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Genetic variations of DNA bindings of FOXA1 and
co-factors in breast cancer susceptibility
Wanqing Wen 1✉, Zhishan Chen1, Jiandong Bao 2, Quan Long3, Xiao-ou Shu1, Wei Zheng 1 &

Xingyi Guo 1,4✉

Identifying transcription factors (TFs) whose DNA bindings are altered by genetic variants

that regulate susceptibility genes is imperative to understand transcriptional dysregulation in

disease etiology. Here, we develop a statistical framework to analyze extensive ChIP-seq and

GWAS data and identify 22 breast cancer risk-associated TFs. We find that, by analyzing

genetic variations of TF-DNA bindings, the interaction of FOXA1 with co-factors such as ESR1

and E2F1, and the interaction of TFs with chromatin features (i.e., enhancers) play a key role

in breast cancer susceptibility. Using genetic variants occupied by the 22 TFs, transcriptome-

wide association analyses identify 52 previously unreported breast cancer susceptibility

genes, including seven with evidence of essentiality from functional screens in breast relevant

cell lines. We show that FOXA1 and co-factors form a core TF-transcriptional network reg-

ulating the susceptibility genes. Our findings provide additional insights into genetic varia-

tions of TF-DNA bindings (particularly for FOXA1) underlying breast cancer susceptibility.
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Identifying transcription factors (TFs) whose DNA bindings
are altered by genetic variants that regulate susceptibility
genes is imperative for understanding the mechanism of

transcriptional dysregulation in disease etiology. Genetic fine-
mapping studies in breast cancer suggest that cis-regulatory risk
variants may disrupt DNA binding affinities of TFs, particularly
for known master regulators FOXA1 and ESR1, altering the
regulation of gene expression and affecting breast cancer risk1–7.
A previous study analyzed chromatin immunoprecipitation
followed by high throughput sequencing (ChIP-seq) data for
TFs, including FOXA1 and ESR1, in breast cancer cell lines to
investigate the enrichment of TF-DNA bindings of genome-
wide association studies (GWAS)-identified single nucleotide
polymorphisms (SNPs)8. It found that breast cancer risk-
associated regulatory SNPs modulated the binding affinity of
FOXA1 and altered gene expression. Two previous integrative
data analyses using gene expressions, TF ChIP-seq data, and
GWAS-identified SNPs also revealed that breast cancer risk was
related to TFs such as ESR1, MYC, KLF49, and others10, sug-
gesting the functional role of cancer risk-associated SNPs. Other
studies have identified disease-related regulatory elements using
epigenetic data such as histone modifications11–15. However,
previous studies had the suboptimal statistical power to identify
disease-associated TFs or elements because they focused on a
limited number of GWAS-identified SNPs. Most recently, a
statistical approach, GARFIELD16, has been developed to
identify disease-relevant genomic elements using epigenetic data
from the Encyclopedia of DNA Elements (ENCODE) and
Roadmap Epigenomics projects and GWAS-identified variants.
In the GARFIELD approach, a greedy pruning procedure was
proposed to extract a set of independent variants to classify
disease-relevant genomic features through the integration of
functional annotations with association signals. This approach
was conservative due to the potential loss of true causal variants
resulting from the greedy pruning, and its statistical power is
decreased due to the dichotomization of outcome variables (i.e.,
GWAS P-values). In this work, we develop a computational
epigenetic and statistical framework to analyze extensive
TF ChIP-seq data (Supplementary Data 1) and GWAS summary
statistics data (n= 11,337,849 genetic variants) from the Breast
Cancer Association Consortium (BCAC) with a goal to establish
a landscape of genetic variations for TF-DNA bindings of risk
associated TFs for breast cancer.

Results
Overview of the developed statistical framework. To investigate
how genetic variations of TF-DNA bindings affect breast cancer
susceptibility, we developed an analytic framework to analyze
ChIP-seq and breast cancer GWAS summary statistics data
(Fig. 1a–c). By analyzing a total of 113 TF ChIP-seq data sets
from multiple breast cancer cell lines collected from ENCODE
and the Cistrome database (http://cistrome.org/) (Fig. 1a, b,
Supplementary Data 1 and “Methods” section), we identified TF-
DNA binding regions. An n × m matrix for n= 11,337,849
genetic variants from the BCAC GWAS data was generated with
annotation from m= 113 TF-DNA binding regions. We used the
Chi-squared value for each genetic variant reported in the BCAC
GWAS summary data to measure its association with breast
cancer risk. We then used generalized mixed models to estimate
the associations between the Chi-squared values (Y) and TF
binding status of genetic variants located in binding sites of each
TF given LD blocks of genetic variants to handle the dependence
between genetic variants (Fig.1c and Eq. 1). To define approx-
imate independent LD blocks similar to other studies17,18,
we defined LD blocks using non-overlapping segments of 100 kb

(a similar result with 500 kb; see “Methods” section).

Yij ¼ β0 þ β1TFij þ Vi þ εij ð1Þ

Specifically, Yij is the Chi-square value for the jth variant in the
ith LD block; β0 is the fixed intercept, and β1 is the fixed slope,
which measures the mean difference of the Chi-square values
(4�χ2) between TF status; TFij is the jth TF value (i.e., 1 for a
variant located in a TF binding site, 0 otherwise) in the ith LD
block; Vi is the random intercept for the ith LD block; and εij is
the error term.

