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Dissecting esophageal squamous-cell carcinoma
ecosystem by single-cell transcriptomic analysis
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Chengcheng Wang2, Ce Zhong2, Wen Tan2, Jianbin Wang 6✉, Chen Wu 2,7,8,9✉ & Dongxin Lin 2,7,9,10

Esophageal squamous-cell carcinoma (ESCC), one of the most prevalent and lethal malignant

disease, has a complex but unknown tumor ecosystem. Here, we investigate the composition

of ESCC tumors based on 208,659 single-cell transcriptomes derived from 60 individuals.

We identify 8 common expression programs from malignant epithelial cells and discover 42

cell types, including 26 immune cell and 16 nonimmune stromal cell subtypes in the tumor

microenvironment (TME), and analyse the interactions between cancer cells and other cells

and the interactions among different cell types in the TME. Moreover, we link the cancer cell

transcriptomes to the somatic mutations and identify several markers significantly associated

with patients’ survival, which may be relevant to precision care of ESCC patients. These

results reveal the immunosuppressive status in the ESCC TME and further our understanding

of ESCC.
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Esophageal cancer ranks the sixth leading cause of cancer-
related death worldwide1 with esophageal squamous-cell
carcinoma (ESCC) accounting for over 90% of total eso-

phageal cancer in China. ESCC has poor prognosis with the
5-year survival rates around 20–30% probably due to the diffi-
culty in early diagnosis and the lack of effective therapy1–3.
Deciphering the complexity of ESCC tumor and its micro-
environment is therefore fundamental for establishing early
diagnosis and creating effective and precision treatment. In recent
years, whole-genome/exome sequencing analysis on bulk tumor
tissues has suggested that mutations of certain genes, such as
TP53 and NOTCH1, or aberrant pathways, such as cell cycle and
PI3K-AKT, may drive the development of ESCC4–7. However, it
seems that genomic alterations are not completely attributed to
the initiation and progression of ESCC and failed to translate into
clinical use because such alterations are also seen in aging but
normal epithelium8,9.

In addition, the tumor microenvironment (TME) compositions
including various immune cells and nonimmune stromal cells
also play determinant roles in tumor growth or decline10–12. It
has been shown that immune cells and other stromal cells in
TME rarely have genomic alterations13–16; however, they might
interact with cancer cells to affect tumor progression and antic-
ancer treatment17–19. For example, the checkpoint blockade
immunotherapy can only benefit limited part of cancer patients,
due to the cancer-immune interplays20–22. The failure of several
anti-angiogenic therapies for cancer has been believed to be due
to the metabolic adaptation and reprogramming of cancer cells
and the abnormality of endothelial cells and their interaction with
pericytes23.

Transcriptomic aberrancies are also critical events in promot-
ing cancer development and progression24–26. In the last decades,
many transcriptomic studies on ESCC have been reported, but
previous studies were relied on bulk-tissue-based cDNA micro-
arrays or RNA-sequencing analysis4,5,27–29. The bulk-tissue-based
transcriptome analysis detects a mixed transcriptome derived
from both cancer cells and TME components and usually gen-
erates massive marker genes in diversified pathways, which do
not tell the dynamic status of various cells and their interactions
during the development of cancer in the heterogeneous tumor
tissues. In this regard, transcriptome analysis using bulk tumor
tissues seems not suitable for the purpose of deciphering various
unknown molecular events at the transcriptome level from dif-
ferent cells involving in the progression of ESCC.

High-throughput single-cell RNA sequencing (scRNA-seq), a
valid method developed in recent years, has been proved to
enable the dissection of heterogeneous tumors and deciphering
the interaction between cancer cells and their microenvironment
components30–34. Elucidating the transcriptome characteristics of
cancer cells and the microenvironment components and their
interactions, which are largely unknown in ESCC, is basic and
fundamental in further understanding the cancer and developing
effective early diagnosis and treatment strategies.

In the present study, we have performed scRNA-seq on a large
scale of cells derived from ESCC tumors obtained from 60
patients to decode the transcriptome alterations associated with
the cancer. We have also performed whole-exome/genome
sequencing on bulk tissues from the same ESCC tumors and
incorporated genomic data for analysis. We have dissected 8
expression programs from malignant epithelial cells and
decomposed the TME compositions into 42 functional subtypes.
By integrating these results, we have established a primary asso-
ciation framework between cancer cells and various non-
cancerous cells in the TME, which contributes to ESCC
progression and prognosis.

Results
Overview of ESCC ecosystem characterized by scRNA-seq. To
decipher the cell composition within the ESCC tumors, we per-
formed scRNA-seq and T cell receptor (TCR)-seq (for CD45+
cells only) on 60 ESCC tumor and 4 adjacent normal tissue
samples obtained from 60 individuals using 10X Genomics
platform (Fig. 1a; Supplementary Fig. 1a; Supplementary Data 1a
and 2). After quality controls, we retained single-cell tran-
scriptome of 208,659 cells including 97,631 CD45− and 111,028
CD45+ cells. Following regressing against read depth and
mitochondrial read count, we performed graph-based clustering
of the combined CD45− and CD45+ dataset and annotated the
clusters using established marker genes (Fig. 1b, c; Supplementary
Fig. 1b, c). We identified 8 main cell populations: epithelial cells
(N= 44,730), fibroblasts (N= 37,213), endothelial cells
(N= 11,267), pericytes (N= 3102), and fibroblastic reticular cells
(FRC; N= 1,319) from CD45− dataset and T cells (N= 69,278),
B cells (N= 22,477) and myeloid cells (N= 19,273) from CD45+
dataset. The epithelial cells exhibited high expression level of
classic epithelial markers including EPCAM, SFN, and cytoker-
atins, and high genomic instability as demonstrated by severe
copy number variations (CNVs) inferred from the transcriptome
dataset and bulk whole-genome sequencing (WGS) results
(Supplementary Fig. 1d–g), indicating that most epithelial cells
are malignant. We then systematically analyzed the ecosystem
compositions of each ESCC and found that the cell-type pro-
portions were highly variable within and across patients, with
some variations being associated with tissue type and tumor stage
(Supplementary Fig. 1h). ESCC tumors had more epithelial cells
and pericytes but fewer fibroblasts than adjacent normal tissues
(P < 0.05; Fig. 1b; Supplementary Fig. 1i; Supplementary Data 3
and 4). The proportion of B cells was significantly less in stage II/
III ESCC tumors compared with that in stage I tumors
(P= 0.013; Supplementary Fig. 1j). These results suggest that
ESCC ecosystems are highly heterogeneous, which should be
further deciphered in the following analysis.

