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C3 complement inhibition prevents antibody-
mediated rejection and prolongs renal allograft
survival in sensitized non-human primates
Robin Schmitz 1, Zachary W. Fitch 1, Paul M. Schroder1, Ashley Y. Choi 1, Miriam Manook 1,

Janghoon Yoon 1, Mingqing Song 1, John S. Yi 2, Sanjay Khandelwal 3, Gowthami M. Arepally3,

Alton B. Farris 4, Edimara S. Reis5, John D. Lambris5, Jean Kwun 1,6✉ & Stuart J. Knechtle 1,6✉

Sensitized kidney transplant recipients experience high rates of antibody-mediated rejection

due to the presence of donor-specific antibodies and immunologic memory. Here we show

that transient peri-transplant treatment with the central complement component C3 inhibitor

Cp40 significantly prolongs median allograft survival in a sensitized nonhuman primate

model. Despite donor-specific antibody levels remaining high, fifty percent of Cp40-treated

primates maintain normal kidney function beyond the last day of treatment. Interestingly,

presence of antibodies of the IgM class associates with reduced median graft survival (8 vs.

40 days; p= 0.02). Cp40 does not alter lymphocyte depletion by rhesus-specific anti-thy-

mocyte globulin, but inhibits lymphocyte activation and proliferation, resulting in reduced

antibody-mediated injury and complement deposition. In summary, Cp40 prevents acute

antibody-mediated rejection and prolongs graft survival in primates, and inhibits T and B cell

activation and proliferation, suggesting an immunomodulatory effect beyond its direct impact

on antibody-mediated injury.
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Kidney transplantation is the treatment of choice for
patients with end-stage renal disease. Compared to dia-
lysis, it improves quality of life and reduces long-term

mortality and cost of care1–4. However, kidney transplant can-
didates who are sensitized to a wide variety of HLA antigens from
prior blood transfusions, pregnancies, or allograft failure have
greatly reduced chances of finding an HLA-compatible donor.
While the proportion of waitlisted candidates with calculated
panel-reactive antibody (cPRA) of 98–100% is declining since the
introduction of the new kidney allocation system in 2014, they
still represent a disproportionate 7.2% of the wait list in the most
recent OPTN/SRTR report5. Additionally, ~25% of candidates
have a cPRA between 20 and 98%5, and when transplanted these
recipients have higher rates of acute antibody-mediated rejection
(AMR) and shorter graft survival due to the presence of pre-
formed anti-HLA antibodies and immunologic memory6–9.

In order to overcome this immunologic barrier to transplan-
tation, strategies targeting donor-specific antibodies (DSA) of
sensitized recipients prior to transplantation have evolved to
enable HLA-incompatible transplantation10. Desensitization
regimens aim to decrease DSA through plasmapheresis or
immunoadsorption in combination with intravenous immu-
noglobulin (IVIg) infusions and depletion of B cells with
rituximab11. However, due to the inability to deplete bone
marrow–resident, terminally differentiated plasma cells as well as
memory B cells, these regimens are associated with AMR in up to
40% of patients, caused by a rebound of DSA after kidney
transplantation12. Therefore, effective desensitization remains
elusive for sensitized patients.

AMR is a clinical and histopathologic diagnosis based on
clinical allograft dysfunction reflected by a decline in eGFR,
histologic evidence of endothelial inflammation and associated
features, and the presence of DSA in blood13. The primary
mechanism by which DSAs cause AMR is through activation of
the complement cascade by complement-fixing antibodies14. The
complement-dependent cytotoxicity (CDC) crossmatch was for
decades the gold standard to assess donor/recipient compatibility
prior to transplantation15. In the 1990s Feucht et al. described the
association of rejection and the complement split product
C4d16,17, which was subsequently confirmed to be a biomarker of
AMR and added to the Banff criteria in the early 2000s18. Fur-
thermore, complement contributes directly to activation of both
the innate and adaptive immune systems as well as causing direct
damage to the allograft14,19.

Complement inhibition has been used in the field of trans-
plantation over the last decade to prevent acute AMR in patients
with high levels of complement-fixing DSA7. C1 inhibition has
been tested in multiple pilot studies in combination with
antibody-reducing regimens. C1 inhibition reduces ischemia-
reperfusion injury, may prevent early AMR by abrogating the
classical pathway activation mechanism20, and improves the
outcome of acute renal transplant AMR when combined with
plasmapheresis and/or IVIg21,22. Eculizumab, a monoclonal
antibody to C5, is directed at terminal complement pathways and
prevents the formation of the membrane attack complex (MAC),
and it has been used for the treatment of AMR in several solid
organ transplants, including kidney23, lung24, and intestine25. In
a trial that included 26 sensitized kidney transplant recipients,
eculizumab was given in combination with standard-of-care
antibody-reducing treatment prior to kidney transplantation.
Eculizumab prophylaxis was shown to reduce the rate of acute
rejection from 42.2 to 7.7% in the first 3 months after kidney
transplantation26.