Genetic variations of TF-DNA bindings of breast cancer risk-
associated TFs. Using our developed analytic framework, we
established a landscape of genetic variations of TF-DNA bindings
for 22 breast cancer risk-associated TFs, which were identified at
Bonferroni-correction P < 0.05 (two-sided). Of them, the top risk-
associated TFs included well-known breast cancer master reg-
ulators, FOXA1, ESR1, and AR, and other related TFs, such as
SIN3AK and TCF7l2 (Fig. 1e and Supplementary Table 1). In
addition, we generated a “deflated” genome (Fig. 1d, red line)
based on random uniform distribution of GWAS P-values after
removing variants majorly from those having small P-values for
breast cancer risk in each block (see “Methods” section). In this
“deflated” genome, we still observed that genetic variations of TF-
DNA bindings for 17 TFs remained significant at a nominal
P < 0.05. The findings not only support the associations of these
TFs but also imply additional genetic susceptibility is likely
conferred by non-GWAS significant genetic variants occupied by
these TFs. The associations for the other five TFs (P300, SRF,
E2F1, HAE2F1, and FOSL2) were not significant, perhaps due to
a decreased number of TF bindings, or they may be sensitive to
this conservative approach (Fig. 1e and Supplementary Table 1).
Comparing TF frequencies of the genomic background, we con-
firmed that the TF-DNA binding sites of the identified TFs were
significantly enriched in both GWAS-identified variants and their
flanking regions (±500kb) (Supplementary Table 1).

Motif-dependent genetic variations of TF-DNA bindings of
breast cancer risk-associated TFs. Genomic annotation of the 22
identified TFs’ binding sites revealed that they are generally sig-
nificantly enriched in intragenic regions. TFs such as HAE2F1,
PML, FOXM1, and JUND showed proximal promoter binding
patterns, while other TFs such as FOXA1, ESR1, and GATA3 and
the enhancer marker P300 showed distal binding patterns
(Fig. 1f). We performed motif enrichment analysis based on the
ChIP-seq binding regions for each TF (see “Methods” section).
We observed a significantly increased proportion of the host
motifs for 13 TFs, with the top five TFs being FOXA1 (63%), AR
(52.1%), CEBPB (48.4%), FOSL2 (47.4%), and GATA3 (44.7%)
(Fig. 1g). The dominant motif of FOXA1 was particularly enri-
ched in other TFs, suggesting it may interact with other TFs to
co-occupy binding sites of cis-regulatory elements (Fig. 1g). To
further illustrate the effects of genetic variations of TF-DNA
bindings in a motif-dependent manner, we analyzed their asso-
ciations with breast cancer risk stratified by motif status (presence
of the host motif, non-host motif, and no known motifs) (see
“Methods” section). Overall, we found that the associations of
breast cancer risk with TFs were particularly evident with the host
or known-enriched motifs (Fig. 1h and Supplementary Table 2).

Genetic variations of TF-DNA bindings of FOXA1 and co-
factors driving breast cancer susceptibility. To investigate whe-
ther genetic variations of TF-DNA bindings of multiple core TFs
conferred breast cancer risk more than a single TF, we first analyzed

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25670-9

2 NATURE COMMUNICATIONS |         (2021) 12:5318 | https://doi.org/10.1038/s41467-021-25670-9 | www.nature.com/naturecommunications

http://cistrome.org/
www.nature.com/naturecommunications


co-occupied binding regions of the identified 22 risk-associated TFs
(see “Methods” section). We observed a substantial proportion of
genetic variants located in co-occupied binding sites (Fig. 2a and
Supplementary Data 2). Pair-wise analyses among the 22 TFs showed
significant interactions at P < 0.0002 (0.05/231 possible TF pairs from
22 TFs) among 15 TFs. In general, the associations of breast cancer
risk with genetic variants co-occupied by two TFs were significantly

stronger than those occupied by a single TF, as compared with
genetic variants not occupied by any TFs. The AR-PML pair was an
exception, where the associations for genetic variants co-occupied by
this TF pair were weaker (Supplementary Data 2). We observed that
the top five strongest TF co-occupancy pairs associated with breast
cancer risk were FOXA1+ E2F1, FOXA1+NR2F2, FOXA1+
ESR1, FOXA1+ SIN3, and FOXA1+TCF12 (Fig. 2a, b and
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Supplementary Data 2). The interaction effects on breast cancer risk
of these five TF pairs were all highly significant (P < 1 × 10−5;
Supplementary Data 2).

