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AI enabled sign language recognition and VR space
bidirectional communication using triboelectric
smart glove
Feng Wen1,2,3,5, Zixuan Zhang1,2,3,5, Tianyiyi He1,2,3 & Chengkuo Lee 1,2,3,4✉

Sign language recognition, especially the sentence recognition, is of great significance for

lowering the communication barrier between the hearing/speech impaired and the non-

signers. The general glove solutions, which are employed to detect motions of our dexterous

hands, only achieve recognizing discrete single gestures (i.e., numbers, letters, or words)

instead of sentences, far from satisfying the meet of the signers’ daily communication. Here,

we propose an artificial intelligence enabled sign language recognition and communication

system comprising sensing gloves, deep learning block, and virtual reality interface. Non-

segmentation and segmentation assisted deep learning model achieves the recognition of 50

words and 20 sentences. Significantly, the segmentation approach splits entire sentence

signals into word units. Then the deep learning model recognizes all word elements and

reversely reconstructs and recognizes sentences. Furthermore, new/never-seen sentences

created by new-order word elements recombination can be recognized with an average

correct rate of 86.67%. Finally, the sign language recognition results are projected into virtual

space and translated into text and audio, allowing the remote and bidirectional commu-

nication between signers and non-signers.
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Benefiting from a number of attractive features, such as light
weight, good compliance, and desirable comfortability,
wearable sensors, hold great promise in various applica-

tions spanning from environmental monitoring, personalized
healthcare to soft robotics, and human–machine interaction1–9.
Typical wearable sensors rely on resistive and capacitive
mechanisms for human status tracking and surrounding
sensing10–18. Generally, they need an external power supply to
generate signal excitation, inhibiting their further widespread
deployment. Owing to simple fabrication, wide material choice,
and expeditious dynamic response, the triboelectric nanogen-
erator (TENG)-based wearable sensors19–23, which are recognized
as power-compatible and self-sustainable alternatives, are
increasingly employed for healthcare monitoring, human motion
tracking, human–machine interface (HMI), etc.24–30 since its
invention in 201231. Among them, wearable HMIs are in bur-
geoning demand as a promising advanced solution for achieving
human–machine even human–human (e.g., signers and non-
signers) interaction by virtue of efficient human state tracking. In
addition to the general HMIs using resistive and capacitive
techniques32–37, self-powered triboelectric HMIs are also exten-
sively investigated with different prototypes, such as touchpad,
wrist band, sock, and glove38–46. Particularly, as a promising
paradigm for HMI, the glove can seamlessly detect the multiple
degrees-of-freedom motions of our dexterous hands, holding
great promise for the advanced demands beyond simple control.

Combining the advantages of the glove platform (e.g., con-
formability, intuitiveness, and low cost) and the TENG technique
(e.g., dynamic sensing effect and self-powered capability), many
efforts have been devoted to the development of triboelectric
glove HMI in recent years. For instance, TENG gloves were
extensively demonstrated monitoring finger motions by magni-
tude analysis or pulse counting47–51. However, their data analy-
tics are mostly based on manual simple feature extraction (e.g.,
amplitude, frequency, peak number), leading to a limited variety
of recognizable hand motions/gestures with substantial feature
loss. The sophisticated hand gesture discrimination remains
challenging. Artificial intelligence (AI) has recently unlocked
intelligent data analytics in interdisciplinary domains by
exploiting comprehensive sensory information extraction and
autonomous learning. The integration of AI with the TENG glove
may shed light on more diversified and complex gesture mon-
itoring that is rarely achievable using the conventional manual
feature extraction52. As a proof of concept, our previous work
demonstrated an AI-enabled TENG glove capable of recognizing
similar and complex 11 gestures for advanced virtual reality/
augmented reality (VR/AR) controls53. It reveals the feasibility of
AI-enabled sophisticated and comprehensive hand gesture iden-
tification via minimalist TENG sensor configuration.

Being closely associated with sophisticated hand gestures and
as an essential part of biomedical care, sign language interpreta-
tion is of substantial significance in bridging the gap between the
hearing and speech impaired and general public since sign lan-
guage is not as prevalent as the speaking language and difficult for
nonsigners to understand without prior learning. Generally,
visual images/videos, surface electromyography (sEMG) electro-
des, and inertial sensors are conventional means to reconstruct
hand gesture information towards sign language recognition
applications54–57. They are either limited by light conditions and
privacy concerns, electromagnetic noise, and crosstalk with other
biopotentials, or a huge amount of data, respectively58. Com-
plementary to traditional solutions, a low cost and straightfor-
ward wearable TENG glove could be a potential assistive platform
for sign language perception, which is immune to the issues of
traditional approaches. With the support of comprehensive

feature extraction of AI, the glove renders intelligent sign lan-
guage recognition that involves diversified and complicated
gestures.