The Cp40 family includes peptidic C3 inhibitors that act on
native C3 and prevent its activation. Cp40, originally discovered
in 1996, is a cyclic peptide that blocks convertase-mediated

activation of C3 by all pathways27–29. Cp40 has been tested
extensively in pre-clinical nonhuman primate (NHP) models to
investigate toxicology and pharmacokinetics and shows good
safety and a favorable pharmacokinetic profile. In vitro, Cp40 has
shown its ability to abrogate the detrimental thrombo-
inflammatory consequences of complement activation, as in
ex vivo porcine-to-human models of xenotransplantation and
xenoantibody-mediated complement cytotoxicity30–32. AMY-101,
a derivative of the compstatin family, was evaluated in the first-
in-human (FIH) clinical trial in healthy male volunteers, in which
AMY-101 was shown to be safe and well tolerated
(NCT03316521). Currently, AMY-101 is being evaluated to assess
its safety and efficacy in adults with gingivitis (NCT03694444)
and in acute respiratory distress syndrome (ARDS) due to
COVID-19 (NCT04395456).

Here we show that the complement inhibitor compstatin
(Cp40 or Cp40-KK, both referred to as Cp40), which targets the
central complement component C3, prevents acute AMR and
prolongs graft survival without the addition of antibody-reducing
desensitization treatment in a highly sensitized NHP model.

Results
Cp40 prevents early antibody-mediated rejection and sig-
nificantly prolongs graft survival in the presence of high levels
of donor-specific antibodies. Maximally MHC-mismatched
NHP pairs were sensitized to each other with two sequential
skin transplants. Five primates were assigned to the control group
and 6 primates enrolled in the treatment group. MHC genotyping
for all pairs is summarized in Supplementary Table 1. Data
related to control animals were partially reported previously33.
Successful sensitization was quantified by weekly flow cross-
match, shown in Supplementary Fig. 1A. Both groups were
equally sensitized with no significant difference in peak DSA
levels prior to kidney transplantation (Supplementary Fig. 1B).
All primates received induction therapy with rhesus-specific anti-
thymocyte globulin (rhATG). Maintenance immunosuppression
consisted of tacrolimus, mycophenolate mofetil (MMF), and
methylprednisolone. The treatment group was additionally trea-
ted with a 16-day course (Day-2 to Day-14) of Cp40, as shown in
Fig. 1A. We observed significant prolongation in graft survival
with the addition of Cp40, leading to a median graft survival of
15.5 days vs. 4 days (p= 0.0284, Fig. 1B).

All primates showed excellent kidney function on the first day
after transplant with a minimal rise in serum creatinine (sCr) and
blood urea nitrogen (BUN). There was no significant difference
between the groups on day 1. However, animals in the control
group showed significantly elevated sCr and BUN on day 4 after
kidney transplantation and met endpoint criteria, while Cp40-
treated animals maintained good graft function (Fig. 1C). We
observed no difference in the DSA levels between the two groups
postkidney transplantation at these early time points (Fig. 1C and
Supplementary Fig. 2A). sCr and BUN for all individual primates
throughout the study period are summarized in Supplementary
Fig. 3. Additionally, treatment with Cp40 was well tolerated
without any treatment-specific side effects. The primates
experienced no significant weight loss and were able to maintain
their nutritional needs, evident in serum albumin and total
protein levels (Supplementary Fig. 4A, B). The addition of Cp40
did not lead to clinically relevant cytomegalovirus (CMV)
reactivation, defined as >10,000 viral copy numbers, on daily
CMV prophylaxis (Supplementary Fig. 4C). Due to crosstalk
between complement and coagulation pathways, we evaluated
whether Cp40 treatment promoted coagulopathy. We did not
observe any significant impact on blood coagulation measurements,
including platelet count, clotting time, D-dimer, etc. (Fig. 1E).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25745-7

2 NATURE COMMUNICATIONS |         (2021) 12:5456 | https://doi.org/10.1038/s41467-021-25745-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


All animals in the treatment group showed a significant
increase of DSA after kidney transplantation. Surprisingly,
elevated levels of DSA did not lead to immediate graft
dysfunction in a subset of animals. Instead, we observed a
prolonged period of normal graft function or accommodation
after the last administration of Cp40 despite high levels of
circulating DSA (Fig. 1D and Supplementary Fig. 2B). These data
demonstrate that peri-transplant Cp40 treatment promoted
prolonged graft survival without completely mitigating the post-
transplant humoral response.