We then investigated the associations of breast cancer risk with
core TF-DNA bindings of three TFs. FOXA1 showed particularly
significant interactions with other TF pairs. The associations of
breast cancer risk for ESR1-E2F1, ESR1-TCF12, TCF12-TLE3,
and SIN3-TLE3 pairs were significantly stronger in loci also
occupied by FOXA1 (P < 1 ×10−5; Fig. 3a, b and Supplementary
Table 3). The genetic variants co-occupied by three of these TFs
were clustered in the peak center within each of the co-occupied
TFs, supporting they may play disruptive roles in the TF-DNA
binding (Fig. 3c). To examine whether these genetic variants may
alter TF-DNA binding affinities via a motif-dependent mechan-
ism, we further performed motif enrichment analysis within
fragments of 50, 100, and 200 bp (centered with genetic variants)
for the regions co-occupied by FOXA1 and two co-factors. We
observed that 5–10% of the most over-represented FOXA1 motifs
(10 bps) were presented in these fragments of 50 bp, indicating
the genetic variants within motifs may directly lead to the
disruption of these motifs (motif-dependent model) (Fig. 3d,
P < 1 × 10−50 for all). We observed a 15–30% proportion of the
FOXA1 motif in the fragments of 100 bp and 200 bp (two or
three-fold enrichment compared to the fragments of 50 bp),
implying the motif-independent model of these genetic variants
may also play a significant role in affecting TF-DNA binding
affinities (Fig. 3d, P < 1 × 10−50 for all). These findings provide
evidence that genetic variations of TF-DNA binding from the
pioneer factor FOXA1 and co-factors may control the core
transcriptional regulatory circuitry, and confer breast cancer
susceptibility.

We further analyzed the correlations of TFs based on gene-
expression profiles in normal breast tissue from Genotype-Tissue
Expression (GTEx) data. We observed a large number of highly
correlated TFs (Fig. 3e). To evaluate the association of breast
cancer risk with genetic variations of multiple TFs, we defined a
TF score as the total number of TF-DNA bindings of the 22
identified TFs (Fig. 3f, Supplementary Table 4, and see “Methods”
section). Our results showed that higher TF scores were
associated with higher breast cancer risk with a linear trend.
Stratified by FOXA1, the linear associations between breast
cancer risk and TF scores of the other 21 TFs were significantly
stronger in genetic variants occupied by FOXA1 than those not
occupied by FOXA1 (P for interaction = 1.2 × 10−18; Fig. 3g and
Supplementary Table 4).

Genetic variations of TF colocalizing with chromatin features
associated with breast cancer risk. We evaluated the associations
of breast cancer risk with chromatin features (defined as chro-
matin states annotated from ChromHMM19) in human mam-
mary epithelial cells (HMEC, Roadmap E027) and myoepithelial
primary cells (Roadmap E028) (see “Methods” section).

Compared with quiescent/low chromatin features, we consistently
observed in both cell lines that genetic variants located in
enhancers, flanking active transcription start sites (TSS), and
strong or weak transcription sites were associated with sig-
nificantly higher breast cancer risk, while genetic variants located
in heterochromatin were associated with significantly lower breast
cancer risk (Fig. 4a–c and Supplementary Data 3). To further
evaluate whether the effects of TF occupancies are influenced by
colocalization of chromatin features, we analyzed the interactions
of chromatin features and TF scores (categorized as 0 TF, 1–5
TFs, and 6–22 TFs) on breast cancer risk. We found that higher
breast cancer risk associated with enhancers and strong/weak
transcriptions were mainly in loci with low TF scores, while lower
breast cancer risk associated with heterochromatin were mainly
in loci with high TF scores, with significant interactions (P = 6 ×
10−5; Fig. 4d; Supplementary Data 3).

Discovery of putative susceptibility genes with TWAS analysis.
We built gene-expression prediction models using only putative
regulatory genetic variants (n = 68,039) located in the binding
sites of the 22 identified risk-associated TFs with reported
P < 0.01 by the BCAC GWAS data (see “Methods” section). Even
though we only used these putative regulatory genetic variants,
we were able to predict gene expressions at R2 > 0.01 for 7538
genes using data from GTEx, which is only slightly less than the
total number (n = 9109) of predicted genes using all genetic
variants in previous breast cancer TWAS20. We further focused
solely on genes that can be predicted by the same set of local
genetic variants from either of The Cancer Genome Atlas
(TCGA) or the Molecular Taxonomy of Breast Cancer Interna-
tional Consortium (METABRIC) at R2 > 0.01 (Fig. 5a; see
“Methods” section). By applying the models to BCAC GWAS
data, we identified 82 genes with predicted expressions that were
associated with breast cancer risk at P < 1 × 10−5, with 73 genes
reaching P < 5 × 10−6 at a Bonferroni-corrected significance level,
as applied in previous breast cancer TWAS in which 48 genes was
identified using regular TWAS. Specifically, we identified 27 sig-
nificant genes located in regions not yet identified by GWAS21

(1 Mb away; Fig. 5b; Supplementary Data 4). In addition, we
uncovered 25 significant putative breast cancer risk genes in
known GWAS loci that had not been previously reported (Fig. 5b
and Supplementary Data 4).

