Abstract
Monolayer transition metal dichalcogenide crystals (TMDCs) hold great promise for semiconductor optoelectronics because their bound electronhole pairs (excitons) are stable at room temperature and interact strongly with light. When TMDCs are embedded in an optical microcavity, excitons can hybridise with cavity photons to form exciton polaritons, which inherit useful properties from their constituents. The ability to manipulate and trap polaritons on a microchip is critical for applications. Here, we create a nontrivial potential landscape for polaritons in monolayer WS_{2}, and demonstrate their trapping and ballistic propagation across tens of micrometers. We show that the effects of dielectric disorder, which restrict the diffusion of WS_{2} excitons and broaden their spectral resonance, are dramatically reduced for polaritons, leading to motional narrowing and preserved partial coherence. Linewidth narrowing and coherence are further enhanced in the trap. Our results demonstrate the possibility of longrange dissipationless transport and efficient trapping of TMDC polaritons in ambient conditions.
Introduction
Exciton polaritons (polaritons therein) are bosonic quasiparticles consisting of bound excitons and confined photons, which can form in optical microcavities with embedded direct bandgap semiconductors^{1,2} in the strong excitonphoton coupling regime. They inherit large group velocities from their photonic component, and interact due to their excitonic component, which enables them to display collective quantum phenomena^{3,4,5,6,7} in a solid state. A roadmap of polaritonbased optoelectronic devices^{8} suggests multiple applications, including ultralow threshold lasers^{9} and nontraditional computing architectures^{10}. Proofof principle demonstrations of these applications often rely on potential landscape engineering for the polaritons, e.g, by lithographic patterning, which is a wellestablished, advanced technology for epitaxially grown GaAsbased microcavities^{11}. However, due to the low exciton binding energies in III–V semiconductors, their operation is limited to cryogenic temperatures. Although polariton condensation and trapping in engineered potential landscapes at room temperature were demonstrated by utilising semiconductors with large exciton binding energies^{12,13,14,15,16,17,18,19,20,21}, the search for the optimal polaritonic material platforms that combine stability of the samples and low disorder continues^{8}.
Recently, atomically thin, twodimensional (2D) crystals of transition metal dichalcogenides (TMDCs) have emerged as very promising candidates for roomtemperature polaritonics due to the large exciton binding energies and strong lightmatter interactions^{22,23}. Striking properties of TMDC polaritons^{24}, such as the spinvalley Hall effect^{25,26}, the formation of electrically charged polaron polaritons^{27}, and signatures of bosonic condensation^{28,29,30} were explored in these systems.
Here, we demonstrate roomtemperature WS_{2} polaritons under nonresonant continuouswave (cw) optical excitation in a highquality alldielectric monolithic microcavity with a nontrivial potential landscape. This potential landscape allows us to investigate both free and trapped WS_{2} polaritons in the “thermal” regime, below the onset of bosonic condensation. Excitons in monolayer WS_{2} were previously shown to be profoundly affected by dielectric disorder in the environment (Fig. 1a), which causes inhomogeneous linewidth broadening^{31} and reduction of the exciton diffusion coefficient due to scattering^{32}. In contrast, we show that WS_{2} excitons strongly coupled to the cavity photons (Fig. 1b) exhibit dramatic motional narrowing^{33} of the inhomogeneously broadened linewidth, enhanced partial firstorder coherence and longrange transport over tens of micrometers. Moreover, we find that polaritons propagating away from the excitation spot can conserve their total (potential and kinetic) energy, which points to the lowenergy dissipation due to inelastic scattering with phonons and other carriers^{7}. Thus, the polaritons exhibit strong signatures of ballistic transport at room temperature, with the propagation distances mainly limited by the radiative lifetime^{34}. Longrange transport of polaritons enables their trapping in a quasi1D potential well, even when the excitation spot is located tens of micrometers away from the trap.
RESULTS
The alldielectric monolithic microcavity investigated in this work was fabricated with the flipchip approach^{26,35}, by transferring a small piece of a dielectric Bragg reflector (DBR) from a polypropylene carbonate (PPC) film onto a DBR substrate at the position of a mechanically exfoliated WS_{2} monolayer (see Methods section and Supplementary Fig. 1 for details). This fabrication process fully maintains the excitonic properties of monolayer WS_{2} since it does not involve any direct material deposition on top of the monolayer, which can cause strong exciton quenching^{36,37,38}.