For instance, by leveraging AI at the cutting edge, Z. Zhou et al.
initiated59 a sign-to-speech translation system comprising a self-
powered TENG glove and wireless transmission block. The sys-
tem achieved a highly accurate recognition of 11 signs including
numbers, letters, and a word and unidirectionally displayed
recognition results on a mobile phone interface via Bluetooth,
which paves the way to the practical sign translation and
expectedly benefits the speech/hearing disordered. On the other
hand, several simple signs in sign language can be identified
without AI integration. A human-skin-inspired interlocked tri-
boelectric sensor mounted on a glove has been reported to
recognize four discrete words: ‘I’, ‘Happy’, ‘Meet’, and ‘You’60. In
another case, there is a developed TENG glove with only
achieving five letters recognition of sign language61. Thus, with-
out the assist of AI-based analytics, most current sign language
translation solutions are limited to the recognition of only several
discrete and simple words, numbers, or letters. Although Z. Zhou
et al. demonstrated59 the work of incorporating AI technology to
realize the classification of a dozen sign gestures in a high accu-
rate manner, it still lacks an effective and practical approach for
real-time sentence recognition of sign language, which is more
significant for the practical communication of signers and non-
signers. Besides, the interfaces (e.g., mobile phone or PC) that
sign language recognition results are projected or displayed
usually do not allow the signer’s interaction with nonsigners. The
VR interface has been a recent hot topic owing to enhanced
interaction and immersive experience62, 63. It creates the potential
of human-to-human (e.g., the speech/hearing disordered and
healthy people) interaction, which improves the practicality of
sign language recognition system.

Here, we show a sign language recognition and communication
system comprising triboelectric sensor integrated gloves, AI
block, and the VR interaction interface. The system successfully
realizes the recognition of 50 words and 20 sentences. The
recognition results are projected into virtual space in the forms of
comprehensible voice and text to facilitate barrier-free commu-
nication between signers and nonsigners (Fig. 1a). First, to
understanding the raw data and indicate the necessity of AI
integration, the data analysis of sign sensing signals is carried out.
Two frames, nonsegmentation and segmentation AI skeletons,
enable the recognition of diversified words and sentences. The
nonsegmentation AI framework achieves high accuracy for 50
words (91.3%) and 20 sentences (95%) by independently identi-
fying word and sentence signals. To overcome the issue of unable
to recognizing new sentences, the developed segmentation AI
frame splits the entire sentence signals into word units and then
recognizes all the signal fragments. Inversely, the whole sentence’s
information can be reconstructed and recognized with an accu-
racy of 85.58% upon established correlation between word units
and sentences. Particularly, the segmentation approach assisted
AI brings the capability of recognizing new/never-seen sentences
(average correct rate: 86.67%) that are not included in the data-
base and are created by word element recombination in new
orders. It provides a promising and universal solution to recog-
nize new/never-seen sentences and to readily expand the sentence
database for practical communication of the speech/hearing dis-
ordered. Finally, the server-client terminals in VR space allow the
displaying of sign recognition results and the direct typing of
nonsigners. The VR interface for two-way remote communica-
tion, linked with the AI front end for sign language recognition,
shows a potential prototype of a future intelligent sign language
recognition and communication system.
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Results
Glove configuration and sensor characterization. To measure as
many gestures as possible with a small number of sensors, the
sensor position needs to be optimized. By referring to the fre-
quently used sign language in the American Sign Language guide
book64, we conduct the analysis for involved motions in daily sign
expressions of the speech/hearing impaired. As depicted in
Fig. 1b, the findings show that sign language includes three major
motion dynamics, including elbow/shoulder motions, face muscle
activities, and hand movements. The hand motion accounts for a
proportion of 43%, remaining dominant in the three major
motions, indicating the inevitability of hand motion perception in
the application of sign language recognition. Further category
differentiation in hand motions is necessary to confirm the sensor
position, as shown in the enlarged pie chart in Fig. 1b. In detail,
hand motions fall into four categories, including finger bending
(56%), wrist motion (18%), touch with fingertips (16%), and
interaction with palm (10%). The relevant movements need

sensors in different positions to generate the critical correspon-
dence (Fig. 1c). Accordingly, the triboelectric sensor is mounted
on each finger for finger bending measurement, while two sensors
are put on wrists for wrist motion perception. Reviewing the daily
used sign language shows the index and middle fingertips of the
right hand are in frequent use. Meanwhile, signers often use their
left hand to interact with their right hand and other parts of their
body. Thus, two sensors are placed on the fingertips of right index
and middle of the glove, and one sensor is incorporated on the
palm of the left hand. The more detailed discussion about the
sensor arrangement on the glove can be found in Supplementary
Note 1.