Correlation between intra- and inter-tumor heterogeneity of
epithelial cells. We then investigated whether and how the
expression states varied among epithelial cells. By analyzing the
transcriptome patterns of epithelial cells in 52 tumors that had
>100 epithelial cells, we found that they could be divided into 38
clusters (Fig. 2a). We then analyzed the patient contributions to
each cluster and found that 24 clusters had cells (≥75%) from sole
individual patients while other 14 clusters had the expression
patterns shared by multiple patients (Fig. 2b). We defined the 24
clusters as Group 1 clusters (with ≥75% personal cells) and the
remaining as Group 2 clusters. We found Group 1 clusters
showed increased pathway activities of cell proliferation and
EMT, while Group 2 clusters presented activation of immunity-
related pathways such as the complement, inflammatory, and
IL2/STAT5 signaling (Supplementary Fig. 2a). We also compared
the epithelial composition in each ESCC and found that ESCC
from 21 patients were mostly composed of Group 1 clusters
(≥60%) and ESCC from 31 patients were comprised of multiple
Group 2 clusters (Fig. 2c). These results indicate a pervasive intra-
and inter-tumor heterogeneity in ESCC.

We used principal components to measure the intra- and inter-
tumor heterogeneity levels of epithelial cells. The intra-tumor
heterogeneity is defined by the dispersion of cells from average
within each sample, while inter-tumor heterogeneity is char-
acterized by the distance of cells between each sample and global
average as illustrated in Fig. 2d (see “Methods”). We integratedly
quantified the levels of intra- and inter-tumor heterogeneity
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and found that they were positively correlated (r= 0.64,
P= 7.3 × 10–7; Fig. 2e; Supplementary Fig. 2b, c). Among patients
with the same intra-tumor heterogeneity levels, those having the
Group 1 cluster had relatively higher inter-tumor heterogeneity
levels than those without Group 1 cluster (P= 1.2 × 10–7; Fig. 2e,
f; Supplementary Fig. 2d). The relative heterogeneity level was
associated with age and drinking status of ESCC patients
(Supplementary Fig. 2e). The relative heterogeneity level in ESCC
with age >60 was significantly higher than that in ESCC with age
≤60 (P= 0.041), and it was also higher in ESCC from non-
drinkers than that in ESCC from drinkers (P= 0.048).

Identification of eight common expression programs of epi-
thelial cells in ESCC tumors. We developed a meta-cluster
approach to uncover co-expressed programs among malignant
cells from multiple samples. We first clustered the epithelial cells
within each sample and generated a total of 274 intra-tumor
subclusters in 52 ESCC tumors. We then defined an expression
module for each subcluster with preferentially expressed 30 genes
and subsequently aggregated the 274 modules into multiple
recurrent expression programs using hierarchical clustering based
on their expression profiles. We identified 8 expression programs
with different functions and cell status (Fig. 3a, b; Supplementary
Fig. 2f, g; Supplementary Data 5) and defined cells expressing
≥70% of genes in a given program as program cells (Supple-
mentary Fig. 2h). We selected the most activated pathways in the
program cells by comparison with non-program cells to analyze
their functions (Fig. 3c). The mucosal immunity-like (Mucosal)
program was characterized by the expression of genes associated
with innate immune response (e.g., S100P) and mucosal defensive
mechanisms including mucosal chemokine (e.g., CXCL17) and
mucus production (e.g., AGR2 and MUC20). Mucosal cells

showed activation of the complement, TNFα signaling, apoptosis,
and inflammatory response pathways. The stress responses
(Stress) program consisted of immediate early genes (e.g., EGR1,
JUN, and FOS) that are activated in response to widespread cel-
lular stimuli and displayed upregulation of TNFα signaling, UV
response, p53, and apoptosis pathways. The antigen presentation
(AP) program had increased expression of major histocompat-
ibility complex (MHC) class II molecules (e.g., CD74, HLA-DPA1,
and HLA-DRA/B1/B5) that are involved in initiating adaptive
antitumor immune responses. Immunity-related pathways, such
as the allograft rejection, IFN-γ, IFN-α response, and the com-
plement pathway, were activated in AP cells, probably indicating
the reactivity to tumor neoantigens. The cell cycle (Cycling)
program was characterized by high expression of genes involved
in cell proliferation (e.g., CENPW, CKS1B, and BIRC5) and pre-
sented activation of the E2F targets, G2M checkpoint and MYC
targets pathways, suggesting tumor cell proliferation. Two pro-
grams were associated with epithelial differentiation (Epi1/2). The
Epi1 program was characterized by the expression of stress ker-
atins (KRT6, KRT16, and KRT17) that are associated with kera-
tinocyte hyperproliferation and therefore may play a role in
enhancing tumorigenesis and tumor growth35–37. Epi1 cells dis-
played upregulation of pathways involved in cell growth and
proliferation, such as mTORC1 signaling and PI3K/AKT/mTOR
signaling pathways, as well as metabolic pathways including
oxidative phosphorylation and glycolysis. The Epi2 program had
the overexpressed genes related to the terminal differentiation
such as envelope proteins (SPRR1A/1B) and calprotectin
(S100A8/9), apical surface, the PI3K/AKT/mTOR signaling, the
complement, and p53 pathways. The mesenchymal cell-like
properties (Mes) program consisted of genes such as VIM and
SPARC and showed activation of epithelial-mesenchymal