Polaritons in a nontrivial potential landscape
When the microcavity is excited by a continuous wave (cw) frequency doubled ND:YAG laser through a transmission maximum of the DBR mirror at λ = 532nm, the intensity map of the photoluminescence (PL) at the position of the monolayer shows strong polariton emission (see Fig. 2a). Measuring the polariton emission spectrum along the dashed line at the angle of approximately zero incidence (see Methods section) allows us to estimate the profile of the potential landscape^{34,39} for polaritons corresponding to zero kinetic energy (inplane momentum k_{∣∣} ≈ 0). This measurement reveals the nontrivial shape (see Fig. 2b) of the potential caused by strong variation of the detuning between the cavity photon energy, E_{C}, and the exciton resonance, E_{X}. This variation is likely caused by an air gap between the DBR chip and the DBR substrate, which leads to a local modification of the cavity length. As a result, the polariton ground state (energy at k_{∣∣} = 0) considerably varies at positions x > 20 μm, and an effective trap for polaritons is formed at x = 30 μm. The trap is a quasi1D potential well strongly elongated in the ydirection perpendicular to the measurement direction, x (see Supplementary Fig. 2). The angle (momentum)resolved PL spectra (dispersion) in the “planar” region with a weak potential gradient (x < 20 μm) (Fig. 2c) and in the effective trap (Fig. 2d) are well fitted with the lower (LP) and upper (UP) polariton branches \({E}_{{{{{{{{\rm{LP/UP}}}}}}}}}=\frac{1}{2}[{E}_{{{{{{{{\rm{X}}}}}}}}}+{E}_{{{{{{{{\rm{C}}}}}}}}}\pm \sqrt{{(2\hslash {{\Omega }})}^{2}+{\delta }^{2}}]\), where δ = E_{X} − E_{C} is the excitonphoton energy detuning, and 2ℏΩ is the Rabi splitting^{1,6}. Therefore, the sample operates in the strong excitonphoton coupling regime at room temperature across its whole area, within a large range of detunings δ ∈ [10, 60] meV. The detuning defines the excitonic fraction of the polariton through the excitonic Hopfield coefficient^{6}, which takes values ∣X^{F}∣^{2} ≈ 0.3 and ∣X^{T}∣^{2} ≈ 0.05 for the free and trapped polaritons, respectively (see Supplementary Fig. 3).
The occupation numbers of the momentum states of free polaritons (at x = 16 μm), with the dispersion shown in Fig. 2c, are reflected in the intensity of the PL profile and can be well described with a model of a fully thermalised polariton gas^{40} (see Supplementary Fig. 4) at room temperature, T = 300 K (see Fig. 2e). In the wellestablished model for the polariton energy relaxation under nonresonant excitation^{7,14,41,42,43,44,45}, polaritons reduce their kinetic energy by inelastic scattering with phonons, excitons, and other polaritons. While the effective interparticle interactions in our structure are weak due to the large binding energies and small Bohr radii of excitons^{46}, the observed thermalisation implies thermal equilibrium of the polariton gas with the environment and efficient polaritonphonon interactions at room temperature. The slight departure towards the higher occupation numbers in Fig. 2e occurs around the inflection point of the polariton dispersion (see Supplementary Fig. 3), referred to as the relaxation bottleneck^{7,47,48}, where the density of states reduces dramatically, the effective mass changes sign, and interaction with phonons becomes less efficient.
Quantisation of the trapped polariton spectrum is highly pronounced in Fig. 2d because the lateral size of the trap in the xdirection (a few micrometers) is comparable to the thermal de Broglie wavelength of polaritons^{49}, \({\lambda }_{{{{{{{{\rm{th}}}}}}}}}=\sqrt{2\pi {\hslash }^{2}{\left({m}_{{{{{{{{\rm{eff}}}}}}}}}{k}_{B}T\right)}^{1}}\)^{50}, where m_{eff} is the polariton effective mass extracted from the dispersion fits in Fig. 2c, d. At T = 300 K, we obtain for the free and trapped polaritons \(\lambda _{{{{{\rm{th}}}}}}^{{{{{\rm{F}}}}}}=(1.01\pm 0.05)\,\upmu {{\rm{m}}}\) and \(\lambda _{{{{{\rm{th}}}}}}^{{{{{\rm{T}}}}}}=(1.18\pm 0.05)\,\upmu {{\rm{m}}}\), respectively. The ground, first, and second excited states in the trap are clearly occupied, and the energies of these states fit well to the simulation results (see Supplementary Fig. 5).