Finally, gloves are configured with 15 triboelectric sensors in
total. The area of sensors on different hand positions is
customized since the coverage area is different from each hand
position. The detailed area information of corresponding sensors
is included in the Supplementary Fig. 1. After position
optimization, the individual triboelectric sensor’s basic
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Fig. 1 The glove configuration and sensor characterization. a Schematics of the sign language recognition and communication system. b Proportion of
different motions that are commonly used in sign language helps determine sensor position on gloves. c Sensor position on gloves based on hand motion
analysis in b. Detailed area information of the sensor on each position can be found in Supplementary Fig. 1. d Materials of the triboelectric sensor. e–h
Voltage output dependence on key parameters, including sensor area, force, bending degree, and bending speed. The hand, head, and phone images are
created by the authors via Blender.
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characterization is investigated concerning key parameters that
largely influence the triboelectric voltage output performance,
such as sensor area, force, bending degree, and bending speed. As
presented in Fig. 1d, the triboelectrification layers are composed
of ecoflex and wrinkled nitrile. With the conductive textile as
electrodes, a flexible and thin triboelectric sensor is fabricated.
Based on Fig. 1e, f, the voltage output increases when sensor area,
force, bending degree, and bending speed increase.

Data analysis of signals of 50 words and 20 sentences. The
tentative data analysis is beneficial for the preliminary under-
standing of the raw data. First, we select 50 gestures that are daily
used in the signer’s life as demonstration. Figure 2a shows images
of representative 19 gestures. The corresponding triboelectric
signals of these 19 gestures are given in Fig. 2b. The photos and
signals of the rest 31 signs can be found in Supplementary Fig. 2.
The signal similarity and correlation analysis of the total 50
gestures are carried out based on the original data. There are 100
data samples for each gesture in the dataset, where ‘Get’ is taken
as the example as shown in the enlarged view in the below middle
of Fig. 2b. For correlation analysis, the below left of Fig. 2b shows
a new input of ‘Get’ compared with its own database to obtain the
mean correlation coefficient 0.53 > 0.3 (threshold value for high
similarity) by extracting the average value of 100 data samples
and correlating it with the new input, which means the similarity
is high between different ‘Get’ data samples. Also, the signal of
‘Must’ is compared with the ‘Get’ database. The mean correlation
coefficient of 0.37 is larger than 0.3, indicating the high signal
similarity between ‘Get’ and ‘Must’ as well (the bottom right of
Fig. 2b).

Figure 2c provides a matrix to summarize each gesture’s
correlation coefficient with the other 49 gestures. Switching such
matrix information to the distribution curve of correlation
coefficient depicted in Fig. 2d, it can be observed that there are
signals of several gestures fallen into the strong correlation area,
which means a high similarity among these gesture signals. These
gestures are in the high possibility for the wrong classification.
Second, 20 daily sentences are sorted out for subsequent study.
Likewise, the similarity analysis among sentence signals is also
conducted, as shown in Fig. 2e and Fig. 2f, which are based on the
analysis of original sentence signals provided in Fig. 2g. The high
similarity has been also noticed among sentences as some
sentence signals have a high correlation coefficient with others. In
general, the data analysis proclaims the high similarities of word-
to-word and sentence-to-sentence signals. Thus, for the sign
language interpretation in such a large database, a more
sophisticated analysis method is in compelling demand. As a
powerful technology, deep learning from AI provides a great
feasibility to achieve the advanced data analytics, whose
momentum exists in delicate analysis and accurate recognition
by comprehensive feature extraction.

Word and sentence recognition upon nonsegmentation
method. For sequence modeling of signals, hidden markov model
(HMM), recurrent neural network (RNN), and more recently
developed long short-term memory (LSTM) have been widely
utilized owing to enabling memorizing the output of the last
moment for circulated self-updating and adapting. They are
usually applied to the construction of large-scale complex deep
learning networks depending on huge data samples. Besides, the
convolutional neural networks (CNN) are designed to process
data in the form of multiple arrays. In particular, 1D CNN is a
simple and feasible solution for recognizing the time-series signals
of human motions from triboelectric sensors. Because the posi-
tions of features in the segment are not highly correlated. To

optimize the CNN model toward more effective recognition
behaviors, adjustment on kernel size, the number of filters, and
convolutional layers is implemented. As the results in Fig. 3a-c
show, the 1D CNN model exhibits the optimal accuracy perfor-
mance with 5 kernels, 64 filters, and 4 convolutional layers. The
detailed CNN structure parameters are presented in Supple-
mentary Table 1. Accordingly, the schematic diagram of the CNN
structure is shown in Fig. 3d, in which the 15-channel ges-
ture signals are served as inputs without segmentation. Then the
pattern recognition is achieved through the optimized 4-layer
CNN architecture. In other words, the sentence signals are not
pieced into word elements and not linked with the basic word
units within a nonsegmented deep learning frame. The signals of
words and sentences are isolated from each other and indepen-
dently recognized.

To better understand the clustering performance of the
proposed CNN structure, the results of last fully connected layer
is extracted in which each data sample with 3000 points finally
has been stretched to 3584 after convolution and pooling to
compare with the raw data. However, it is difficult to compare
such high-dimensional data. The principal component analysis
(PCA) is widely utilized to perform the dimension reduction and
maintain the information as much as possible at the same time.
By virtue of eigenvalues and eigenvectors of the analog signal
matrix of gestures, which can point along the major variation
directions of data, the dimension of data could be reduced with
adjustable principal component matrix which comprises the
nonunique eigenvectors of the data matrix. Eventually, the data of
input layer and the last fully connected layer is reduced to 30
dimensionalities after PCA.