Fig. 1 Overview of ESCC ecosystem characterized by scRNA-seq. a Scheme of the overall study design. b, c tSNE plots of 97,631 CD45- cells (b) and
111,028 CD45+ cells (c), colored by cell type (left) and tissue type (top right). The proportions of cell types in normal and tumor tissues are shown on the
bottom right (colors as in the left panel). Cell types that significantly increase (solid line filled with color) or decrease (dashed line) in tumor tissue (two-
sided Wilcoxon test, P < 0.05) are indicated by links between normal and tumor bars. P values: 0.001 (epithelial cell), 0.001 (fibroblast), 0.010 (pericyte).
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transition (EMT) and angiogenesis pathways. Finally, the oxida-
tive stress or detoxification (Oxd) program was characterized by
the expression of multiple peroxidases and reductases (e.g., GPX2
and AKR1C1) involved in the defense against oxidative damage.

We performed the dependency analysis to infer the pairwise
interactions among the expression programs and identified
5 significant co-occurring program pairs as well as 7 mutually
exclusive program pairs with odds ratios ≥2 and ≤0.5, respectively
(all P < 0.05) (Fig. 3d). The Epi1 was highly co-occurred with the
Epi2, probably reflecting the need of both Epi1 and Epi2 for

epithelial cell differentiation. The Epi1 program was also co-
occurred with the Cycling program, probably reflecting the
activation of cell growth and proliferation pathways in Epi1 cells.
The Epi2 program was highly co-occurred with the Mucosal
program, suggesting that mucosal immunity is present in well-
differentiated epithelial cells. The Mucosal program was exclusive
of the Cycling and Mes programs, while the Mes program was
exclusive of the Epi1, Epi2, and Oxd programs. The AP program
was exclusive of the Epi2 and Oxd programs. We further
measured the activity of these programs in each ESCC by
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Fig. 2 Correlation between intra- and inter-tumor heterogeneity of epithelial cells. a tSNE plot of 44,122 epithelial cells, colored by cluster. Only tumors
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correlation coefficient and P value are indicated. Shaded region indicates 95% confidence interval for the correlation. f Boxplot showing the relative inter-
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quantifying the program scores as proportion of corresponding
program cells (Fig. 3e). Patients were then hierarchically clustered
based on the program scores (Fig. 3f). We observed that most
ESCC tumors contained the epithelial cells that expressed more
than one program and that the Epi1 scores were highly variable
among tumors with median score= 0.38 (ranging from 0 to
0.97). Patients with high Epi1 score usually had high Cycling
score. The Epi2 and Mucosal programs had very small activities
with the median scores being 0.03 among patients. Together,
these results indicate that epithelial cells in ESCC tumors had 8
expression programs and the activity of each program was highly
heterogeneous among tumors.

Characterization of immunosuppressive ESCC tumor micro-
environment. Since T cells are the most abundant tumor-
infiltrating lymphocytes (TILs) and highly heterogeneous in the
TME, dissecting T cell populations would allow the accurate
characterization of the immune status in tumors. We re-clustered
69,278 T cells and identified 9 distinct T cell subtypes and phe-
notypically related natural killer (NK)/natural killer T (NKT) cells
(Fig. 4a; Supplementary Fig. 3a, b; Supplementary Data 6a). T cell
subtypes included naïve T (TN) cells, T helper 17 (TH17) cells,
follicular helper T (TFH1/2) cells, regulatory T (Treg) cells,
memory T (TMEM-CD4/CD8) cells, effector T (TEFF) cells and
exhausted T (TEX) cells. Compared with TFH2 cells, TFH1 cells

Fig. 3 Identification of eight common expression programs of epithelial cells in ESCC tumors. a Heatmap showing pairwise correlations of 274 modules
derived from 52 tumors. The common expression programs across tumors are aggregated into clusters. b Heatmap showing expression of genes within
each program across single cells. Randomly selected 500 cells for each program are shown. Colors above columns correspond to cell state (see Methods).
c Heatmap showing differences in pathway activities between program cells and non-program cells for each program scored by GSVA. Each column is
normalized by z-score to indicate the relative pathway activities. d Heatmap showing odds ratios assessing for each pair of programs (rows, columns) if
they are co-occurrent (≥2, red) or exclusive (≤0.5, blue) than expected by chance (P < 0.05). P values are derived from pairwise Fisher’s exact test.
e Boxplot showing the proportion of program cells (hereafter refers to as program score) for each tumor (N= 52) among 8 expression programs, sorted by
the median program score. Boxplots show the median (central line), the 25–75% interquartile range (IQR) (box limits), the ±1.5 times IQR (Tukey
whiskers), and all data points, among which the lowest and the highest points indicate minimal and maximal values, respectively. f Clustered heatmap
showing the normalized program scores for all programs in each tumor.
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were more canonical as they expressed CXCR5 that helps TFH

cells localize to B cell follicles and promote the differentiation and
maturation of B cells. We found that ESCC tumors were rich in
Treg and TEX cells but poor in TN, TMEM, and TEFF cells compared
with adjacent normal tissues, indicating an immunosuppressive
status in the TME (Fig. 4a; Supplementary Fig. 3c; Supplementary
Data 3 and 4). Stage II/III tumors had fewer TH17 and TFH1 cells
but more TEX cells than stage I tumors (Supplementary Fig. 3d).