Motional narrowing of polariton linewidth
To quantify the effect of the dielectric disorder on the WS_{2} polaritons at room temperature, we investigate the PL spectra of both free and trapped polaritons at k_{∣∣} ≈ 0 by employing filtering in kspace (see Methods section), and compare it to the PL spectrum of bare excitons in a WS_{2} monolayer on the same DBR substrate (see Fig. 3a). The high energy tail of the polariton emission arises due to the Boltzmann distribution of the thermalised polaritons, while the low energy tail of the bare exciton emission is mostly due to formation of charged excitons (e.g., trions) and excitons bound by defects. Disregarding the tails, the exciton and lower polaritons peaks are fitted with convoluted Lorentzian and Gaussian distributions (Voigt function), corresponding to the homogeneous and inhomogeneous linewidth broadening, respectively. The homogeneous broadening is mainly determined by the radiative decay of the excitons and excitonphonon interactions^{51}, and the inhomogeneous broadening is largely due to dielectric disorder on the substrate surface, which causes local fluctuations of the exciton binding energies and of the free carrier bandgap^{31}. For the excitons, we extract a total linewidth of ΔE_{X} = (41.5 ± 0.5) meV, with the homogeneous linewidth broadening of \({{\Delta }}{E}_{{{{{{{{\rm{X}}}}}}}}}^{{{{{{{{\rm{H}}}}}}}}}=(17.5\pm 0.3)\,{{{{{{{\rm{meV}}}}}}}}\) and the inhomogeneous linewidth broadening of \({{\Delta }}{E}_{{{{{{{{\rm{X}}}}}}}}}^{{{{{{{{\rm{IH}}}}}}}}}=(31.3\pm 0.2)\,{{{{{{{\rm{meV}}}}}}}}\) within 95% confidence level. The homogeneous linewidth broadening corresponds to \({\gamma }_{{{{{{{{\rm{X}}}}}}}}}^{1}=2\hslash /{{\Delta }}{E}_{{{{{{{{\rm{X}}}}}}}}}^{{{{{{{{\rm{H}}}}}}}}}=\left(75\pm 2\right)\,{{{{{{{\rm{fs}}}}}}}}\), which is in good agreement with the decoherence rate of excitons in a WS_{2} monolayer placed on a highquality SiO_{2} substrate, as determined in the fourwave mixing experiments (see Supplementary Note and Supplementary Fig. 6).
Compared to the excitons, both free and trapped polaritons display much narrower linewidths (see Fig. 3a) of \({{\Delta }}{E}_{{{{{{{{\rm{F}}}}}}}}}=\left(5.2\pm 0.1\right)\,{{{{{{{\rm{meV}}}}}}}}\) and \({{\Delta }}{E}_{{{{{{{{\rm{T}}}}}}}}}=\left(1.20\pm 0.01\right)\,{{{{{{{\rm{meV}}}}}}}}\), respectively. The inhomogeneous broadening is \({{\Delta }}{E}_{{{{{{{{\rm{F}}}}}}}}}^{{{{{{{{\rm{IH}}}}}}}}}=(2.6\pm 0.1)\,{{{{{{{\rm{meV}}}}}}}}\) for free polaritons and is negligible for trapped polaritons, which represents a significant reduction compared to inhomogeneous broadening of excitons (\({{\Delta }}{E}_{{{{{{{{\rm{X}}}}}}}}}^{{{{{{{{\rm{IH}}}}}}}}} \sim 31\,{{{{{{{\rm{meV}}}}}}}}\)). Moreover, the linewidths of the free and trapped lower polaritons are substantially smaller than the theoretically calculated (see Methods section) polariton linewidth (Fig. 3b, black line). The theoretical and the measured linewidths agree well only when the inhomogeneous exciton broadening is completely eliminated from the calculation (Fig. 3b, orange line). This indicates that the effects causing inhomogeneous linewidth broadening are significantly reduced for the WS_{2} excitons strongly coupled to the cavity photons. This socalled motional narrowing is a wellknown effect in quantum well microcavities^{33,52,53}, and was recently observed at cryogenic temperatures for excitons in monolayer MoSe_{2} strongly coupled to cavity photons^{54} and to optical bound states in the continuum^{55}. The motional narrowing occurs due to the size of polaritons, λ_{th}, significantly exceeding the spatial scale of dielectric disorderinduced energy fluctuations^{33}, with a sufficiently strong excitonphoton coupling^{53}. The strong reduction of inhomogeneous broadening observed here for trapped and free polaritons at room temperature is an order of magnitude larger than ~1 meV motional narrowing previously observed in quantum well based semiconductor microcavities at cryogenic temperatures^{33}.