Cp40 does not alter rhATG-dependent lymphocyte depletion
but inhibits lymphocyte activation and proliferation. We clo-
sely monitored the depletion and repopulation of immune cells
after kidney transplantation to evaluate possible interference
between rhATG and Cp40 since rhATG-mediated lymphocytic
depletion could depend on CDC. RhATG caused profound
lymphocyte depletion with mean absolute lymphocyte counts
(ALC) < 1 × 103 cells/µl after the first dose. No significant dif-
ference in ALC was observed between the control and treatment
groups. Post-transplant T and B cell populations were also

evaluated based on our gating strategy shown in Supplementary
Fig. 5. T cell populations, including CD4+ CD25+ FoxP3+ T
regulatory cells (Tregs) did not change significantly. We did,
however, observe a higher absolute number of CD20+ B cells in
the Cp40-treated group postkidney transplantation that reached
statistical significance 4 days after transplant (p < 0.05, Fig. 2A).
After completion of rhATG induction therapy, T cells immedi-
ately started repopulating with faster repopulation of CD8+

T cells compared to CD4+ T cells leading to a CD4/CD8 inver-
sion with prolonged and modest CD4 lymphopenia (Supple-
mentary Fig. 6A). We further analyzed the repopulation of T cell
subsets by memory and naive phenotype defined by CD28 and
CD95. Naive CD8+ T cells showed the most rapid repopulation
above baseline within 1 month. In contrast, CD4+ T cells fol-
lowed repopulation kinetics similar to naive and central memory
cells (Supplementary Fig. 6B). RhATG did not lead to significant
depletion of innate immune cells, but instead we observed
increased circulating level of neutrophils, monocytes, eosinophils,
and basophils in Cp40-treated animals (Supplementary Fig. 7).
Since complement fragments can impact T and B cell activation
and proliferation via complement receptors (e.g., C3aR and
C5aR), we further evaluated the lymphocyte profile. Primates
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Fig. 1 Cp40 prevents antibody-mediated rejection despite high levels of donor-specific antibodies. a A schematic representation of the experimental
design and immunosuppression regimen. b Kaplan–Meier curve of the graft survival of the control group (red, n= 5) and Cp40-treated group (blue, n= 6)
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treated with Cp40 showed less T and B cell proliferation, quan-
tified by Ki-67 staining on flow cytometry (Fig. 2B), as well as
lower frequency of activated CD69+ CD8+ T cells (Fig. 2C).
Furthermore, we measured inflammatory cytokines in the serum
after kidney transplantation and observed an early elevation of
interferon gamma (IFN-gamma), tumor necrosis factor alpha
(TNF-alpha), interleukin 6 (IL-6), and interleukin 18 (IL-18) that
were higher in the control group compared to Cp40-treated
primates (Fig. 2D). We did not observe any large changes in other
cytokines including IL-4 or IL-10 (Supplementary Fig. 8).

Cp40 prevents early antibody-mediated rejection and inhibits
complement deposition in the kidney allograft. Allografts from
control and Cp40-treated animals were evaluated at rejection or
at protocol biopsy by an experienced transplant pathologist
(A.B.F.) using hematoxylin and eosin (H&E), Periodic acid-Schiff
(PAS), and complement deposit staining (Fig. 3A). At the time of
graft failure, most animals in the control group had evidence of
AMR with a low score of acute cellular rejection (ACR). The
subset of primates in the treatment group that experienced early
graft failure while on Cp40 treatment (before post-transplant day
14) also showed characteristics of ACR and AMR (Fig. 3B, C).
However, in the subgroup of primates that had longer
graft survival and a period of accommodation, we did not see
any evidence of rejection on POD14 or POD28 protocol biop-
sies (Fig. 3 and Supplementary Fig. 9). C4d deposition was
not indicative of failure of complement inhibition or AMR
since C4 is upstream of C3 within the complement cascade.
Therefore, we evaluated C3 split product in the graft with

immunohistochemical staining for C3d. In the control group, we
were able to show C3d deposition within the kidney graft with
predominance in the glomeruli at rejection. One primate in the
control group had graft survival of 13 days. Staining of its kidney
allograft showed significantly more C3d deposition consistent
with a correlation between time and complement deposition
(Fig. 3B). Interestingly, the subgroup of animals that experienced
early graft failure in the Cp40 group had no significant intragraft
C3d deposition despite graft dysfunction and high levels of DSA
in the serum. However, after Cp40 was discontinued (POD14), all
primates ultimately experienced graft failure and at that time had
significant intragraft C3d deposition (Fig. 3B). This suggested that
Cp40 blocked the C3 down-stream activation in some animals as
reflected by prolonged graft survival.