We further explored the functional roles of the 82 TWAS-
identified genes using CRISPR silencing data from gene
essentiality screens in 34 breast-relevant cell lines (see “Methods”
section)22. Using similar cutoffs of median CERES Score < −0.5
in the above cells, following previous literature22,23, we discovered
seven previously unreported genes (CDC7, CSNK2B, VHL,
SNUPN, IFITM3, GMPPB, and NOL12) and four previously
reported genes (ELL, RPS23, NSUN4, and COX11), which showed
evidence of essentiality on cell proliferation (Fig. 5c). Overall, we
observed that a total of 46 genes (56%) showed a trend of

Fig. 1 Overview of the developed analytic framework and discovery of risk-associated TFs in breast cancer. a A flow chart to illustrate the integrative
analysis of ChIP-seq data (n = 113) and GWAS summary statistics of genetic variants data (n = 11 million) for breast cancer. b Barplots showing the numbers of
detected binding peaks for each TF ChIP-seq data set in breast cancer cell lines. c Generalized mixed models constructed to evaluate the associations between
the Chi-squared values (Y) and TF-DNA binding status of genetic variants of each TF, given LD blocks of variants to handle their dependence. dQuantile–quantile
(QQ) plots of the association results of genetic variants in the whole genome (blue) and deflated genome (red) from the BCAC GWAS data. e A total of 22
identified TFs with genetic variation of TF-DNA bindings significantly associated with breast cancer risk. Top panel is for the whole genome and the bottom panel
is for the deflated genome. f Distribution of genomic features (i.e., promoter, enhancer) for peaks of each TF. g Significant proportions of the host motifs and
other known motifs for 13 TFs were detected based on motif enrichment analysis of their ChIP-seq peaks. h Genetic variations of TF-DNA bindings of TFs
associated with breast cancer risk in BCAC data, stratified by motifs (i.e., host, non-host, and no motif). Of the 22 identified TFs, 13 with detected host motifs and
the remaining ones without detected host motifs were presented in the top and bottom panels, respectively.
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essentiality on cell proliferation, at P < 6.2 × 10−4, a Bonferroni-
corrected significance level. Notably, many of these previously
unidentified breast cancer susceptibility genes, such as GSTM424,
GSTM125, HSF226, DNAJC1527, SNUPN28, DGKQ29, VHL30,
CHURC131, CBS32, CSNK2B33, CDC734, IDUA35, and IFIT236

are involved in cancer biology.

FOXA1 and co-factors form a core TF-transcriptional network
regulating breast cancer susceptibility genes. Using TWAS-
identified genes, we investigated the TF-DNA bindings of
genetic variants that were predictors for the expressions of each
gene. We observed that these putative susceptibility genes were
co-regulated by multiple TFs. Specifically, most of these genes
(78 out of 82) were shown to be regulated by at least five TFs,
with the exception of SLC6A12, CASP8, DGKQ, and KLHDC7A
(Fig. 5d). Of note, we observed that the three previously reported

with experimental verification (SSBP4, MRPS30, and ATG10)
were all co-occupied by at least 10 TFs37. Of the identified 22
TFs, 18 were observed to likely regulate at least 50% of these
putative susceptibility genes, except for the TFs PML (49%),
TCF7L2 (41%), ZNF217 (28%), and histone acetyltransferase
P300 (38%). Of particular interest, these putative susceptibility
genes were mostly regulated by three known master regulators:
FOXA1 (61%), GATA3 (80%), and ESR1 (74%). To further
verify that these genes were regulated by these three TFs, we
analyzed gene-expression data from knockdown (FOXA1 and
ESR1) and over-expression (GATA3) experiments in breast
cancer cell lines (see “Methods” section). Our results showed
that TWAS-identified genes were significantly differentially
expressed compared with the background genes, supporting
that they were regulated by FOXA1, ESR1, and GATA3
(Fig. 5e–g).
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Discussion
Genetic studies over the past decades, including our own studies,
have identified multiple candidate susceptibility genes for GWAS-
identified risk loci through the integrative analyses of eQTL and
GWAS data9,37–44. However, the underlying regulatory
mechanisms involving specific TFs and functional genetic var-
iants for identified susceptibility genes remained unclear. Our
established landscape of TF-DNA bindings of risk-associated TFs
and TF-based regulatory elements (i.e., together with chromatin

features) provide additional insights into TF-mediated gene reg-
ulation for breast cancer genetic susceptibility. In particular, the
integration analysis of those putative regulator genetic variants
occupied by risk-associated TFs with gene-expression data may
improve the discovery of causative genes, with evidential support
by the potential regulatory mechanisms. Thus, our approaches
and findings may help overcome the challenges of pleiotropy and
linkage scenarios of current statistical approaches for suscept-
ibility gene discovery44,45. In regular TWAS approaches, the
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Fig. 4 TFs colocalizing with chromatin features associated with breast cancer risk. a Distribution of chromatin features annotated from chromatin states
using the ChromHMM tool in breast human mammary epithelial cell (HMEC). Different colors denotes different chromatin states. b Mixed random
intercept model constructed to evaluate associations of breast cancer risk with chromatin states using formula (1) and its interaction with TF-occupancy
score using formula (2). c Barplots show the association of breast cancer risk with each chromatin feature (upper panel for P-values and lower panel for
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prediction accuracy of the prediction model with cis-genetic
variants could be low or compromised if they occur in non-
regulatory elements (i.e., not in LD with regulatory variants), or if
they disrupt binding sites of non-transcribed TFs in target tissues.
In addition, LD among genetic variants used in the gene pre-
diction models induces significant gene-trait associations at
nearby non-causal genes in the region, leading to false-positive