Extended range of partial macroscopic coherence
In addition to the inhomogeneous linewidth broadening, dielectric disorder causes rapid dephasing of WS_{2} excitons. Combined with decoherence caused by radiative losses and scattering with phonons and other carriers (see Supplementary Note), this leads to loss of the macroscopic phase coherence. To compare the timescales of macroscopic decoherence exhibited by the excitons and polaritons, we perform the coherence measurements with a modified Michelson interferometer (see Fig. 3c)^{3}. In this configuration, overlapping the original image I_{o} with its flipped and timedelayed copy I_{f} causes interference fringes, which can be normalised as (see Methods section):
where r is the distance from the axis of the retroreflector, τ is the time delay between the interferometer arms, and I_{t} is the total intensity at r and τ (see Methods). The envelope of V(r, − r, τ) (the visibility) is proportional to the absolute value of the firstorder coherence function \(\left{g}^{(1)}(r,\tau )\right\), and therefore a drop in visibility indicates a loss of the macroscopic coherence (see Methods section). For the coherence measurement, we remove the kspace filtering to avoid filter artefacts and employ a spectrometer to compare V(r, −r, τ) of the excitons, free polaritons and trapped polaritons in their lowest energy states. The normalised, spectrally resolved interference pattern of the free polaritons at zero delay τ = 0 is shown in Fig. 3d, together with V(r, −r, τ = 0) and its envelope as a measure for \(\left{g}^{(1)}(r,\tau =0)\right\). The full width at half maximum \({{{{\rm{FWHM}}}}}(\left{g}^{(1)}\right)=\left(1.5\pm 0.1\right)\,\upmu m\) is much larger than the theoretically expected value^{50} for the thermal polariton gas \({\lambda }_{{{{{{{{\rm{th}}}}}}}}}\sqrt{{{{{{{\mathrm{ln}}}}}}}\,2/(4\pi )}\approx 0.24\,{{{{\mu m}}}}\). This indicates that the polaritons can maintain partial macroscopic coherence while rapidly expanding, likely as a result of diminished disorderinduced dephasing and weak interparticle interactions.
The time coherence measurements are performed at τ ≠ 0. Figure 3e shows the envelopes of V(r = 0, τ) for the excitons, free polaritons, and trapped polaritons around their lowest energies, fitted with a secondorder exponential decay function^{56}. We define the time at which V(r = 0, τ) drops to 1/e as the decay time of the visibility τ_{V}. While the absolute values of τ_{V} extracted from the data in Fig. 3e are most likely larger than the actual decay times of macroscopic coherence, due to the spatial resolution of our experimental setup^{50}, their relative values scale with the relative linewidths of the excitons, free polaritons, and trapped polaritons as: \({{\Delta }}{E}_{{{{{{{{\rm{X}}}}}}}}}/{{\Delta }}{E}_{{{{{{{{\rm{F}}}}}}}}}={\tau }_{{{{{{{{\rm{V}}}}}}}}}^{{{{{{{{\rm{F}}}}}}}}}/{\tau }_{{{{{{{{\rm{V}}}}}}}}}^{{{{{{{{\rm{X}}}}}}}}}\approx 8\), and \({{\Delta }}{E}_{{{{{{{{\rm{X}}}}}}}}}/{{\Delta }}{E}_{{{{{{{{\rm{T}}}}}}}}}={\tau }_{{{{{{{{\rm{V}}}}}}}}}^{{{{{{{{\rm{T}}}}}}}}}/{\tau }_{{{{{{{{\rm{V}}}}}}}}}^{{{{{{{{\rm{X}}}}}}}}}\approx 33\), showing that the changes in total linewidths directly correlate with the decay of coherence. Hence, due to the motional narrowing of inhomogeneous linewidth, the macroscopic coherence of the WS_{2} polaritons is barely affected by dielectric disorder and is determined by their radiative lifetime and scattering processes contributing to the homogeneous linewidth broadening.
Longrange polariton transport
Scattering of bare WS_{2} excitons on disorder also strongly reduces their diffusion coefficient and limits their mobility^{32}. In order to contrast the propagation of the WS_{2} polaritons with excitons, we collect the PL at the positions away from the excitation spot (see Methods section). The clear area in Fig. 4a shows the realspace resolved PL spectrum along the dashed line in Fig. 2a, when exciting the sample at x = 4 μm (position 1) and collecting the PL at positions x > 15 μm. Conversely, the clear area in Fig. 4b shows the realspace resolved PL spectrum when the sample is excited at the opposite side of the sample, at x = 30 μm (position 4) and the PL is collected at positions x < 20 μm. Strikingly, regardless of the excitation position, the polaritons travel across the whole monolayer area, both up and down the potential gradient shown in Fig. 2b, which illustrates the longrange propagation of the WS_{2} polaritons exceeding the mean diffusion length of WS_{2} excitons (360 nm^{57}) by orders of magnitude.