By following data visualization, Fig. 3e demonstrates the
feature clustering result of 50 words for the input layer, which is
achieved by the t-distributed Stochastic Neighbor Embedding (t-
SNE) in the dimension of principal component 1 (PC1) and
principal component 2 (PC2). It shows the performance of
feature clustering is poor with category overlaps before going
through the CNN network. After undergoing the feature
extraction and classification of CNN, the visualization result
realized by t-SNE in Fig. 3f indicates a desirable classification
performance of the developed CNN model with clear boundaries
among these 50 classes with less overlap. It proves the
effectiveness of proposed CNN model for feature classification.
After only 50 training epochs, the accuracy reaches almost 90%,
as shown in Supplementary Fig. 3. As a consequence, upon 80
training samples (80%) and 20 test samples (20%) of each word in
the dataset, a high recognition accuracy of these 50 words is
achieved with the value of 91.3%, as shown in the confusion
matrix in Fig. 3g. Supplementary Movie 1 displays the successful
word recognition in Python with six representative gestures.
Regarding the sentence recognition, the time-sequence signals of
sentences comprise signals from several single gestures. Throwing
the intact signal of each sentence with one known label into the
AI processing pool, the supervised learning could clearly
differentiate these 17 sentences even the sentence signal is much
longer than that of words. A satisfying cluster result is also
observed by comparing results in Fig. 3h and Fig. 3i. The long-
length signal of sentence provides more distinguishable features
than the single-word signal. Therefore, a high sentence recogni-
tion accuracy of 95% is obtained, as indicated in Fig. 3j.
Correspondingly, Supplementary Movie 2 demonstrates the
successful sentence recognition in which three sentences are
taken as examples.

Although with high accuracies in discriminating words and
sentences, the CNN model upon nonsegmentation approach only
enables classifying existed sentence signals in the dataset. It
cannot distinguish new/never-seen sentences even though the
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Fig. 2 The data analysis for signals of 50 words and 20 sentences. a Part of representatives among 50 words or gestures (showing 19 gestures here), in
which the opaque and translucent gesture images show the starting and final state of the gesture, respectively. The rest of 31 gesture photo and their
corresponding triboelectric signals can be found in Supplementary Fig. 2. b Triboelectric voltage output of 19 words (top), and the similarity and correlation
analysis based on the word signals (bottom). The high correlation coefficient of ‘Get’ and ‘Must’ shows a high similarity between these two gesture signals,
indicating a high possibility for wrong classification. c Correlation coefficient matrix of signals of 50 words. d Correlation coefficient distribution curve of 50
words. e Correlation coefficient matrix of 20 sign language sentences. f Correlation coefficient distribution curve of 20 sentences. g Voltage output of
20 sentences. Photo credit: Feng Wen, National University of Singapore. Source data65 of Figs. 2c, e are provided in Harvard Dataverse.
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sentence consists of the same word elements but in a different
order. This is limited by the principal methodology where each
word or sentence is labeled as independent distinct items. There is
no built-up relation between word units and sentences. Besides,
the time latency for recognition is introduced because the CNN
model with nonsegmentation method needs to leverage the whole

long-data-length signal (generally 200 data points for the word
signal and 800 data points for the sentence signal) to trigger the
recognition procedure, which is not desirable for the real-time
sign language translation. Looking at it in another way, such long-
length data comprises substantial features that in turn contribute
to a high accuracy of 95% for 17 sentences.
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Fig. 3 Word and sentence recognition based on the nonsegmentation method. a–c Optimization of CNN structure parameters based on accuracy
performance, including Kernel size, the number of filters, and the number of convolutional layers. Boxplots indicate median (middle line), 25th, 75th
percentile (box) and 5th and 95th percentile (whiskers) as well as outliers (single points). d Final structure of CNN after optimization. e–f Cluster results of
word signal from CNN input layer and output layer. g Confusion map of recognizing 50 words. h–i Cluster results of sentence signal from CNN input layer
and output layer. j Confusion map of recognizing 17 sentences. Source data65 of Figs. 3g, j are provided in Harvard Dataverse.
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Word and sentence recognition upon segmentation method.
To explore the feasibility of recognizing new/never-seen sentences,
we propose the means of segmentation where signals of all sentences
are divided into fragments by the data sliding window, including
intact word signals, incomplete word signals, and background sig-
nals. These fragments split from all sentence signals are recognized
first, and then the CNN model will inversely reconstruct and
recognize the sentences. In this way, the segmentation approach
enables identifying sentences in the dataset. It also creates the
inspiration of recognizing new/never-seen sentence that is composed
of word elements that are already recognized before but in a new
order. In addition, the recognition latency is significantly reduced
due to small-distance sliding (50 data points per sliding) as the
recognition process will be triggered with each sliding. In other
words, the recognition process is in a simultaneous run when the
raw data of sentence inputs, instead of triggering the identification
procedure until receiving the entire input as employed in the non-
segmentation method. Furthermore, the segmentation approach
coupled with deep learning technology provides a universal platform
for recognizing new/never-seen sentences to expand the sentence
database in a labor-saving manner, eliminating the labor-intensive
new sentence data collection.