We calculated the cytotoxicity score and exhaustion score to
quantify properties of CD8+ T cells (Supplementary Fig. 3e, f; see
“Methods”) and found that TEX cells had the highest cytotoxicity
and exhaustion scores. Most of TEX cells were likely tumor-
reactive T cells because of high levels of CD39 (ENTPD1) and
CD103 (ITGAE) and very low level of KLRG1 (Supplementary
Fig. 3g)38–41. We also generated a Treg score to quantify the
activity of CD4+ T cells (Supplementary Fig. 3h). We found stage
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II/III ESCC tumors had significantly elevated exhaustion and
Treg scores compared with stage I tumors, indicating that the
immunosuppressive status in the ESCC TME is worse with tumor
progression (Fig. 4b).

We profiled TCR repertoires to analyze the lineage structure of
T cells in ESCC and found that the TCR clonotype compositions
and proliferative cell proportions were highly diverse across
different T cell subtypes (Fig. 4c, d; Supplementary Fig. 3i). The
TEX cells had the highest level of clonal expansion (clone size ≥3
cells; Supplementary Fig. 3i) and the highest proportion of
proliferation (nearly 10-fold greater than proliferative TEFF cells)
(Fig. 4d). By measuring the proportion of clonotypes in a given T
cell subtype (primary phenotype) shared with another T cell
subtype (secondary phenotype), we found that CD8+ cell
subtypes had a high degree of clonal sharing and extensive
transitions existed among TEFF, TEX, and TMEM subtypes
(Supplementary Fig. 3j). CD4+ T cell subtypes, except for TFH1
and TFH2 cells, had a low degree of clonal sharing and null
sharing with Treg cells. These results indicate that TEX cells were
highly proliferative and dynamic in the immunosuppressive TME
throughout ESCC progression. Using the scTCR-seq and scRNA-
seq data from 4 patients with matched tumor and adjacent
normal samples, we found 23.9% of the T-cell clones in tumors
were shared with normal samples, suggesting the parallel
expansion of TEFF and TMEM-CD8 in these sites (Supplementary
Data 7)42.

We also profiled B cells (N= 22,477) in both ESCC tumor and
adjacent normal tissues and generated 5 subtypes designated as
resting B, activated B, germinal center B (GC B1/B2) and plasma
cells (Supplementary Fig. 4a, b; Supplementary Data 6b). High
MKI67 and TOP2A expression in GC B2 cells suggested that these
cells were active in proliferation (Supplementary Fig. 4b). The
presence of GC B, FRCs and TFH cells indicates the existence of
tertiary lymphoid structures (TLSs) which plays an antitumor
role in the otherwise immunosuppressive TME43. These B cell
subtypes provided key snapshots of B cells activation, prolifera-
tion, and differentiation in ESCC tumors.

Identification of tDC as a major player in the immunosup-
pressive ESCC microenvironment. Since tumor-infiltrating
myeloid cells (TIMs) have been shown to be fundamental in
regulating both innate and adaptive immune responses and
facilitating tumor angiogenesis, invasion and metastasis44,45, we
re-clustered all myeloid cells (N= 19,273) to look at their status
and potential roles in ESCC. We found that TIMs in ESCC had
11 subtypes comprising 4 categories: monocytes (Mono01-03),
tumor-associated macrophages (TAM01-04), mast cells (Mast)
and dendritic cells (DC) (Fig. 4e; Supplementary Fig. 4c; Sup-
plementary Data 6c). DC had three distinct subtypes with
divergent roles: conventional DC (cDC), tolerogenic DC (tDC)
and plasmacytoid DC (pDC). We found that monocytes and
TAMs expressed not only genes associated with immunosup-
pression (e.g., TGFB1 and COX2), but also genes involved in
angiogenesis (e.g., VEGFA, CXCL8,MMP9 andMMP12) (Fig. 4f).
VEGFA was upregulated in monocytes, while MMPs were mainly
expressed in TAMs.

Mature cDC had high expression of MHC class II molecules
(e.g., HLA-DRA), costimulatory factors (e.g., CD80 and CD86),
and proinflammatory cytokines (e.g., TNF and IL1B) that may
activate T cells and other antitumor immunity (Fig. 4g). Similar
to mature cDC, tDC also had high expression of MHC class II
molecules and costimulatory factors, but null expression of the
proinflammatory cytokines TNF and IL1B, suggesting semi-
mature phenotype of these cells. In addition, we found that tDC
expressed the highest level of CCR7, which essentially contributes

to both immunity and immunotolerance46–48; pDC specifically
expressed ICOSLG, a gene involved in the expansion of Treg cells
(Supplementary Fig. 4d). Furthermore, among all immune cell
subtypes, tDC had the highest expression of the immune
checkpoint genes (IDO1, PD-L1 and PD-L2) (Fig. 4g; Supple-
mentary Fig. 4d–f). We also found that ESCC tumors were rich in
tDC and the expression of PD-L1/L2 in tDC was significantly
higher in tumors compared with adjacent normal tissues (Fig. 4h;
Supplementary Fig. 4g; Supplementary Data 3 and 4).
Ligand–receptor interaction analysis showed that tDC had
stronger interactions with multiple subtypes of T cells than that
of cDC, pDC, or TAM in terms of immunosuppression
(Supplementary Fig. 4h). Coculture experiment of tDC isolated
from ESCC tissue of one patient and autologous CD8+ T cells
isolated from human peripheral blood sample with the stimula-
tion by anti-CD3/28 showed that tDCs significantly inhibited
CD8+ T cell proliferation (Fig. 4i). Furthermore, CD8+ T cells
co-cultured with tDCs had diminished production of IL-2 and
IFN-γ. We found that when anti-PD-L1 antibody was included in
the coculture, the reduced CD8+ T cell proliferation and
suppressed IL-2/IFN-γ production were rescued, suggesting that
the suppressing effect of tDC on CD8+ T cell proliferation and
activation is likely mediated through PD1 and PD-L1 interaction
(Fig. 4i, j). Collectively, these results suggest that tDCs among
TIMs play a crucial role in the immunosuppressive ESCC TME.