By measuring the realspace PL profile when exciting either the microcavity or the bare monolayer WS_{2} with a focused laser spot (at position 2 in Fig. 4a for the microcavity sample), we can quantitatively compare the WS_{2} polariton transport with the diffusion of WS_{2} exciton. Figure 4c shows the emission profiles of the microcavity polaritons, the monolayer excitons, and the laser spot on logarithmic scales. It is clear that the line shape of the polariton PL strongly differs from the approximately Gaussian line profile of the laser and the monolayer PL. This is caused by the Boltzmann distribution of the thermalised polariton gas^{40}, in which the upper polariton branch and the lower polariton branch at higher k_{∣∣} values are well occupied at room temperature (see Fig. 2e). The corresponding modelled PL profile of the polariton gas at T = 300 K (black dashed line in Fig. 4c), expanding with the group velocity and lifetime corresponding to the relaxation bottleneck of the free polaritons (Fig. 2c), qualitatively reproduces the measured profile. The calculations for different temperatures show that the rapid expansion of the polariton gas from the pump spot is promoted by its high temperature (see Supplementary Fig. 4). The extent of the measured profile is larger than the calculated profile most likely due to the higher polariton occupation numbers in the bottleneck region compared to the fully thermalised polariton gas (see Fig. 2b). These results suggest that the bottleneck polaritons, which interact weakly with phonons and possess maximum group velocity (see Supplementary Fig. 3), strongly contribute to the polariton flow. While the exciton PL intensity drops to 1% at Δx ≈ 5 μm, the polariton intensity reaches this level at Δx ≈ 12 μm. For comparison, the laser excitation drops to this intensity level at Δx ≈ 3 μm, and with a (sub)linear relationship between excitation intensity and PL intensity^{58} the transport length of the polaritons in this structure is at least five times larger compared to the excitons. The agreement between the model and experiment in Fig. 4c implies that the transport length of polaritons is mainly limited by their lifetime.
The spatial coherence of the travelling polaritons was investigated by exciting the structure at position 3 in Fig. 4a and measuring the interferogram of the travelling wave packet at position II (see Fig. 4d), i.e., in the trap region. The interference fringes, extracted by removing the Doppler effect, have a substantial spatial extent, and their visibility is similar to the maximum visibility of the interference pattern at the excitation spot (see Fig. 3d and Supplementary Fig. 8). The extent of the spatial coherence can be well explained by the high kinetic energy of the travelling wave packet, and the conservation of the magnitude of the fringe visibility is a direct result of the reduced dephasing and decoherence. This finding further confirms that disorderinduced effects are heavily reduced in the strongly lightmatter coupled system. Moreover, the conservation of partial macroscopic coherence means that inelastic scattering processes are suppressed for the travelling polaritons, implying a strong contribution of the bottleneck polaritons to the polariton flow.
Ballistic transport of polaritons
Finally, we analyse the dispersion of the propagating polaritons by collecting the angleresolved PL spectra from small areas in the real space (see Methods section). In contrast to real spaceresolved spectral imaging (Fig. 4a, b), in which the emitted PL is collected in all directions of the light cone, angleresolved spectral imaging collects the PL signal limited to angles of incidences along the spectrometer slit direction. This allows us to characterise the momentumresolved energy spectrum of the polaritons in one particular direction x, i.e. along the dashed line in Fig. 2a. First, we excite the sample at position 2 and measure PL at positions I and II in Fig. 4a. The spectra (Fig. 4e, f) show that the polaritons are travelling at a constant energy centred at E ≈ 2.003eV (red dashed line in Fig. 4e, f) along the potential gradient, and that their potential energy (with respect to the global minimum) is almost fully converted into kinetic energy (i.e., the energy at k measured with respect to the energy at k = 0). The constant energy of the propagating polaritons approximately coincides with the inflection point of the lower polariton dispersion, which marks the relaxation bottleneck. We attribute this apparent lack of the energy relaxation to weak interparticle and polaritonphonon interactions at the relaxation bottleneck^{7,46}, which results in the reduced energy dissipation in the system. Hence, roomtemperature polaritons in WS_{2} can propagate ballistically over tens of micrometers.
Remarkably, when swapping the excitation and detection positions, i.e. exciting the polaritons at the position of the trap (position 4 in Fig. 4b), and measuring the angleresolved PL spectra at position III in Fig. 4b, we find that the energy of the polaritons moving up the potential hill is approximately the same as the energy of the downhill flow, see Fig. 4g. This effect is also seen in the upper polariton branch, as shown in Supplementary Fig. 7. This uphill flow is due to the highmomenta thermalised polaritons excited in the trap region (Fig. 2d) with abovebarrier kinetic energies. Without energy dissipation, these polaritons efficiently convert their high kinetic energy into potential energy while flowing uphill and populate the planar region of the sample, as observed in Fig. 4b. The absence of backscattering signal at the opposite momentum further confirms that scattering on disorder is negligible.