errors. We demonstrated that TWAS analysis using genetic var-
iants located in binding sites of risk-associated TFs significantly
improved the detection of breast cancer susceptibility genes. Of
note, a total of 1815 unique genetic variants were included in the
gene-expression prediction models for the 82 TWAS-identified
genes. Of them, 1345 (74%) were annotated within either pro-
moter or enhancer activity regions (Supplementary Data 5; see
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“Methods” section). We found that 58 (71%) were the closest
genes for at least one genetic variant included in a prediction
model, including 42 genes that are most likely proximally regu-
lated by putative functional genetic variants with promoter
activities (Supplementary Data 5). We found an additional 16
genes that showed evidence of distal regulations by putative
functional genetic variants via promoter-enhancer interactions
(Supplementary Data 5). Taken together, these 74 genes (90%)
showed evidence of regulations by putative functional genetic
variants via proximal promoter or distal enhancer–promoter
interactions, suggesting they were identified target genes for
putative regulatory genetic variants.

We compared our approach with the existing approach for
partitioning heritability developed by Finucane and colleagues14.
We conducted stratified LD score regression to analyze parti-
tioning heritability of TF-based functional categories of the gen-
ome. We selected 40 unique TFs from the 113 TF Chip-seq data
sets to define the functional categories, including 22 of the
identified breast cancer risk-related TFs. The results from the LD
score regression are generally consistent with the results with the
generalized mixed models (Supplementary Fig. 1). Of the 22
identified TFs, we observed that 17 TFs reached P < 1 × 10−4, the
significance cutoff. However, the other five TFs failed to reach the
significance level. On the other hand, among the 18 non-
significant TFs in our analysis using mixed models, two TFs
(MAX and RXRA) reached the significance level at P < 1 × 10−4.
By comparison, the results from the mixed models are generally
more significant than those from the LD score regression. The
most important TFs for breast cancer, such as FOXA1 and ESR1,
are among the most significant results from the mixed model but
less evident in the results from the LD score regression.

It is generally believed that genetic variants located in enhan-
cers and promoters have stronger associations with breast cancer
risk than those located elsewhere, which is supported by our
findings using data from chromatin states (Fig. 3 and Supple-
mentary Data 3). In addition, we observed significant interactions
between chromatin features and TF scores, with higher TF scores
of variants located in enhancers and promoters associated with
lower breast cancer risk. These findings provide additional insight
into understanding the interplay between TFs and cis-regulatory
elements, which play diverse roles in contributing to the risk of
breast cancers.

A limitation of this study is that while the summary statistics of
GWAS used in our study were derived from the study partici-
pants from all breast cancer subtypes, TF ChIP-seq data were
primarily from cell lines of ER+ breast cancer (e.g., MCF7) and
ChIP-seq data from cell lines of ER− breast cancer were limited.
However, this limitation would not affect our main results and
conclusions, because (i) ER+ cases constitute the majority (about
80%) of breast cancer and (ii) although binding sites of TFs may
slightly vary between ER+ and ER− subtype, we found that the
association of breast cancer risk with genetic variations of TF-

bindings remained significant for most of our reported TFs (77%)
even after we used the aggressive pruning strategy to remove all of
the enriched variants which were significantly associated with
breast cancer risk (i.e., deflated genome; Supplementary Table 1).
We further analyzed a subset of genetic variants located in TF-
DNA binding regions with a detected host or known breast
cancer risk-related TF motifs, and we still observed significant
associations of breast cancer risk with the identified TFs (Fig. 1h).
Our findings on the association of breast cancer risk with the
identified TFs are robust. Future studies to analyze epigenome
profiles and GWAS data in specific breast cancer subtypes are
warranted to identify and differentiate TFs for the risk of specific
subtypes of breast cancer.

In summary, our study established the landscape of genetic
variations for TF-DNA bindings in association with breast cancer
risk by identifying 22 breast cancer risk-associated TFs. Genetic
variations occupied by risk-associated TFs are valuable for future
fine-mapping of disease-associated variants and TWAS studies.
Our approaches can be applied to other human cancers and
chronic diseases which have comprehensive ChIP-seq and large-
scale GWAS data. Our approaches and findings can help advance
the general understanding of genetic and molecular mechanisms
underlying human disease and cancer phenotypes.

Methods
Data sets. Summary statistics of GWAS data for breast cancer were downloaded
from the BCAC. The BCAC is an international, multidisciplinary consortium
designed to identify genetic susceptibility factors that are related to the risk of
breast cancer. The BCAC have generated GWAS data for a total of 122,977 cases
and 105,974 controls from European descendants.