Identification of immune cell interwoven entities in the ESCC
microenvironment. We then investigated the interactions and
associations among different types of immune cells in tumor
samples. Cells were clustered into multiple groups with different
association patterns consistent with their related functions
(Fig. 4k). We found that TN, TFH1, and B cells (activated, resting,
and GC B cells) as well as TH17, TEFF, and TMEM-CD8 cells were
aggregated into two major groups that contribute to immune
responses. We also identified an immunosuppressive group
consisting of Treg, TEX and plasma cells and found negative
correlations between suppressive and effective immune cell sub-
types. Furthermore, we found that the proportions of CXCR5+
TFH1 and GC B cells were highly correlated (r= 0.66,
P= 2.4 × 10−9; Fig. 4k; Supplementary Fig. 4i), which is in line
with the known fact that these two cell types are directly inter-
active in the germinal center49. Together, these results demon-
strate a broad interaction among these immune cell subtypes that
may play an important role in the construction of the immuno-
suppressive ESCC microenvironment.

Characterization of specific trajectories for fibroblast and
pericyte differentiation. Fibroblasts and pericytes that can dif-
ferentiate into myofibroblasts via pericyte-fibroblast transition are
two important components of TME that may facilitate tumor
invasion and metastasis23,50,51. Therefore, we profiled fibroblasts
and pericytes to investigate the complexity and dynamic rela-
tionship of these cells in the ESCC TME. We found that they can
be clustered into 9 subtypes as normal mucosa fibroblasts (NMF),
normal activated fibroblasts (NAF1/2), cancer-associated fibro-
blasts (CAF1–4), pericytes and vascular smooth muscle cells
(VSMC) (Fig. 5a; Supplementary Fig. 5a, b; Supplementary
Data 6d). These fibroblast subtypes had distinct patterns of
marker gene expression and pathway activities as shown in
Fig. 5b and Supplementary Fig. 5c. NMF expressed a panel of
genes encoding the protease inhibitors (e.g., SLPI and PI16) and
genes involved in the complement, coagulation, peroxisome, and
apoptosis pathways. NAF1/2 expressed the wound healing
response-related genes (e.g., IGF1, C7, and APOD). CAF1 and
CAF2 expressed proinflammatory chemokines (e.g., CXCL1 and
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CXCL6) and other cytokines involved in recruiting immune cells
showing an activated inflammatory status. Interestingly, while
CAF1 expressed high levels of CCL2/11 and CXCL14, CAF2 cells
expressed activated-pericyte-specific cytokines CXCL5/8 and
CSF352 and had the most significant upregulation of genes in
inflammatory response pathway among all fibroblast subtypes.
CAF3 showed an expression pattern resembling CAF4 (i.e.,
myofibroblasts) and expressed lower levels of myofibroblasts’
hallmark genes (e.g., TAGLN, ACTA2, and ACTG2) than CAF4.
Both CAF3 and CAF4 had upregulation of apical junction and
EMT pathways. Among all fibroblast subtypes, CAF4 had the

highest activities of glycolysis and angiogenesis, two hallmarks of
cancer. Furthermore, we found that each subtype had the distinct
collagen repertoire; for example, NMF had lower expression of all
collagen genes than CAFs, while CAF4 expressed the highest
levels of COL1A1/2, COL3A1, COL5A1/2, and COL6A1/2/3
(Supplementary Fig. 5d).

Diffusion map and principal component analysis showed two
distinct developmental trajectories of fibroblasts (Fig. 5c; Supple-
mentary Fig. 5e; see “Methods”). In one branch, we detected a
sequential continuum of phenotypes from NMF to NAF1/2,
CAF1, CAF3 and CAF4, but in another branch, we found that

 

Fig. 5 Characterization of specific trajectories for fibroblast and pericyte differentiation. a tSNE plots of 40,315 fibroblasts, colored by cell type (left) and
tissue type (top right). The proportions of cell types in normal and tumor tissues are shown on the bottom right. See Fig. 1b legend for the line indications.
b Dotplot showing expression status of selected fibroblast markers in each cell cluster. c Diffusion map of fibroblasts. Dot represents single-cell colored by
cluster. The two main differentiation branches are indicated with solid arrows. d PAGA analysis of fibroblast subtypes. Line thickness corresponds to the
level of connectivity. e Boxplots showing proportion of CAF3 (left) and CAF4 (right) in normal tissues (N= 4), stage I (N= 16) and stage II/III (N= 44)
tumors (two-sided Wilcoxon test). Boxplots show the median (central line), the 25–75% interquartile range (IQR) (box limits), the ±1.5 times IQR (Tukey
whiskers), and all data points, among which the lowest and the highest points indicate minimal and maximal values, respectively. f tSNE plots of 11,267
endothelial cells, colored by cell type (left) and tissue type (top right). The proportions of cell types in normal and tumor tissues are shown on the bottom
right. See Fig. 1b legend for the line indications. g Heatmap showing differences in pathway activities scored per cell by GSVA between different endothelial
clusters. h Violin plots showing the expression distribution of selected genes in the endothelial cell clusters. i Dotplot showing selected ligand–receptor
interactions. The means of the average expression level of PDGFB in TECs and interacting receptor, PDGFRA and PDGFRB, in fibroblast subtypes are
indicated by color. j Spearman’s correlation between the mean expression of PDGFB in TECs and the ratio of pericyte to endothelial cell in all samples.
k Spearman’s correlations between the mean expression of PDGFB in TECs and the proportion of CAF2 (left) and CAF4 (right) in all samples, respectively.
l Clustered heatmap showing two-sided Spearman correlation coefficients between proportions of immune and nonimmune cell subtypes in tumor
samples. P < 0.05 is used as the cutoff value.
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pericytes, CAF2 and CAF4 formed a continuous and sequential
path. We inferred the connectivity structures between the
subtypes using partition-based graph abstraction (PAGA) analysis
and found that CAF1 were connected to NAFs and CAF4, while
CAF2 were the linkage between pericytes and CAF4, which was
compatible with the results of diffusion map analysis (Fig. 5d). We
also found that TGF-β pathway that is pivotal in the fibroblast-to-
myofibroblast transition53 was activated in CAF1/2/3 (Supple-
mentary Fig. 5c). These results suggest that both normal
fibroblasts and pericytes may differentiate into myofibroblasts.