Despite the constant energy flow along the gradient (xdirection), clear energy relaxation and the resulting occupation of the lowenergy trapped states is visible in the positionresolved spectral image (Fig. 4a, region II), which collects emission from polaritons travelling in all directions, including that orthogonal to the quasi1D trap, i.e. direction y in Fig. 2a. Weak signatures of this relaxation are visible in Fig. 4f, but the signal is stronger for the emission not filtered along x. This indicates that the phononinduced energy relaxation for room temperature polaritons is sufficient to drive the occupation of the lower energy states for polaritons accumulating in the trap. The trap is occupied by polaritons even with the excitation spot is located tens of micrometers away at the opposite side of the monolayer, i.e. at position 1 in Fig. 4a.
Discussion
In summary, we have realised freely moving and trapped WS_{2} polaritons in a nontrivial potential landscape at room temperature. The pronounced motional linewidth narrowing and enhanced macroscopic coherence of the polaritons point to dramatic reduction of the effects of dielectric disorder, which strongly affect the bare exciton dynamics in monolayer TMDCs. The weak effective interparticle and polaritonphonon interactions in the relaxation bottleneck enable the polaritons to travel across tens of micrometers with minimal energy dissipation, and to maintain their partial macroscopic coherence while propagating. These findings elucidate the characteristic features of the dynamics of WS_{2} polaritons at room temperature and the role of dielectric disorder in the TMDC systems strongly coupled to light. The demonstrated longrange ballistic flow and trapping of polaritons in the lowest energy states of a quasi1D potential represent a significant step towards developing methods for manipulating and trapping polariton flow in TMDCbased polaritonic devices.
Methods
Sample fabrication
A DBR chip splintered off a DBR substrate was placed on top of a polypropylenecarbonate (PPC) film^{35}, which was initially spincoated on top of a PDMS stamp supported by a glass slide. The two halves of the SiO_{2} λ/2spacer were deposited by RF magnetron sputtering on top of the DBR chip and a DBR substrate, respectively, to ensure that the photonic field has its maximum at the centre of the microcavity. Further, a mechanically exfoliated monolayer WS_{2} was transferred on top of the DBR substrate. Finally, the cavity was mechanically assembled with a van der Waals stacking stage, at a temperature at which the DBR chip detaches from the PPC film (130 °C).
Experimental setup
The photoluminescence spectra were measured with an inhouse built optical setup, equipped with an array of lenses allowing for realspace (RS) and momentumspace (KS) imaging. The filtering in RS and KS were achieved with an edgefilter and an iris in the respective image planes. RS and KS imaging can be switched by flipping the lens, which images KS, in or out of the beam path. The RS and KS spectra were measured with a spectrometer equipped with a CCDcamera and different spectrometer gratings, with 150, 600, and 1200 lines per mm, allowing for energy resolutions down to 60μeV per pixel. For the coherence measurements, we implemented a modified Michelson interferometer, where one arm is equipped with a retroreflector^{3} that flips the image vertically. The output of the interferometer is fed onto the spectrometer and the interfering images are recorded using a CCD camera. The retroreflector arm is translated using a motorised stage to change the delay between the two arms.
Polariton linewidth
To estimate the polariton linewidth, we calculate the theoretical coherence times in an ideal system for the excitons and for the microcavity photons based on their Gaussian and Lorentzian linewidth contributions^{56}:
Here Δf = ΔE/h. In the strong coupling regime, the polariton coherence time is determined by the exciton and cavity photon coherence times weighted by the excitonic Hopfield coefficient^{6}:
By using the formulas above, we deduct the theoretical values for inhomogenous and homogenous broadening from the theoretical coherence times and obtain for the total linewidth of the resulting Voigt line profiles:
Without inhomogeneous broadening, the polariton linewidth can be directly calculated as:
where ΔE_{C} is the cavity photon linewidth for the microcavity with the quality factor Q ≈ 3000 (see Supplementary Fig. 9).
Interference visibility
The interference image measured by our camera I_{tot} can be written as^{59}:
where κ and ϕ correspond to the fringe frequency and relative phase, respectively. The normalised interferograms presented in this work are calculated using the formula:
The firstorder coherence function is the envelope of the normalised interferogram, as given by:
Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable request.
Change history
06 May 2022
A Correction to this paper has been published: https://doi.org/10.1038/s41467022303838
References
Kavokin, A. V., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2017).
Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled excitonphoton mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).
Kasprzak, J. et al. BoseEinstein condensation of exciton polaritons. Nature 443, 409–414 (2006).
Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. BoseEinstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).
Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).