Long-term functioning grafts showed downregulation of
complement-related genes. To evaluate the differential outcomes
within Cp40-treated animals (n= 6), we further divided the
treated group based on their rejection timing. Three animals
experienced graft failure under Cp40 treatment (early rejecters/
ER) while three animals had stable graft function beyond Day 14
(late rejecters/LR). We compared AMR injuries with g+ ptc score
in these groups. AMR scores were not significantly different
between control vs. treated animals, possibly due to the bimodal
nature of the treated group (Fig. 4). However, LR kidney histology
showed significantly lower AMR scores (Fig. 4A) with less
microcirculation inflammation compared to ER (Supplementary
Fig. 9A and Supplementary table 3). Interestingly, the level of
circulating post-transplant DSA levels/kinetics were not
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significantly different between ER and LR groups (Supplementary
Fig. 9B). Furthermore, circulating DSA levels significantly
increased over time without graft rejection (Fig. 4B). Therefore,
the alleviation of AMR is not due to a lowered level of DSA in LR
group. Even though we observed reduced C3a and C5a plasma
levels in CP40-treated animals, the plasma C3a/C5a levels were
not different between ER vs. LR. However, graft infiltrating
CD68+ macrophages were markedly reduced in LR (Supple-
mental Fig. 10). To investigate the difference at the molecular
level between the ER and LR groups that could conserve the
allograft with high DSA levels, we employed gene analysis using a
NanoString Platform. RNA samples were prepared from formalin
fixed paraffin embedded (FFPE) kidney allograft used for histo-
logical evaluation. Interestingly, the pathological difference
between the groups was also reflected in the hierarchical clus-
tering analysis. As shown in Supplementary Fig. 11, ER and LR
clustered separately and in LR showed that 25 out of 37 pathways
were down-modulated, including complement system genes.
Similarly, downregulated genes were observed in LR compared to
ER (Fig. 4C, D), and 9 out of 12 significantly changed genes
related to the complement system were downregulated (Fig. 4E).
These data suggest that Cp40 biological activity was clearly dif-
ferent between these two subgroups.

IgM donor-specific antibodies are associated with early graft
and treatment failure. To investigate reasons for the differential
outcome, we further analyzed ER and LR groups. As expected,
these two subgroups had a statistically significant difference in
graft survival with a median survival of 8 days vs. 40 days
(p= 0.0224, Fig. 5A). Both subgroups had excellent graft function
immediately after kidney transplantation with normal serum
creatinine levels. However, the ER group showed an early eleva-
tion in serum BUN that was significantly higher than the LR
group, suggesting early graft injury (Fig. 5B). Due to the increased
morbidity, we did not obtain protocol biopsies within the first
week after kidney transplantation to confirm this injury histolo-
gically. Both subgroups had good lymphocyte depletion after
administration of rhATG, and there was no significant difference
in the absolute number of T or B cells throughout the study
period (Fig. 5C). In contrast, we observed a higher number of
CD4+ CD25+ FoxP3+ Tregs in the LR group 7 days after
transplantation (p < 0.05, Fig. 5D), which may have contributed
to longer graft survival. Additionally, the LR group showed a
strong trend towards less T cell proliferation (p= 0.06) and sig-
nificantly less proliferation of B cells (p < 0.01, Fig. 5E). These
results are consistent with our observation in the control group
and suggest that the ER group had incomplete complement
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inhibition leading to stimulation of T and B cells through cir-
culating complement fragments. Since the differential level of
preformed antibody at the time of transplantation could impact
susceptibility to complement inhibition, we compared DSA levels
between the two subgroups. As shown in Fig. 6A, the level of IgG
DSA was similar between the two groups throughout the study
period and therefore did not explain the incomplete complement
inhibition. Since IgM has the highest potential to activate the
classical pathway of the complement cascade, we subsequently
measured the IgM DSA levels throughout the study period. The
ER group showed significantly higher levels of IgM DSA at the
time of transplant as well as postkidney transplantation with an
early rebound (Fig. 6A). This observation was specific for the level
of donor-specific IgM, as there was no difference in the total
serum IgM levels between the groups (Fig. 6B). The presence of
IgM DSA was associated with early AMR since we observed no
signs of AMR in the group of primates with low levels of IgM
DSA. To confirm the IgM-mediated treatment resistance in vitro,
10 additional primates were screened for serum IgM levels. IgM-
high and -low primates were tested for complement activation
using a well-established PF4/Heparin complex assay. As shown in
Fig. 6C, IgM levels were heterogeneous with a wide range of IgM
levels (from 392 to 1007 µg/ml) between individual primates.
Complement activation was quantified by measuring the C3c
concentration. We observed significantly more complement
activation in the IgM-high primate, which required higher
amounts of Cp40 for complete inhibition (p < 0.001, Fig. 6D)
consistent with our in vivo results and supporting the hypothesis
that the observed treatment failure is due to the presence of IgM
DSA, and that the amount of Cp40 used for this study was
inadequate to completely inhibit IgM-mediated activation.