For TCGA data, we used RNA-seq and copy number alteration data
downloaded from cBioPortal. We used genetic variants data genotyped by the
Affymetrix SNP 6.0 from TCGA’s data portal. Genotype data together with
matched gene expressions, somatic copy number alterations in 536 tumor tissue
samples from the TCGA were included in this analysis. In the GTEx release 6, there
are 85 breast normal tissue samples that were profiled by RNA-seq and the
Illumina OMNI 2.5M or 5M SNP Array. We downloaded both genotype and gene-
expression data from these samples. Genotype data were processed according to the
GTEx protocol. In brief, we excluded variants with a call rate <98%, with
differential missingness between the two array experiments (5 M/2.5 M Arrays),
with Hardy–Weinberg equilibrium P-value < 10−6 (among subjects of European
ancestry) or showing batch effects. The genotype data were imputed to the
Haplotype Reference Consortium reference panel using Minimac3 for imputation.
We only used variants with high imputation quality (R2 ≥ 0.8), minor allele
frequency ≥ 0.05, and those included in the HapMap Phase 2 version for expression
prediction model building. For data from the METABRIC, we downloaded
normalized gene expression and somatic copy alteration data from the cBioPortal.
Genetic variant data, genotyped using array-based Affymetrix SNP 6.0 in a total of
1992 samples, were downloaded from EBI (EGAD00010000164). A total of 1891
tumor tissue samples with matched gene expressions, somatic copy number
alterations, and genetic variants data from the METABRIC were included in this
analysis.

We systematically searched ChIP-seq data of TFs generated in breast cancer cell
lines from ENCODE, the Cistrome database, Gene Expression Omnibus (GEO),
and literature (Supplementary Data 1). After evaluating their quality control (QC)
in previous publications, we collected 113 ChIP-seq data sets (corresponding to 40
TFs) with high qualities for our downstream analyses.

Fig. 5 TWAS analysis using an improved model building and core TF-transcriptional network regulating the identified susceptibility genes formed by
FOXA1 and co-factors. a Flow chart to illustrate the TWAS analysis using the improved model building based on putative regulatory variants occupied by
the identified 22 risk-associated TFs. b Barplots show association of breast cancer risk with TWAS-identified genes, separated by previously unidentified
ones: far away GWAS loci (>1Mb) and within GWAS loci (<1Mb), and previously reported ones. c Boxplot shows TWAS-identified genes effects on cell
proliferation using experimental data from CRISPR (Avana) public 20Q3. A total of 11 genes, including seven previously unidentified (left panel) and four
previously reported ones (right panel) showed evidence of essentiality on cell proliferation based on a cutoff of median CERES values <−0.5. d The TWAS-
identified genes regulated by TF networks based on the putative regulatory variants occupied by the identified TFs. e–g Boxplots show that TWAS-
identified genes had higher folds of changes than non-TWAS-identified genes, based on gene-expression data generated by FOXA1 (e), ESR1 (f), and
GATA3 (g) silence/over-expression and control breast cancer cells. In the boxplots shown in these figures, the whiskers denote the range, the boxes
denote the interquartile range; the middle bars in c or middle white points in e–g denote the median, and the violin shapes in e–g represent the data
distribution. The two-sided nominal P-values shown in e–g were derived from the Wilcoxon-rank sum test.
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ChIP-seq data analysis. ChIP-seq data generated from previous studies were
listed in Supplementary Data 1. The raw sequencing reads from TF and matched
input DNA (if available) were mapped to the human reference genome (hg19)
using the Burrows–Wheeler Aligner (BWA) meme program (version 0.7.9a)46. The
mapped BAM files were further used for the downstream peak calling and density
signal visuals using the Integrative Genomics Viewer (IGV, version 2.9) tool. We
applied the MACS tool (version 1.4) to identify binding regions (i.e., peaks) of each
TF. Binding regions were identified using a stringent criterion at a score >30. We
further evaluated the global binding occupancy for each TF in the human genome
using the tool ChIPseeker47. Specifically, we calculated the frequencies of the
identified peaks in the proximal promoter (≤1 kb of TSS), Promoter (1–2 kb of
TSS), Promoter (2–3 kb of TSS), 5′ UTR, 3′ UTR, 1st Exon, Other Exon, 1st Intron,
Other Intron, Downstream, and Distal Intergenic regions.

Motif enrichment analysis. We used HOMER software48 for motif analysis based
on the peak files (“summits.bed” file) generated from the ChIP-seq data analysis by
MACS. We extracted DNA sequences of 250 bp regions from the center of each
peak. The findMotifsGenome.pl script in HOMER was used to discover motifs for
each peak. The enrichment of a motif in TF peaks was then calculated as the ratio
of the motif occurrence frequency in TF peaks to its corresponding frequency in
background sequences and the significance was calculated based on the binomial
distribution. Details in enrichment analysis have been described (http://
homer.ucsd.edu/homer/motif/index.html). In our analysis, we reported known
motifs based on the motif collections including JASPAR which was described on
the HOMER website (http://homer.ucsd.edu/homer/motif/motifDatabase.html).
Similarly, we also conducted motif enrichment analysis for flanking regions on
genetic variants of interests (i.e., ±25, ±50, ±100, and ±250 bp). The percentage and
significance of known enriched motifs were reported for each set of fragments.

Generalized mixed models. We used generalized mixed models to account for
variant correlation within LD blocks. Because Chi-square values are strictly positive,
generalized mixed models with errors from a gamma distribution should be used. In
this study with such a large sample size, generalized mixed models with a Gaussian
error term are also appropriate. We used both approaches in the analyses and found
similar results. We reported the results with the latter approach for easier interpretation.
We defined LD blocks using non-overlapping segments of 100 kb (a similar result with
500 kb). We used generalized mixed models given LD blocks to investigate genetic
variations of TF-DNA bindings associated with cancer risk, which was measured with
both continuous Chi-square values reported in GWAS data and binary GWAS p-values
cut at a certain threshold (e.g., P < 5 × 10−8).