Interestingly, we found that the proportions of NMF and
NAF1 were more prevalent in normal tissues than tumor tissues,
while CAF2/3/4, VSMC, and pericytes were predominant in
tumor tissues compared with normal tissues (Fig. 5a; Supple-
mentary Fig. 5f; Supplementary Data 3 and 4). Moreover, we
found that stage II/III ESCC tumors had more CAF3 and CAF4
but fewer CAF1 than stage I tumors (Fig. 5e; Supplementary
Fig. 5g). These results indicate an accumulation of CAFs,
especially the myofibroblasts, in the ESCC microenvironment
that might play crucial roles in tumor progression.

Identification of high PDGFB level in TECs and its role in
pericyte-myofibroblast transition. Since blood vessels and
endothelial cells (EC) often exhibit aberrant phenotypes and
functions in the TME, which might restrict them to respond to
anti-angiogenic therapy, we therefore addressed these issues. We
clustered EC (N= 11,267) into 6 subtypes including 3 normal EC
(NEC1–3) and 3 tumor EC (TEC1–3) (Fig. 5f; Supplementary
Data 6e). NEC1/2 expressed vein endothelial markers (e.g., CPE
and ACKR1) while NEC3 expressed artery markers (e.g.,
SEMA3G and GJA5)54 (Supplementary Fig. 5h). While NEC1
were prevalent in normal tissues, TECs were exclusively present
in ESCC tumors and TEC2/3 had increased expression of
ANGPT2 that disrupts pericyte–EC interactions to enable
angiogenesis23 (Fig. 5f, Supplementary Fig. 5h, i; Supplementary
Data 3 and 4). We found that TECs had specifically activated
pathways involved in cell proliferation, angiogenesis, TGF-β sig-
naling, EMT and energy metabolism (Fig. 5g). Notably, TECs had
lower expression levels of genes associated with antigen pre-
sentation (e.g., CD74 and HLA-DQA1) and cell adhesion (e.g.,
ICAM1 and VCAM1) than NECs, which has been known to
impede immune cell infiltration55, but had higher expression of
molecules associated with angiogenesis (e.g., VEGFR1/2/3 and
PDGFB) than NECs (Fig. 5h).

Since PDGFB-PDGFRB signaling pathway play a pivotal role
in pericyte-myofibroblast transition and PDGFB is mainly
secreted by endothelial cells51, we analyzed its role in the
interaction of TECs and fibroblasts especially pericytes. We found
a strong interaction between TECs and pericytes based on the
ligand–receptor interaction analysis (Fig. 5i). The ratio of
pericytes to ECs was positively correlated with the levels of
PDGFB in TECs (r= 0.52, P= 8.6 × 10−6; Fig. 5j), in line with
the recruitment role of PDGFB for pericytes. In addition, the
expression levels of PDGFB in TECs were correlated with the
proportions of CAF2 (r= 0.64, P= 1.2 × 10−8) and CAF4
(r= 0.46, P= 1.2 × 10−4; Fig. 5k). Furthermore, SCENIC analysis
showed that several ETS family transcription factors (EHF, ELF3,
and ETS2) downstream of MAPK were activated in CAF2 that
can be induced by the PDGFB-PDGFRB pathway (Supplemen-
tary Fig. 5j)56. These results suggest that TECs in the ESCC TME
may promote tumor progression by facilitating tumor angiogen-
esis via inducing pericytes to myofibroblasts transition.

Interactions among immune and nonimmune stromal cells in
the ESCC microenvironment. We next explored the associations

between immune and nonimmune stromal cells by clustering the
related cell subtypes according to their association patterns,
resulting in the benign and malignant groups (Fig. 5l; Supple-
mentary Fig. 5k–m; Supplementary Data 3; see “Methods”). The
benign group comprised the NMF, NAF1, CAF1, and NECs
subtypes, while the malignant group comprised CAF2−4, TECs,
and VSMC. We observed strong associations between benign
group and effective immune cells, including resting B, GC B, TN,
TFH1, cDC and activated B cells; however, the malignant group
tended to correlate with suppressive immune cells, such as Treg,
TEX, TAM, tDC, and pDC. Treg cell proportions were positively
correlated with CAF2−4 and TEC1/2 proportions but negatively
correlated with NMF, NAF1 and NEC2 proportions. TEX cell
proportions were positively correlated with VSMC and CAF3
proportions. In addition, the proportions of TH17 cells that
produce IL-17, a cytokine associated with pericyte activation52,
were correlated with the proportions of CAF2 (r= 0.36,
P= 0.004; Supplementary Fig. 5n), which is in line with the
developmental trajectories of pericytes, suggesting that CAF2 may
be activated pericytes. These extensive interactions among
immune and nonimmune stromal cells might shape an immu-
nosuppressive ESCC TME that promoted tumor progression. We
also found that some clinical characteristics of patients such as
sex, smoking status, and drinking status were significantly asso-
ciated with the proportions of TME cell types (Supplementary
Fig. 5o).