Deng, H., Haug, H. & Yamamoto, Y. Excitonpolariton BoseEinstein condensation. Rev. Mod. Phys. 82, 1489 (2010).
Byrnes, T., Kim, N. Y. & Yamamoto, Y. Excitonpolariton condensates. Nat. Phys. 10, 803–813 (2014).
Sanvitto, D. & KènaCohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).
Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).
Ballarini, D. et al. Alloptical polariton transistor. Nat. Commun. 4, 1778 (2013).
Schneider, C. et al. Excitonpolariton trapping and potential landscape engineering. Rep. Prog. Phys. 80, 016503 (2016).
Christopoulos, S. et al. Roomtemperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).
Plumhof, J. D., Stöferle, T., Mai, L., Scherf, U. & Mahrt, R. F. Roomtemperature BoseEinstein condensation of cavity excitonpolaritons in a polymer. Nat. Mater. 13, 247–252 (2014).
Li, F. et al. From excitonic to photonic polariton condensate in a ZnObased microcavity. Phys. Rev. Lett. 110, 196406 (2013).
Daskalakis, K. S., Maier, S. A., Murray, R. & KénaCohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–278 (2014).
Lerario, G. et al. Roomtemperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).
Su, R. et al. Room temperature longrange coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018).
Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).
Dusel, M. et al. Room temperature organic excitonpolariton condensate in a lattice. Nat. Commun. 11, 2863 (2020).
Wang, J. et al. Excitonpolariton condensate induced by evaporative cooling in a threedimensionally confined microcavity. Phys. Rev. B 91, 165423 (2015).
Jamadi, O. et al. Edgeemitting polariton laser and amplifier based on a ZnO waveguide. Light Sci. Appl. 7, 82 (2018).
Wang, Q. H., KalantarZadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
Schneider, C., Glazov, M. M., Korn, T., Höfling, S. & Urbaszek, B. Twodimensional semiconductors in the regime of strong lightmatter coupling. Nat. Commun. 9, 2695 (2018).
Liu, X. et al. Strong lightmatter coupling in twodimensional atomic crystals. Nat. Photon. 9, 30–34 (2015).
Bleu, O., Solnyshkov, D. D. & Malpuech, G. Optical valley Hall effect based on transitional metal dichalcogenide cavity polaritons. Phys. Rev. B 96, 165432 (2017).
Lundt, N. et al. Optical valley Hall effect for highly valleycoherent excitonpolaritons in an atomically thin semiconductor. Nat. Nanotechnol. 14, 770–775 (2019).
Sidler, M. et al. Fermi polaronpolaritons in chargetunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2017).
Waldherr, M. et al. Observation of bosonic condensation in a hybrid monolayer MoSe_{2}GaAs microcavity. Nat. Commun. 9, 3286 (2018).
AntonSolanas, C. et al. Bosonic condensation of excitonpolaritons in an atomically thin crystal. Nat. Mater. 20, 1233–1239 (2021).
Zhao, J. et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature. Nano Lett. 21, 3331–3339 (2021).
Raja, A. et al. Dielectric disorder in twodimensional materials. Nat. Nanotechnol. 14, 832–837 (2019).
Zipfel, J. et al. Exciton diffusion in monolayer semiconductors with suppressed disorder. Phys. Rev. B 101, 115430 (2020).
Whittaker, D. M. et al. Motional narrowing in semiconductor microcavities. Phs. Rev. Lett. 77, 23 (1996).
Steger, M. et al. Longrange ballistic motion and coherent flow of longlifetime polaritons. Phys. Rev. B 88, 235314 (2013).
Rupprecht, C. et al. Micromechanical assembly and characterization of highquality FabryPèrot microcavities for the integration of twodimensional materials. Appl. Phys. Lett. 118, 103103 (2021).
Kim, S. Y., Yang, H. I. & Choi, W. Photoluminescence quenching in monolayer transition metal dichalcogenides by Al_{2}O_{3} encapsulation. Appl. Phys. Lett. 113, 133104 (2018).
Wurdack, M. et al. Ultrathin Ga_{2}O_{3} glass: a largescale passivation and protection material for monolayer WS_{2}. Adv. Mater. 3, 2005732 (2021).
Yun, T. et al. Influence of direct deposition of dielectric materials on the optical response of monolayer WS_{2}. arXiv:2010.04381 (2021).
Pieczarka, M. et al. Effect of optically induced potential on the energy of trapped exciton polaritons below the condensation threshold. Phys. Rev. B 100, 085301 (2019).
Lundt, N. et al. Roomtemperature Tammplasmon excitonpolaritons with a WSe_{2} monolayer. Nat. Commun. 7, 13328 (2016).