As shown in Fig. 4a, for the following segmentation of sentence
signals, the total 19 words (W01–W19) presented in the
20 sentences of dataset are numbered from 0 to 18 in terms of
usage frequency reduction trend in sentences. The word
frequency information is shown in Supplementary Fig. 4. The
label action is a critical step for the supervised learning of the
CNN model. Thus, Fig. 4b demonstrates the detailed process of
sentence signal division and labeling by taking the sentence ‘The
dog scared me’ as an example. We introduce a sliding window
with a length of 200 data points and a sliding step 50 data points.
Considering sample of each sentence is in a fixed data length of
800 points, the sliding window will piece the whole signal into 13
elements, including intact single-word signals, background
signals, and mixture signals (i.e., incomplete word signals and
background signals). When the sliding window contains the
intact word signal, then this fragment signal will be labeled with
the number of the corresponding word as listed in Fig. 4a. The
background noise is all tagged as ‘empty’ (W20) with number 19
to denote. Besides, the label of the mixture signal fragment is
determined by the principal component. In other words, either
word signal or background noise accounts for more than 50% of
the sliding window size, and the label will be the number of words
or ‘empty’ 19 correspondingly. The final labeled number series of
one data sample for sentence ‘The dog scared me’ is ‘[5 5 19 19 19
15 15 15 19 19 0 0 0]’ as depicted at the top of Fig. 4b. The
schematic segmentation diagram of other three representative
sentences, including ‘Do you like bowling’, ‘You need a doctor’,
and ‘I feel better now’, are shown in Supplementary Fig. 5a–c,
respectively. The table in Fig. 4c summarizes the essential
information of investigated 20 sentences: sentence category codes
(Y01–Y17 and New1–New3), interpreted sentences, and com-
prised word/gesture components with different color marks, one
exampled label series, and unique number orders. It should be
noted that the last three sentences in dark green are selected as
new/never-seen sentences, which do not exist in the sentence
dataset and are not seen or learned by the CNN model before and
are used to verify the potential of recognizing new sentences.
Thus, the label series of these three sentences is not visual for the
CNN model, and the label status is N.A.

Subsequently, an intuitive and general single classifier is first
built to identify all the fragments from 17 sentences without
preliminarily filtering empty signals (Fig. 4d). The dataset
contains 50 samples for each sentence and hence 850 (50*17)
sentence samples in total. The word fragments are from

510 samples for training (60%), 170 samples for validation
(20%), and 170 samples for testing (20%). The confusion matrix
in Fig. 4e shows an accuracy of 81.9% for the single classifier
recognizing word units W01–W20. Afterward, the evaluation on
recognizing sentences’ performance is our major concern upon
inversely reconstructing the whole sentence after classifying all
word signal pieces from 17 sentences. Thus, as indicated in
Fig. 4f, 10 validation samples (sequence number 1–10) of each
sentence are employed to verify the basic capability of
reconstructing and recognizing the sentences with the single
classifier. The result mapping of sentence recognition illustrates
the true and false situation, showing an insufficient average
correct rate of 79.41%. For example, the 3rd and 5–10th samples
of sentence Y01 are wrongly classified with a poor correct rate of
30%. The nonideal consequence for other sentences, such as Y03,
Y04, and Y16, is observed as well. Suffering from a large amount
of random and irregular empty signals, the single classifier may
not be effective enough when reconstructing and recognizing
sentences that existed in the dataset, which may hinder the
identification of new/never-seen sentences. To obtain better
performance of sentence recognition and then pave the way for
discerning new sentences, a classifier with hierarchy architecture
is developed as shown in Fig. 4g. The first-level classifier will
separate the empty signals and intact word signals to mitigate the
negative effect of capricious empty signals on the next-stage
recognition of the word signal pieces. Then the word fragments
flow to the second-level classifier for precise identification. By this
means, the recognition accuracy for word pieces is enhanced to
82.81% as the confusion map in Fig. 4h shows. Eventually, it
positively contributes to the sentence recognition, which is
indicated by the improved average correct rate of 85.58% with a
reduced false area in Fig. 4i. Overall, the hierarchy classifier
improves both the accuracy of recognizing word elements and
that of identifying ever-seen/trained sentences.