BCAC GWAS summary data were highly enriched with genetic variants with
large Chi-square and small P-values. We generated a “deflated” genome based on a
random uniform distribution of GWAS P-values, which removed many genetic
variants with small P-values for breast cancer risk in each block. In this way, we
were able to evaluate the enrichment of TFs in potential breast cancer risk loci with
a conservative approach.

To investigate associations of breast cancer risk with variations of TF-DNA
binding by a single TF (Eq. 1) or multiple TFs (Eq. 2), we used the above-proposed
generalized mixed model approach. The generalized mixed models have the forms:

Yij ¼ β0 þ β1TF1ij þ β2TF2ij þ β3TF1ij ´TF2ij þ Vi þ εij ð2Þ
In Eq. 2, Yij is the Chi-square value for jth variant in ith LD block; β0 is the

fixed intercept, β1, and β2 are the fixed slopes for the main effect of TFij , β3 is the
fixed effect of the interaction term for two TFs, Vi is the random intercept for ith
LD-block, and εij is a Gaussian error term. The interactions of TFs and chromatin
features were also evaluated using a similar approach.

We analyzed all 40 TFs from the 113 ChIP-seq data sets generated in breast cancer
cell lines to evaluate their associations with breast cancer risk. We identified
22 significant TFs with P≤ 1 × 10−4, which reached the Bonferroni-correction threshold
even though the number of independent tests was 113 (0.05/113= 4.4e−4). The smallest
P-value among other TFs was 3.7e−3, which did not reach the Bonferroni-correction
threshold even though the number of independent tests was only 14. Based on this
consideration, we decided to use the stringent P≤ 1 × 10−4 to define the significant TFs.
We observed comparable association significances for the same TF in multiple cell lines,
as a majority of TF occupancies overlap across these cells. We chose the cell type with the
most significant association and used the data from the cell-type-specific TF occupancy
for our downstream analyses. Based on these analyses, we were able to evaluate the
effects of co-occupancy of TFs and interactions of TF-chromatin features on breast
cancer risk and provided a landscape of genome-wide variations of cancer-relevant TF-
DNA bindings.

Gene-expression prediction model building. Genetic and transcriptome data
from breast normal tissue samples from GTEx, and breast cancer tumor tissue
samples from TCGA and METABRIC were used to build gene-expression pre-
diction models in this study. Data processing for all data sets was described in our
previous study37. In brief, for genotype data, the genetic variants data were imputed
using the reference genome from the 1000 Genomes project with the Minimac
tool49, implemented in the Michigan Imputation server. Only common genetic
variants (minor allele frequency > 0.05) with high imputation quality (R2 > 0.3)

were included. Genetic variants with a call rate < 98%, with a Hardy–Weinberg
equilibrium P < 10−6 or showing batch differences were excluded. Principal
component analysis (PCA) was conducted using EIGENSTRAT50 to generate top
PCs from the genotype data. For gene-expression data, expression levels of each
gene were measured using reads per kilobase per million (RPKM). We performed
data QC and normalization processing by filtering low-expressed genes, log2
transforming, and Robust Multichip Average (RMA). We further performed rank-
based inverse normal transformation for gene-expression levels across all samples.
We performed a probabilistic estimation of expression residuals (PEER) analysis to
adjust for batch differences and other potential confounding factors51 for down-
stream prediction model building. Expression levels of pseudogenes were not
included in our analysis because of concerns for potential inaccurate
measurements52.

We trained the gene-expression prediction model by flanking genetic variants
(flanking ±1Mb region) using an elastic-net approach. For each gene, the gene-
expression level was regressed on the number of effect alleles (0–2) for each genetic
variant with adjustment for top PCs, sex, age, potential batch effects, and other
potential confounding factors (PEERs). For data from breast cancer tumor tissues
in TCGA and METABRIC, we have additionally adjusted CNA in the models. We
only used approximately 68k genetic variants with reported GWAS P < 0.01 and
that were occupied by any of the 22 identified TFs. Prediction model performance
was assessed using 10-fold cross-validation and the explained variance (R2).

Association analyses between predicted gene expression and breast cancer
risk. To identify susceptibility genes for breast cancer risk, we applied the weight
matrix obtained from the gene prediction models to the summary statistics from
the BCAC GWAS data set using the MetaXcan tool53. The MetaXcan method,
described elsewhere20,54, was used for association analyses.

Zg � ∑
l2Modelg

wlg
σ̂ l
σ̂g

β̂l
seðβ̂lÞ

ð3Þ

In Eq. 3, the Z-score was used to estimate the association between predicted
gene expression and breast cancer risk. Here, wlg is the weight of genetic variant l

for predicting the expression of gene g. β̂l and seðβ̂lÞ are the GWAS-reported
regression coefficients, and its standard error for variant l, and σ̂ l and σ̂g are the
estimated variances of variant l and the predicted expression of gene g; respectively.