Butté, R. et al. Transition from strong to weak coupling and the onset of lasing in semiconductor microcavities. Phys. Rev. B 65, 205310 (2002).
Kasprzak, J., Solnyshkov, D. D., André, R., Dang, L. S. & Malpuech, G. Formation of an exciton polariton condensate: thermodynamic versus kinetic regimes. Phys. Rev. Lett. 101, 146404 (2008).
Levrat, J. et al. Condensation phase diagram of cavity polaritons in GaNbased microcavities: experiment and theory. Phys. Rev. B 81, 125305 (2010).
Wouters, M., Liew, T. C. H. & Savona, V. Energy relaxation in onedimensional polariton condensates. Phys. Rev. B 82, 245315 (2010).
Savenko, I. G., Liew, T. C. H. & Shelykh, I. A. Stochastic GrossPitaevskii equation for the dynamical thermalization of BoseEinstein condensates. Phys. Rev. Lett. 110, 127402 (2013).
Shahnazaryan, V., Iorsh, I., Shelykh, I. A. & Kyriienko, O. Excitonexciton interaction in transitionmetal dichalcogenide monolayers. Phys. Rev. B 96, 115409 (2017).
Tassone, F. & Yamamoto, Y. Excitonexciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59, 10830 (1999).
Tartakovskii, A. I. et al. Relaxation bottleneck and its suppression in semiconductor microcavities. Phys. Rev. B 62, R2283 (2000).
Cristofolini, P., Hatzopoulos, Z., Savvidis, P. G. & Baumberg, J. J. Generation of quantized polaritons below the condensation threshold. Phys. Rev. Lett. 121, 067401 (2018).
Damm, T., Dung, D., Vewinger, F., Weitz, M. & Schmitt, J. Firstorder spatial coherence measurements in a thermalized twodimensional photonic quantum gas. Nat. Commun. 8, 158 (2017).
Selig, M. et al. Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides. Nat. Commun. 7, 13279 (2016).
Savona, V., Piermarocchi, C. & Quattropani, A. Microscopic theory of motional narrowing of microcavity polaritons in a disordered potential. Phys. Rev. Lett. 78, 4470 (1997).
Houdré, R., Stanley, R. P. & Ilegems, M. Vacuumfield Rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system. Phys. Rev. A 53, 4 (1996).
Dufferwiel, S. et al. Excitonpolaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 6, 8579 (2015).
Kravtsov, V. et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light. Sci. Appl. 9, 56 (2020).
Reimer, M. E. et al. Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire. Phys. Rev. B 93, 195316 (2016).
Kulig, M. et al. Exciton diffusion and halo effects in monolayer semiconductors. Phys. Rev. Lett. 120, 207401 (2018).
Hoshi, Y. et al. Suppression of excitonexciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides. Phys. Rev. B 95, 241403 (2017).
Askitopoulos, A. et al. Giant increase of temporal coherence in optically trapped polariton condensate. arXiv:1911.08981 (2019).
Acknowledgements
This work was supported by the Australian Research Council (ARC) Centre of Excellence grant CE170100039. We also acknowledge the technical support for sample fabrication from the Australian National Fabrication Facility (ANFF) at its node in the Australian Capital Territory (ACT). M.P. acknowledges support by the Foundation for Polish Science (FNP) in the START programme. C.S. gratefully acknowledges support of the European Research Council (ERC) within the project UnLimit2D (project no. 679288).
Author information
Authors and Affiliations
Contributions
E.A.O. and A.G.T. conceived and guided the research. M.W. designed, characterised and fabricated the microcavity sample. M.W., E.E. and S.K.E. conducted the experiments, and M.W. and S.K.E. analysed the data. All authors contributed to discussion and interpretation of the experimental results. M.W. and S.T. performed theoretical modelling. M.W. and E.A.O. wrote the manuscript with input from all authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Communications thanks Guillaume Malpuech, Anton Nalitov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Wurdack, M., Estrecho, E., Todd, S. et al. Motional narrowing, ballistic transport, and trapping of roomtemperature exciton polaritons in an atomicallythin semiconductor. Nat Commun 12, 5366 (2021). https://doi.org/10.1038/s41467021256567
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467021256567
Further reading

Polariton condensates for classical and quantum computing
Nature Reviews Physics (2022)

Brightening of a dark monolayer semiconductor via strong lightmatter coupling in a cavity
Nature Communications (2022)

Monolayer tungsten disulfide in photonic environment: Angleresolved weak and strong lightmatter coupling
Nano Research (2022)

Spatial coherence of roomtemperature monolayer WSe2 excitonpolaritons in a trap
Nature Communications (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.