Recognizing new sentences upon segmentation approach.
Taking the advantages of segmentation, the never-seen sentences
New1–New3 are successfully recognized where these sentences
are created by new-order word recombination and the order is
different from that of sentences in dataset. The process in Fig. 4j
demonstrates the recognition of the new/never-seen sentence
with the stage of segmentation, real-time sequential fragment
identification, and further sentence recognition or translation.
Five samples for each new sentence are engaged in this procedure
to validate CNN classifiers’ feasibility in recognizing new sen-
tences. As provided in Supplementary Table 2, both classifiers
render the label series prediction for the total 15 inputs of these 3
new sentences, although the CNN model never sees or learns the
true label series before. As expected, the hierarchy classifier shows
a reliable performance for new/never-seen sentence recognition,
indicated by the less wrong predictions area marked in red.
Moving forward to the translation (i.e., recognition) stage (see
Supplementary Fig. 6a), the single classifier correctly predicts
2 samples of New1, 3 samples of New2, 4 samples of New3
(average correct rate of 60%). In comparison, the hierarchy
classifier achieves precise identification of 5 samples of New1,
3 samples of New2, and 5 samples of New3. In other words, the
hierarchy classifier achieves an average correct rate of 86.67% (see
Supplementary Fig. 6b), superior to 60% of the single classifier.

Regarding the pros and cons of nonsegmentation and segmenta-
tion methods, a radar comparison is provided in Supplementary
Fig. 7. Overall, the nonsegmentation approach possesses better
performance in the aspect of recognition accuracy either for words
or sentences but with the shortcoming of apparent recognition time
latency and incapability of new sentence recognition. While the
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segmentation-assisted CNN model renders significant never-seen/
new sentence identification via the established connection between
word units and sentences. Besides, the small-distance sliding induced
recognition brings the potential of the real-time recognition or
translation of sentences. In addition, compromised recognition
accuracy could be overcome by the improved algorithm in the
future. Supplementary Note 2 shows a more detailed discussion
about the advantages and disadvantages of these two methods.

Besides, Supplementary Note 3 and Supplementary Fig. 8 elucidate
the comparison between the most popular image-based gesture
recognition and sensor-based solution.

VR communication interface for the signer and nonsigner.
Most current sign language translation systems simply display the
recognition result on visualized interfaces such as mobile phones
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and portable displays. However, the acute demand of effective
two-way communication between the signers and nonsigners is
neglected since most of works do not allow the interaction
between signers and nonsigners. Hence, the two-way interaction
capability of user interface is in urgent need for the practical
application of sign language translation system. The emerging VR
interface has been recently employed in various applications with
benefiting from enhanced interaction and immersive experience,
which would be an ideal platform for an advanced sign language
interpretation, visualization, and communication interface.
Moreover, the integration of deep learning with VR interface
brings a broad prospect for building the intelligent social network,
which is targeted for more diversified population groups such as
the speech/hearing impaired. Therefore, we develop a deep
learning integrated VR interface to realize the bidirectional
communication and hope to help the speech/hearing disordered
integrate into the majority and enhance the sense of social parti-
cipation. To meet the requirement of high recognition accuracy in
practical applications, the nonsegmented deep learning model is
used to achieve the communication in the virtual space. Even-
tually, the recognition and communication system (Fig. 5a) is
comprised of five major blocks including triboelectric gloves for
hand motion capture, the printed circuit board (PCB) for signal
preprocessing, IoT module Arduino connected PC for data col-
lection, deep-learning-based analytics for signal recognition, and
VR interface in Unity for interaction. The recognition results will
be projected into cyberspace, in which AI will send corresponding
commands based on recognition results and deal with inputs
from the nonsigner, to control the communication in VR inter-
face based on Transmission Control Protocol/Internet Protocol
(TCP/IP).

In detail, the deep learning block recognizes the nonmain-
stream sign language, translates it into the prevalent conversa-
tional medium such as text and audio, and transmits such
information into the next virtual space. As shown in Fig. 5b, the
VR interface that is similar to social software is designed for the
communication between the speech impaired and healthy user,
with switched host–guest views in cyberspace. The client and
server are built in the VR interface and linked by TCP/IP, and are
accessible for the signer and nonsigner, respectively. Owing to the
assistance of deep learning enabled sentence recognition and
translation, the client of VR interface allows the speech impaired
to use the sign language that they are familiar with to engage in
the communication. More precisely, the sign language delivered
by the speech impaired is recognized and translated into speech
and text by deep learning. Then the speech and text are captured
and sent to the nonsigner-controlled server. Next, the nonsigner
types directly to respond to the speech-disordered user.