Associations of epithelial expression programs and genomic
alterations with TME compositions. We next wanted to look at
the interactions between malignant epithelial cells and other cells
in the ESCC TME (Fig. 6a; see “Methods”). We found that ESCC
tumors with higher Mucosal program scores had more TN, TFH1,
NK/NKT, GC B, and cDC but fewer TEX, plasma, tDC, and pDC.
Such ESCC tumors also possessed more NEC2 but fewer
CAF2−4. ESCC tumors with higher AP program scores exhibited
more TEFF cells, resting B cells and NEC2 but fewer CAF4 and
TEC2. However, ESCC tumors with higher Cycling program
scores had fewer TMEM-CD8 cells, NMF, NAF1/2, CAF1, and
NEC1/2 but more CAF2/3 and TEC2/3 as well as higher cyto-
toxicity, exhaustion, and Treg scores. ESCC tumors with high
Epi1 scores had reduced infiltrating effective immune cells (TFH1
and GC B) and benign stromal cells (NMF, NAF1/2, and NEC1/
2). Conversely, such ESCC tumors contained more malignant
CAF3/4 and TEC1 and had higher cytotoxicity and Treg scores.

We next sought to know whether the genomic alterations may
affect the ESCC ecosystem. We detected 11 putative driver genes
mutated in ESCC by whole-exome sequencing (WES) and among
them the most frequently mutated genes were TP53 (89.1%) and
NOTCH1 (28.3%) (Supplementary Fig. 6a). By analyzing the
differences in epithelial expression program scores and TME cell-
type proportions associated with TP53 or NOTCH1 mutation
status, we found that ESCC tumors with the mutant TP53 had
higher Cycling and Epi1 program scores and higher immune
suppression levels than tumors with the wild-type TP53 (Fig. 6b;
Supplementary Fig. 6b). The TP53 mutations were also associated
with higher cytotoxicity and Treg score and increased TAMs but
decreased TN cell and monocyte infiltration. In contrast, ESCC
tumors with NOTCH1 mutations had lower Epi1 and Epi2
program scores but higher Mes scores, reflecting the role of
mutant NOTCH1 signaling in epithelial differentiation (Fig. 6b;
Supplementary Fig. 6c). Tumors with NOTCH1 mutations also
had increased TEFF cell infiltration than tumors without NOTCH1
mutations, indicating that the mutations might have produced
neoantigens. By integrative analyzing the mutations of TP53 and
NOTCH1, we found sole mutation of TP53 was associated with a
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reduced proportion of TN, TFH1, GC B, resting B, monocyte, and
NEC2 and increased proportion of plasma, TAM and TEC1 as
well as higher cytotoxicity and Treg score (Supplementary
Fig. 6d). For tumors with TP53 mutation, the mutation of
NOTCH1 presented higher infiltration of TEFF cells but reduced
Epi1 and Epi2 scores than wild-type NOTCH1. The mutational
signatures were also associated with the heterogeneity level of
malignant cells and the TME compositions (Supplementary

Fig. 6e, f). These results suggest that somatic mutations of some
driver genes in esophageal epithelial cells may drive the
alterations of epithelial expression programs and the TME
compositions that facilitate tumor progression.

Correlation of gene expression levels in the Mucosal program
with ESCC survival in patients. Since epithelial expression
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programs may reflect the genomic alteration information and
drive remodeling of ESCC TME compositions, we therefore
analyzed the association between epithelial expression programs
and the disease outcome. We found that the expression levels
of the identified 14 genes were significantly associated with
survival time in ESCC patients (Discovery cohort, N= 139; all
P log-rank < 0.05; Fig. 6c, Supplementary Data 1b and 8). Among
the 14 associated genes, the AGR2, CXCL17 and MUC20 in the
Mucosal program were also significantly associated with survival
time in a validation cohort of 94 ESCC patients (Validation
cohort 1; all P log-rank < 0.05; Supplementary Fig. 7a, b; Supple-
mentary Data 1c and 8). AGR2 encodes an endoplasmic reticu-
lum protein essential for intestinal mucus production that
mediates fundamental innate immunity57. CXCL17 produces a
mucosa-associated chemokine that supports innate immunity and
the homeostasis and integrity of the mucosa58. MUC20 encodes a
mucin protein that is part of an insoluble mucous barrier59. These
three genes are specifically expressed in epithelial cells so that can
be measured by bulk-tissue RNA-seq (Supplementary Fig. 7c).
We further categorized the expression level of these 3 genes as
high (>median) or low (≤median) and integrated them as the
Mucosal Index (MI) for further analysis. We found that in Dis-
covery cohort and Validation cohort 1, patients with high MI
(MI ≥ 2) had significantly longer median survival time than
patients with medium MI (MI= 1) (P= 0.057 and P= 0.039,
respectively) or low MI (MI= 0) (P= 3.7 × 10−4 and P= 0.001,
respectively) (Fig. 6d, e). The correlations of the expression levels
of 3 genes and ESCC survival time were further validated in
another cohort consisting of 226 patients by immunohisto-
chemical staining of protein levels in ESCC tumors (Validation
cohort 2; Fig. 6f; Supplementary Data 1d) and the results also
showed that higher expression levels of their proteins (expressed
as H-score) were correlated with significantly longer ESCC sur-
vival time (all P log-rank < 0.05; Fig. 6g; Supplementary Fig. 7d–f).
We found that the proportions of epithelial cells expressing
AGR2/CXCL17/MUC20 were correlated with the Mucosal pro-
gram scores in scRNA-seq data (r= 0.77, P= 2.4 × 10−11;
Fig. 6h), suggesting that these three genes could be collectively
used to predict the Mucosal program activity.

We further investigated Mucosal program-correlated epithelial
aberrations in bulk-tissue RNA-seq data of discovery cohort and
validation cohort 1 using GSVA (Fig. 6i). Among hallmark
pathways differentially expressed between tumors with the high
or low expression level of Mucosal genes, the EMT and
angiogenesis pathways were significantly downregulated in
Mucosal-high tumors in both cohorts, suggesting suppressed
migration and proangiogenic abilities of tumors with high
Mucosal activities. Tumor suppressor p53-related pathway was
significantly enriched in Mucosal-high tumors in both cohorts,
suggesting that Mucosal-high tumors are relatively less malignant.