Discussion
In this study, we modeled maximally HLA-incompatible, flow-
crossmatch positive kidney allotransplantation in a highly sensi-
tized NHP model. With this model we built an exceptionally high

immunologic barrier, leading to accelerated graft rejection in all
cases without desensitization. Despite this challenge, we were able
to show the ability of C3 complement inhibition to prevent acute
AMR. While complement inhibition had no effect on the rebound
of DSA after kidney transplantation, we observed less antibody-
mediated graft injury and a period of prolonged graft survival in a
subset of primates after discontinuation of the C3 inhibitor (Fig. 1).
Without interfering with coagulation, Cp40 also inhibited T and B
cells activation and proliferation in the lymphopenic environment,
highlighting the broad influence of complement inhibition on the
immune system beyond alleviating the detrimental effect of DSAs
(Figs. 1 and 2). C3 blockade promoted transient stable graft func-
tion in the presence of high levels of DSA (accommodation) in
some of animals. These responders (LR) showed more down-
regulation of immunological pathway-related genes, including
complement pathway, compared to the non-responders (ER)
(Fig. 4). This was also reflected in longer graft survival, better graft
function, and less T and B cell proliferation in animals who
responded to C3 blockade (Fig. 5). Surprisingly, retrospective ana-
lysis showed that elevated levels of preformed and rebound IgM
DSA highly correlated with resistance to C3 blockade in the AMR
model (Fig. 6). Finally, we showed that IgM-antigen interaction
could promote breakthrough activation of the complement cascade
under anti-C3 inhibition.

It is notable that animals treated with Cp40 showed a rapid B
cell anamnestic response; however, few animals maintained stable
graft function without AMR. No humoral injury in the presence
of DSA has been referred to as accommodation34,35. This phe-
nomenon has been shown more in ABO-incompatible kidney
transplants or in porcine xenografts in NHPs, with incompatible
carbohydrate antigens rather than transplantation with HLA-
incompatible transplantation36,37. Previously, a short course of
Yunnan-cobra venom factor, a potent anti-complement protein
which showed great efficacy to deplete circulating C3, promoted
accommodation, with graft survival of more than 1000 days in
conjunction with conventional immunosuppression (CsA, MMF,
and steroid) in a skin-sensitized NHP kidney transplant model38.
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These results are truly remarkable but have not been reproduced
since. Targeting C3, as the central component of all three com-
plement pathways, is a highly attractive strategy for therapeutic
complement inhibition with a conceptual benefit over C1 and C5
inhibition39. C1 esterase inhibition only blocks the classical
pathway of the complement cascade, and C5 inhibition, as a
terminal complement component, allows formation of upstream
complement fragments and their participation in activation of the
innate and adaptive immune system. The suppression of micro-
circulatory inflammation in the presence of preformed and
rebounding DSA suggests that the anti-C3 approach alleviates
pathogenesis of injury via antibody-dependent cellular cytotoxi-
city as well. However, even though these animals showed pro-
longed graft survival, they eventually developed AMR. It is
uncertain whether more prolonged targeting of C3 could prevent
such gradual development of AMR. Nevertheless, the current
study provides a proof of concept that targeting C3 can promote
tentative protection of the graft in the sensitized setting without
additional desensitization.

Our data also show that Cp40 impacts T cell and B cell acti-
vation and proliferation. This could be due to a lower serum
concentration of the anaphylatoxins C3a and C5a in the treat-
ment group. The influence of complement fragments on the
adaptive immune response and the evidence of C3a and C5a
receptors on lymphocytes has been described40,41. C3a and C5a
have direct effects on T cells through binding of their cognate
receptors (C3aR and C5aR) that include effector T cell expansion
as well as T cell longevity42,43. Anaphylatoxins can further pro-
vide costimulation for naive CD4+ T cells42. In the absence of
C3aR and/or C5aR signaling, T cell-dependent alloimmune
responses are dampened and deviated toward Th2 cells and
Tregs, instead of Th144–46. Additionally, we observed a dampened
pro-inflammatory response with lower levels of IFN-gamma,
TNF-alpha, and IL-18 in the Cp40-treated group. Since com-
plement split products, C3a and C5a, are potent chemo-attrac-
tants, they may recruit other cellular mediators of inflammation
and mediate tissue injury41,47. In accordance with this, the graft
infiltrating macrophages were greatly reduced in LR kidneys
compared to control and ER (Supplementary Fig. 9). However,
even though the systemic levels of C3a/C5a were reduced in
Cp40-treated animal, we did not observe any differences in
plasma C3a/C5a levels between ER and LR. It is possible that the
systemic plasma levels do not fully reflect the local concentration
of C3a/C5a in a graft. Therefore, we could not directly prove that
reduced levels of C3a and C5a are responsible for prolonged graft
survival in Cp40-treated animals with inhibited immune
responses. Most recently, the C3 inhibitor AMY-101 has been
successfully used as treatment for a case of severe COVID-
19–associated ARDS, perhaps by a similar mechanism48.