As Fig. 5b(i–v) demonstrates, a greeting scenario is created to
demonstrate the feasible communication between the speech/
hearing impaired and healthy user under the identical local area
network (LAN). Two virtual characters in the VR space, Lily and

Mary, represent the created avatars for the signer and nonsigner,
with controllable and programmable multiple degrees-of-freedom
motions. In the first step Fig. 5b(i), the speech-impaired user Lily
performs sign language ‘How are you?’, which is recognized and
converted to text and audio by the deep learning model. By means
of TCP/IP, the client connected with deep learning component
receives the text/speech message ‘How are you?’ and transmit it to
the nonsigner Mary controlled server. Projecting to the virtual
space, the signer avatar Lily slightly lifts her hand to greet her
friend (i.e., the nonsigner Mary). Correspondingly, the nonsigner
types ‘Not good. I have a stomachache.’ to respond to the signer.
The virtual girl Mary represents the nonsigner shakes her head
and covers her stomach with hands to show her illness, as shown
in Fig. 5b(ii). Then the speech-impaired user replies to the
nonsigner Mary with the sign language ‘You need a doctor’
(Fig. 5b(iii)). Figure 5b(iv) and Fig. 5b(v) similarly show their
interaction. The detailed conversation demonstration can be
found in Supplementary Movie 3. The conversation of Fig. 5b is
summarized in Fig. 5c. The VR communication interface linked
with AI allows interaction of the speech/hearing disordered and
healthy people closely and even remotely, providing a promising
platform for the immense interactions between two population
groups.

Discussion
Sign language recognition and translation are of great significance
to remove the communication barrier between the speech/hearing
impaired and the general public. Nowadays, wearable HMIs are
emerging as an innovative assistive platform to implement direct,
conformable hand motion measurement. As a paradigm for the
wearable HMI, gloves have received intense research efforts for
sign language recognition due to its capability to seamlessly detect
the delicate motions of our dexterous hands. However, current
glove solutions are generally limited to identify discrete and
simple numbers, letters, or words of sign language by relying on
signal magnitude. Although few works have employed AI-enabled
advanced data analytics to achieve highly precise sign language
translation, they are still limited to the classification of discrete
words that cannot meet the requirement of practical commu-
nication in the signer’s daily lives. The lack of effective approach
to perceive sentences hinders the communication of the signer
with nonsigner (see Supplementary Table 3).

To realize advanced, comprehensive, and practical sign language
recognition, we herein propose a sign language recognition and
communication system comprising a smart triboelectric glove, AI
block, and the back-end VR interface. The system enables the
separate and independent recognition of words (i.e., single gestures)
and sentences (i.e., continuous multiple gestures) with high
accuracies of 91.3% and 95% within nonsegmentation frame. Fur-
thermore, to overcome the limitation of incapability of recognizing
new/never-seen sentences, the segmentation method is proposed. It
divides all the sentence signals into word fragments while AI learns

Fig. 4 Word and sentence recognition based on segmentation method, which brings the feasibility of new/never-seen sentence recognition. a Label
table (W01–W20) of 19 words (they are among the total 50 words) that present in 20 sentences (using Y1–Y17 and New1–New3 denote). b Schematic
diagram of sentence signal segmentation, ‘The dog scared me’ is taken as an example. c Summary table of sentences with category remarks, comprised
words, label series, and unique labeled number order. The same word using the same color to mark. d Schematic diagram of single classifier. e Confusion
map of split word element recognition (accuracy 81.9%) based on single classifier. f With successful recognition of each element in sentences, the
sentences can be inversely reconstructed and recognized at an average correct rate of 79.41% within single classifier. The dark green means right
recognition and light blue means wrong prediction. g Schematic diagram of the hierarchy classifier. h Confusion map of segmented word element
recognition (accuracy 82.8%) based on hierarchy classifer. i With successful recognition of each element in sentences, the sentence can be inversely
reconstructed and recognition at an average correct rate of 85.58% within hierarchy classifier. j Recognition process of three new sentences that the CNN
model did not learn before, taking ‘I lost my dog’ as an example. The detailed recognition results can be found in Supplementary Table 2. Source data65 of
Figs. 4e, h are provided in Harvard Dataverse.
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and memorizes all split elements. Then the deep learning archi-
tectures, single and hierarchy classifiers, inversely infer, reconstruct
and recognize the whole sentence (recognition accuracy: 85.58%)
benefitting from the established correlation of basic word units and
sentences. Furthermore, the segmentation approach renders new/
never-seen sentence recognition, in which the new/never-seen

sentences are not included in the dataset and created by recom-
bining the learned word units in new orders. Finally, the embedded
VR interface can act as the bridge of user terminals, transmitting
messages back and forth, configuring a closed-loop communication
system with gloves and AI component. On the VR platform, the
speech/hearing impaired can directly perform sign language to
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interact with the nonsigner (i.e., human-to-human interaction),
while the nonsigner directly involves in the communication process
via direct typing. In summary, we have successfully achieved
recognition of 50 words and 20 sentences picked up from the
American sign language phrase book as demonstration, which can
be further broadened by leveraging more sentences in the dataset to
meet the practical daily communication demand. Hopefully, the
segmentation method provides a universal and practical platform to
expand the sentence database in practical communication by new
sentence inclusion, largely improving the sign language translation
system’s practicality. Besides, the intelligent system consist of smart
gloves, AI-assisted recognition, and TCP/IP enabled server-client
LAN communication in virtual space, providing a reliable and
appealing platform for the seamless and immense interactions
between nonsigners and signers either remotely or proximately.

