this study have been deposited in the public repository
https://github.com/roussel-ryan/turn_key_bayesian_exploration30.

Code availability
The code for our algorithm is located, along with code used to generate plots in this
manuscript, in the github repository https://github.com/roussel-ryan/
turn_key_bayesian_exploration30.
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