Even though Cp40 treatment showed biological activity, only
some animals fully responded to C3 blockade. We found that
preformed IgM confers resistance to Cp40 treatment. The clas-
sical pathway (CP) is initiated by plasma C1q binding to the Fc
segments of DSA that are bound to HLA antigens49. The relative
ability of human immunoglobulin to activate the CP is: IgM >
IgG3 > IgG1 > IgG2≫ IgG450. Secreted IgM complexes in human
serum form pentamer or hexamer structures and, when bound to
antigens, have the ability to present multiple binding sites for the
C1 complex51. Therefore, increased IgM against donor antigens
could initiate CP very efficiently. Consistent with this explana-
tion, growing clinical observations implicate IgM DSA in trans-
plant rejection. Everly et al. described the association of IgM DSA
and graft survival in a cohort of 179 primary renal allograft
recipients. The authors were able to show that not the presence of
IgM alone but the persistence of IgM with the concomitant
presence of IgG3 DSA was associated with significantly shorter

graft survival52. The presence of IgM alone, however, was asso-
ciated with higher grades of rejection. A smaller, single institution
analysis from the UK that included 92 HLA-incompatible
transplant recipients also showed an association between post-
transplant IgM levels and graft failure53. Importantly, in the
setting of sensitized patients undergoing positive crossmatch
transplantation, evidence of complement therapy resistance was
similarly observed in eculizumab-treated patients with elevated
IgM DSA. Three out of 26 patients experienced AMR within the
first month after kidney transplantation while on eculizumab
treatment, one of them being subclinical rejection. These 3
patients were all found to have elevated levels of IgM DSA while
only 1 out of 23 patients in the rejection-free group had detectable
levels of IgM DSA54. It is also notable that IgM-mediated AMR
was shown in highly sensitized patients treated with Imlifidase
(IdeS, IgG degrading enzyme) in the absence of circulating IgG
DSA55. Therefore, IgM DSA may be an independent mediator for
initiating AMR. We also show that not the total IgM level but the
level of IgM DSA correlates with the incidence of AMR and
failure of complement blockade. Furthermore, we were able to
show that treatment resistance in primates with high IgM levels
can be overcome with an increased dose of complement inhibitor.
This suggests that in our in vivo model, an increase in the Cp40
dose may have prolonged graft survival in the high IgM
DSA group.

The fact that high-IgM DSA primates experienced graft failure
while on Cp40 treatment highlights some of the limitations of this
study. All primates received 2 mg/kg Cp40 TID, which in retro-
spect might be insufficient for controlling the complement cas-
cade in a subset of primates with higher levels of IgM DSA. To
translate this regimen into the clinic, more research is required
with IgM flow-crossmatch–positive patients to better define the
balance between complement activation and inhibition. The goal
of this study was to demonstrate efficacy of Cp40 in a very
challenging immunologic scenario using serial fully MHC-
mismatched skin transplantation and kidney transplantation
from the same donor for sensitization. In our experiment, Cp40
treatment alone only achieved short-term protection against
AMR. However, similar to previous clinical observations with
terminal or proximal complement inhibitors, Cp40 does not
completely prevent AMR56,57. Since DSAs may continue to injure
the allograft despite complete inhibition of the complement sys-
tem, combined approaches with an Ab-reducing regimen and
complement inhibition may promote more stable long-term graft
survival in sensitized patients. However, it is also important to
note that such a combined approach could increase the risk of
infection since C3 has a central role in both opsonization and
lysis of infectious microorganisms (i.e. bacteria, virus, and
parasite)58–60. Therefore, in a human trial we envision comple-
ment inhibition being used as an adjunct to (pharmacological)
desensitization, and for such a protocol the optimal duration of
treatment and risk of infection needs to be defined more clearly.
Furthermore, the transient protection/accommodation after
complement inhibition could create a unique therapeutic window
for both desensitization and AMR treatment. This may facilitate
deceased donor kidney transplantation in sensitized recipients by
rapidly alleviating the impact of complement-associated AMR
injury while the benefit of Ab-reducing regimens takes more time.
While Cp40 has not been used in transplantation, a phase I
clinical trial has been successfully completed (NCT03316521) and
phase II trials are planned.

We have demonstrated the ability of isolated C3 complement
inhibition without an antibody-reducing regimen to increase graft
survival. The efficacy of Cp40 in mitigating early robust AMR is
especially attractive in the following two clinical scenarios: active
acute AMR and desensitization prior to deceased donor
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transplantation. While further investigations are warranted, we
believe that we have demonstrated the considerable potential of
C3 complement inhibition that justifies pursuing its translation
into clinical transplant applications.