We conducted the association analyses separately using gene-expression data from
GTEx, TCGA, or METABRIC. The genes significantly associated with breast cancer risk
were identified based on the criteria: R2 > 0.01 in two of these three gene-expression
data sets and minimum P-values from the three data sets <1 × 10−5.

ChromHMM annotation and chromatin–chromatin interaction data analysis.
Functional annotation was evaluated using epigenetic data from both ENCODE
and Roadmap projects. For each genetic variant, we investigated whether variants
were mapped to functional regions (i.e., promoter or enhancer) using chromatin
states annotation in HMEC (Roadmap E028 cell) and myoepithelial primary cells
(Roadmap E027 cell) and the database HaploReg v455. In addition, experimentally
derived chromatin interactions generated by Hi-C, ChIA-PET, and IM-PET were
collected from the 4DGenome database56. Additional chromatin interactions data
from breast cancer cells were also analyzed57. To further analyze
chromatin–chromatin interactions between the regions for functional genetic
variants and promoter regions of the identified candidate susceptibility genes, we
examined whether functional genetic variants were mapped to ±2 kb flanking
regions of the TSS to determine their chromatin–chromatin interactions.

Effect of gene silencing on cell proliferation using data from CRISPR–Cas9
essentiality screens in breast relevant cells. To investigate the effect of an
individual gene on essentiality for proliferation and survival of cancer cells, we
downloaded two comprehensive data sets including “sample_info.csv” and
“Achilles_gene_effect.csv” from the DepMap portal (https://depmap.org/portal/).
These data provided estimated gene-dependency levels from CRISPR–Cas9
essentiality screens for a total 18,119 genes using a computational method,
CERES22. For each gene, we tested its significance on cell proliferation based on the
count of negative CERES values in a total of 34 breast-relevant cells using the
Binomial test. The median CERES value of the 34 breast-relevant cells was also
calculated for each gene. The cutoff of CERES value = −0.5 was used to show a
gene’s evidence of essentiality22,23.

Knockdown experiment data for the TF FOXA1, ESR1, and GATA3. To
investigate genes regulated by TFs FOXA1, ESR1, and GATA3, we analyzed gene-
expression data from TF knockdown (FOXA1 and ESR1) and over-expression
(GATA3) experiments in breast cancer cell lines from previous literature. Gene-
expression data from FOXA1 knockdown experiments in breast cancer MCF7 cells
were downloaded from NCBI using accession number GSE25315, which included
two small-interfering (si) RNAs to silence FOXA1 with three replicates: (i) si-
FOXA1 vs si-Control and vehicle, and (ii) si-FoxA1 and si-Control and ESR1.
Gene-expression data from small hairpin (shRNA) plasmid transfection to silence
ESR1 in MCF7 and over-expression for GATA3 in MDA-MB-231 cell lines with
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three replicates for each were downloaded from NCBI using accession numbers
GSE27473 and GSE24249, respectively. We analyzed the normalized gene-
expression data and calculated the fold change of each gene using the mean values
of biological replicates between silence/over-expression treated cells and control
cells. To evaluate whether TWAS-identified genes were distinct from transcriptome
background genes, Wilcoxon signed-rank test was used to compare the fold change
of expression between these two gene subsets.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Summary statistics of GWAS data for breast cancer were downloaded from the BCAC
website (http://apps.ccge.medschl.cam.ac.uk/consortia/bcac/). ChIP-seq data in breast
cancer cell lines were collected from the ENCODE (https://www.encodeproject.org/) and
the Cistrome database (http://cistrome.org/) (accession numbers described in
Supplementary Data 1). Chromatin states annotation in HMEC (Roadmap E028 cell)
and myoepithelial primary cells (Roadmap E027 cell) can be accessed from Roadmap
Project (http://www.roadmapepigenomics.org/). Gene expression and genotype data in
breast cancer were collected from the GTEx (https://gtexportal.org/home/), TCGA
(https://portal.gdc.cancer.gov/), cBioPortal (https://www.cbioportal.org/), and the
METABRIC (https://ega-archive.org/studies/EGAS00000000083). To investigate the
effect of an individual gene on essentiality for proliferation and survival of cancer cells,
we collected two comprehensive data sets including “sample_info.csv” and
“Achilles_gene_effect.csv” from the DepMap portal (https://depmap.org/portal/). Gene-
expression data from FOXA1 knockdown experiments in breast cancer MCF7 cells were
downloaded from NCBI using accession number GSE25315. Gene-expression data from
shRNA plasmid transfection to silence ESR1 in MCF7 and over-expression for GATA3
in MDA-MB-231 cell lines were downloaded from NCBI using accession numbers
GSE27473 and GSE24249, respectively. The remaining data are available within the
Article, Supplementary Information, or Source Data file.

Code availability
The developed pipeline and main source R codes that are used in this work are available
from Github: https://github.com/XingyiGuo/BC-TFvariants/. The basic computer system
requirements include Unix operating system environment, 15–20 GB memory, and R
packages (data.table and lme4). It takes about 5 min to run one mixed model for one TF
based on our Amazon Web Services (AWS) EC2 machine with m5.24xlarge (96 vCPU
and 384 G memory).
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