Methods
TENG sensor fabrication. The 00-30 Ecoflex with a 1:1 weight ratio of part A and
part B is coated on the conductive textile (for electrode) for consolidation. Then the
positive wrinkled nitrile attached on the conductive textile contacts with the
negative Ecoflex layer to assemble the triboelectric sensor. Finally, the conductive
electrodes are encapsulated by nonconductive textiles to shield the ambient elec-
trostatic effect. Different sensors with different areas are fabrication for customized
glove configuration.

Characterization of sensor triboelectric output. The voltage measurements are
carried out by oscilloscope (Agilent, InfiniiVision, DSO-X 3034 A) with the normal
probe 10 ΜΩ.

Glove configuration. The as-prepared two-layered triboelectric sensor is sewed
into the small cotton textile pocket. The finalized encapsulated triboelectric sensors
for each hand position are stitched on the glove by E7000 textile glue for a seamless
fit with fingers.

Data collection and dataset configuration. The signal acquisition module
acquires the triboelectric signals generated by different gestures in Arduino MEGA
2560 microcontroller. For the nonsegmentation method, 100 samples for each
word and sentence are collected where 80 samples (80%) for training and
20 samples (20%) for testing. Thus, there are 5000 samples for total 50 words and
2000 samples for total 20 sentences. For the segmentation approach, since all the
data from sentences, there are 50 samples with number series labels for each
sentence (17 sentences and hence 850 samples in total). The division window in the
Matlab workspace with the length of 200 data points slides at a step of 50 data
points to extract the signal fragments. Thus, each sentence sample with 800 data
points is segmented into 13 elements. The extracted data elements are labeled with
numbers of corresponding words or ‘empty’. Each number represents a signal
fragment that may be an intact gesture signal, background noise, or an incomplete
gesture signal. The 60% samples of each number (i.e., 0–19) are used for training,
20% for validation, and 20% for testing. Finally, 5 samples for 3 new/never-sen-
tences are employed to verify the capability of new sentence recognition of the
segmentation-assisted CNN model without prior training.

The detailed mathematics behind PCA. PCA is used to reduce the dimensions
while maximum retaining the information. The principle of PCA relies on the
correlation between each dimension and provides a minimum number of variables,
which keeps the maximum amount of variation about the distribution of original
data. PCA employs the eigenvalues and eigenvectors of the data-matrix, which can
point along the major variation directions of data to achieve the purpose of
dimension reduction. For the detailed mathematics of PCA59, the vector X includes
the component that is the input signal xi for each gesture,

X ¼ x1; x2; x3; ¼ ; xn
� � ð1Þ

Then the mean value Xmean of X is calculated as,

Xmean ¼ 1
n
∑
n

i¼1
xi ð2Þ

Determining the difference di between the input and mean value,

di ¼ xi � Xmean ð3Þ
Based on Eq. (3), we get the covariance matrix S,

S ¼ 1
n
∑
n

i¼1
didi

T ð4Þ
According to linear algebra, the eigenvalues λ and eigenvectors p of the

covariance matrix are defined as,

Sp ¼ λp ð5Þ
Because there are more than one the eigenvalues and eigenvectors, the principal

component matrix P is,

P ¼ p1; p2; p3; ¼ pk
� � ð6Þ

Thus, the input signal can be projected into a new output matrix Y with reduced
dimensions,

Y ¼ y1; y2; y3; ¼ ; yi; ¼ ; yn
� � ð7Þ

where yi ¼ PTðxi � xmeanÞ and k controls the principal component matrix P and
hence controls the dimension of output Y.

Demonstration of pure words and sentences recognition. For word and sen-
tence recognition demonstration in Fig. 3, the triboelectric glove with 15 sensor
channels is connected to the Arduino MEGA 2560. By serial communication with
Python in PC, the raw data of different gestures is acquired and recognized by the
trained CNN model with Tensorflow and Keras frames, then displaying recogni-
tion results on the Python interface.

VR communication interface building and demonstration. On top of details
described in the last section ‘Demonstration of pure words and sentences recog-
nition’, the recognized result in Python is sent into virtual Unity space via TCP/IP
communication and displayed on the VR interface. The server (for nonsigners) and
client (for signers) terminals building in Unity also rely on TCP/IP. Within the
identical LAN, the speech/hearing impaired and healthy people could remotely
communicate via the VR interface where the speech/hearing disordered uses their
familiar sign language, and the nonsigner types directly. The authors affirm that the
participant provide informed consent for publication of the images in Figs. 2a, 5b,
Supplementary Figs. 2a, 8a, and the videos in Supplementary Movies 1, 2, 3.

Data availability
The source data of Figs. 2c, e, 3g, j, 4e, h, and the dataset of machine learning that
support the findings of this study are available in Harvard Dataverse, https://doi.org/
10.7910/DVN/7KJWV3. All other relevant data are available from the corresponding
author upon reasonable request.

Code availability
The codes that support the findings of this study are available from the corresponding
authors upon reasonable request.
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