Methods
Sensitized nonhuman primate kidney allotransplantation model. The study
animals, male rhesus macaques, were obtained from breeding colonies at Alpha
Genesis, Inc. (Yemassee, SC, USA). Maximally MHC class I and II mismatched
pairs of NHPs were sensitized to each other with two sequential full-thickness skin
transplants61. The two skin transplants were performed 8 weeks apart. Sixteen
weeks after the second skin transplant, allo-sensitized primate pairs underwent
swapping kidney transplantation with contralateral native nephrectomy as pre-
viously described62. Lymph node biopsies from the axillary and inguinal regions as
well as bone marrow biopsies from the iliac crest were performed prior to and
30 days post kidney transplantation. After kidney transplantation, primates were
sedated twice per week for physical examination and blood collections. The study
endpoint was defined as clinical evidence of acute AMR with worsening kidney
function (e.g. rising creatinine, reduced urine output, edema) refractory to
methylprednisolone rescue therapy. All animal care and procedures were con-
ducted in accordance with the National Institutes of Health (NIH) guidelines and
were approved by the Institutional Animal Care and Use Committee (IACUC) at
Duke University (Protocol# A153-18-06).

Immunosuppressive drug regimens. All transplanted primates received deple-
tional induction therapy with the rhATG (NIH NHP Reagent Resource, Worcester,
MA, USA) at a total dose of 20 mg/kg, administered in 5 evenly divided daily doses
between the day of transplant and post-transplant day 4. Maintenance immuno-
suppression consisted of tacrolimus (Astellas Pharma, Northbrook, IL, USA) IM
twice daily (BID), dose adjusted to maintain trough levels at 8–12 ng/mL, MMF
(Genentech, San Francisco, CA, USA) 30 mg/kg PO BID, and methylprednisolone
(Pfizer, New York, NY, USA) 0.5 mg/kg IM daily starting at day 5 after kidney
transplantation after initial taper from 15 mg/kg on the day of transplant. The
intervention group was additionally treated with either the compstatin C3 com-
plement inhibitors Cp4063 or Cp40-KK64 but not both (the activities of these two
molecules are the same), which was given at a dose of 2 mg/kg TID between day −2
prior to kidney transplantation and day 14 after kidney transplantation. A sche-
matic treatment schedule is shown in Fig. 1A. All primates received CMV pro-
phylaxis with 6 mg/kg ganciclovir daily SC throughout the study period. RhCMV
viral titers were monitored weekly by polymerase chain reaction as described
previously65. Clinically suspected ACR episodes (e.g., rise in creatinine,
reduced urine output, edema) were treated with methylprednisolone 125 mg/kg IM
daily for 3 days, followed by 75 mg/kg IM daily for 3 days, and 25 mg/kg IM daily
for 3 days.

Kidney allograft monitoring and histology. We assessed the kidney allograft
function daily by monitoring urine output and at least twice per week by serum
chemistry tests. Protocol percutaneous ultrasound-guided renal biopsies were
performed on post-transplant days 14 and 30 as well as at time of suspected AMR.
Biopsies were performed with a 20 G CareFusion Coaxial AchieveTM Automatic
Biopsy System (BD Biosciences, Franklin Lakes, NJ, USA). We performed standard
H&E and PAS staining of all allograft tissue samples. Additionally, C4d, C3d, and
CD68 immunohistochemistry was performed for selected biopsy samples and all
necropsy specimens. An experienced transplant pathologist (ABF) evaluated and
scored the histology specimens according to the Banff criteria13 in a blinded
fashion.

Blood coagulation studies and thromboelastography. Citrated blood was col-
lected at 0 h, 1 h, 6 h, 24 h, 4d, and 7d after kidney transplantation. Measurement of
the platelet count, D-Dimer, fibrinogen, prothrombin time, and partial pro-
thrombin time was outsourced and measured by (Antech Diagnostics, Fountain
Valley, CA, USA) as part of a blood coagulation panel. The activated clotting time
was measured by thromboelastography (TEG) as described previously66. TEG was
performed with 330 µl whole blood and supplementation of 20 µl CaCl as well as
10 µl of Kaolin. All samples were run in duplicate.

Monitoring of the allogeneic immune response with polychromatic flow
cytometry. Our method for detection of DSA levels in the transplant recipient’s
serum has been described in detail previously65. Briefly, serum samples for analysis
were collected throughout the study period. Recipient serum was incubated with
donor peripheral blood mononuclear cells (PBMCs). IgG (1:50 dilution) and IgM
DSA levels were measured by flow cytometric crossmatch on a BD LSRFortessaTM

(BD Biosciences, San Jose, CA, USA) and analyzed using FlowJo software version
10 (Tree Star, Ashland, OR, USA).

Single cell suspension of lymph nodes, bone marrow, and PBMCs were stained
for various lymphocyte population markers at the indicated time points. A
summary of all fluorochrome-conjugated antibodies is listed in Supplementary
table 2. Single cell suspensions were stained with following monoclonal antibodies:

CD4 (L200, dilution 1/100, Catalogue#552838), CD27 (O323, dilution 1/100,
Catalogue#46-0279-42), Ki67 (B56, dilution 1/50, Catalogue#561284 and 556027),
CD45RA (L48, dilution 1/50, Catalogue#347723), FoxP3 (259D, dilution 1/50,
Catalogue#320212), IgD (polyclonal, dilution 1/200, Catalogue#2030-02), CCR7
(150503, dilution 1/20, Catalogue#561143), IgG (G18-145, dilution 1/20,
Catalogue#561296), CD20 (2H7, 1/20, Catalogue#560631 and 302314), CD25
(CD25-3G10, dilution 1/20, Catalogue#MHCD2505 and 170-081-029), CD8 (RPA-
T8, dilution 1/100, Catalogue#557760 and 558207), CD127 (eBioRDR5, 1/100,
Catalogue#17-1278-42), CD19 (CB19, dilution 1/5, Catalogue#ab197060), PD-1
(eBioJ105, dilution1/50, Catalogue#17-2799-42), CD3 (SP34-2, dilution 1/100,
Catalogue#560770). The flow cytometry was performed on a BD LSRFortessaTM

(BD Biosciences, San Jose, CA, USA) and analyzed using FlowJo software version
10 (Tree Star, Ashland, OR, USA). Our flow cytometry gating strategies are
summarized in Supplementary Fig. 5.

Cytokine multiplex immunoassay. Serum samples were collected from all pri-
mates through the study period. Serum levels of inflammatory cytokines (GM-CSF;
IFN gamma; IL-1 beta; IL-10; IL-12p70; IL-13; IL-17A; IL-18; IL-2; IL-23; IL-4; IL-
5; IL-6; TNF alpha) were measured in the early post-transplant phase (POD0-7)
using the Th 14-Plex NHP ProcartaPlex Panel (Invitrogen, Waltham, MA, USA).

Plasma C3a and C5a ELISA. The concentration of plasma C3a and C5a was
quantitated by enzyme-linked immunosorbent assay (ELISA) using Monkey C3a
ELISA Kit (AssayGenie, Dublin, Ireland) and Monkey C5a ELISA Kit (MyBio-
Source, Sandiego, CA) according to the manufacturers’ instructions. The ELISA
plates provided had been pre-coated with capture antibodies specific to Comple-
ment Component 3a or Complement Component 5a. 100 µL of standard or plasma
samples (dilution of 1:3) were added and incubated for 90 min at 37 °C. Samples
were diluted with sample diluent to a total volume of 100 µL in each well. The
standard curves were generated with the recombinant C3a or C5a starting at a
concentration of 10 ng/mL (serial dilation as 10, 5, 2.5, 1.25, 0.625, 0.3125, 0.15625,
0 ng/mL as suggested). ELISA plates were washed three times with PBST and
100 µL of biotinylated detection antibody were added and incubated for 1 h at
37 °C. After washing the plate three times with PBST, 100 µL of HRP conjugated
working solution was added to each well and incubated for 30 min at 37 °C. ELISA
plates were then washed five times with PBST and developed by adding 90 µL of
substrate reagent to each well at room temperature approximately for 15 min,
stopped with 50uL of stop solution. The plates were read at 450 nm.

Gene expression analysis using the NanoString Platform. We isolated total
RNA from FFPE kidney allograft blocks using a recently published technique by
Adams et al.67. Samples were included in the final analysis if they passed a priori
quality control criteria (260:280 ratio > 1.7). We measured gene expression by
using the NanoString nCounter MAX platform (NanoString Technologies, Seattle,
WA). We used the nCounter Human Organ Transplantation Panel (No. LBL-
10743-01) to measure 758 genes covering the core pathways and process sur-
rounding host response and rejection of transplanted tissues (including 12 internal
reference genes for data normalization). Gene expression data were log2-trans-
formed, background subtracted, and normalized to the geometric mean expression
of 12 housekeeping genes by using the nSolver software platform 4.0 (Nanostring
Technologies).

Assessment of NHP serum antibody levels and in vitro PF4/heparin assay.
We measured total IgM (Behtyl Human IgM ELISA Quantitation Set, Mon-
tgomery, TX, USA) serum levels in all primates at various time points as indicated
in the results with ELISA. To measure complement activation and inhibition
in vitro, plasma was first incubated with PF4/heparin complexes (25 μg/ml and
0.25 U/mL respectively; formed at a PF4 to heparin molar ratio (PHR) of 6.6). After
1 h of incubation, complement-fixed antigen was captured by KKO, a PF4/heparin
specific monoclonal antibody, and complement fragments containing C3 were
detected using a biotinylated anti-C3c antibody as previously described68.

Statistical analysis. Statistical analyses were performed using GraphPad Prism
software version 5.0 (GraphPad Software, San Diego, CA, USA). Survival data were
plotted using the Kaplan–Meier method and log-rank test was performed to
determine statistical significance. Statistical comparisons between different groups
were performed using the student t test and values of p < 0.05 were considered
statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The primary data that support the findings of this study are available from the
corresponding author upon reasonable request. Supplementary information accompanies
this paper and the nanostring data have been deposited in NCBI’s Gene Expression
Omnibus (GEO) and are accessible through GEO Series accession number
GSE178843. Source data are provided with this paper.
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