We also found the E2F targets and G2M checkpoint pathways
were downregulated in Discovery cohort, suggesting suppressed
cell proliferation of tumors with high Mucosal activity. These
results collectively point to a relative less malignant phenotype
and better TME of Mucosal-high ESCC (Fig. 6a), which might
explain why patients with mucosal-high ESCC had a better
prognosis.

Discussion
In the present study, we have performed scRNA-seq in 208,659
cells from ESCC tumor and their adjacent normal samples col-
lected from 60 patients and deciphered the phenotypes and
compositions of the ESCC ecosystem. We found that samples can
be reliably classified into two groups according to the different
adoptions of shared clusters for epithelial cells in regard to the
sample compositions and these differences can be further quan-
tified using PCA-based heterogeneity scores. We have dissected 8
common expression programs from malignant epithelial cells and
decomposed the TME compositions into 42 functional subtypes
including 26 immune cell subtypes and 16 nonimmune stromal
cell subtypes. We have also elucidated the possible interactions
between cancer cells and TME cells and the interactions among
different cell types in the TME. Moreover, we have dissected the
relationships between ESCC ecosystem components and genomic
alterations or disease outcomes. These results provide funda-
mental information for deeply understanding the mechanism for
pathogenesis and progression of ESCC, which in turn may benefit
the development of approaches for precision cares of ESCC
patients.

The present study has provided several significant findings.
Firstly, we have identified an immunosuppression status in ESCC
TME featured by a large amount of TEX, Treg, and myeloid cell
infiltration. Specially, we have revealed that in the TME, tDC
express the highest levels of immune checkpoint genes (PD-L1/2
and IDO1) that have been shown to induce the T cell anergy and
produce Treg cells60,61. Our experimental results showed that tDC
can suppress the activation of CD8+ T cells, suggesting that they
may play an important role in evoking immunosuppression.
Given the central role of dendritic cells in controlling immunity
homeostasis, measurement of tDC in ESCC tumors might predict
whether the tumor is vulnerable to immunotherapy and targeting
both tDC and T cells may be necessary in immunotherapy of
ESCC, as reported in prostate cancer for a synergistic effect62.
Furthermore, we did not identify the existence of recently
reported MR1-restricted T cells, which have been reported to
recognize a broad range of cancer cells63. This negative result
might further support that ESCC tumors have the
immunosuppressive TME.

Secondly, we have deciphered the complicated compositions of
nonimmune stromal cells and their dynamic transition in the

Fig. 6 Correlation of gene expression levels in the Mucosal program with ESCC survival. a Heatmap showing two-sided Spearman correlation
coefficients between program scores and proportions of TME compositions as well as T cell function associated scores (hereafter refers to as T cell scores)
in tumor samples. P < 0.05 is used as the cutoff value. b Bubble plot showing relationships between mutation status of WES-derived frequently mutated
genes and program scores, proportions of TME compositions as well as T cell scores. Compositions that significantly increase or decrease in mutated
tumors (two-sided Wilcoxon test, P < 0.05) are indicated by purple or green, respectively. Circle size represents P value. MUT, mutant; WT, wild type. c
Associations between program gene expression levels and ESCC survival in Discovery cohort (N= 139) and Validation cohort 1 (N= 94). The significances
of genes in two cohorts are indicated by color. Plog-rank < 0.05 (two-sided) is used as the cutoff value. d Kaplan–Meier (KM) curves of Discovery cohort
(N= 139) grouped by the mucosal index (MI). e KM curves of Validation cohort 1 (N= 94) grouped by the MI. f Representative images of IHC of the
proteins produced by the 3 Mucosal genes in Validation cohort 2. Shown are samples with MI 1 (12-9_A4 and 12-8_B4) and MI 2 (12-4_C4). Scale bar, 50
μm. g KM curves of Validation cohort 2 (N= 226) grouped by the MI. h The relationships between the proportion of epithelial cells expressed AGR2,
CXCL17 or MUC20 (total expression >0) and Mucosal score in tumor samples. Two-sided Spearman correlation coefficient and P value are indicated. i
Differences in selected pathway activities by GSVA between tumors with high or low expression level of Mucosal genes in Discovery cohort and Validation
cohort 1, respectively. Shown are t values from the linear model. P values in (d, e, g) are derived from log-rank tests.
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ESCC TME. We have discovered two hidden intermediate phe-
notypes of fibroblasts (CAF1 and CAF2) jointly manifesting two
developmental trajectories among them. These transitionary
fibroblast subtypes are activated and produce various proin-
flammatory cytokines that play important roles in ESCC pro-
gression. We have also found that the characteristic high
expression of PDGFB in TECs is related to the proportions of
pericytes, CAF2, and myofibroblasts in the ESCC TME, likely
indicating that TECs play a part in reshaping the TME. These
findings imply that targeting PDGFB signaling pathway may
inhibit angiogenesis via blocking TECs to recruit pericytes and
repressing the pericyte-myofibroblast transition51,64,65, which
offers a new therapeutic option for cancer treatment. One lim-
itation is that the differentiation trajectories for fibroblasts and
pericytes and the role of PDGFB in ESCC TME need to be verified
by further functional studies.

Thirdly, we have identified several different cellular interac-
tions in the TME, such as the interaction between TFH1 and GC B
cells, which produces an antitumor immune environment by the
formation of TLS, the interaction between TEC2 and TN cells,
which impedes infiltration of immune cells to tumor tissues, and
the interaction between TH17 cells and CAF2 mediated by
cytokines secreted from TH17 cells, which enhances CAF2 cell
activity. CAF2 are the intermediate activated phenotype in the
pericyte-myofibroblast transition and TH17 cells are implicated in
activation of pericytes52, suggesting that TH17 cells may play an
important role in pericyte-myofibroblast transition. We have
found that the amount of cell subtypes that are phenotypically or
functionally relevant is highly correlated and these cells can be
grouped as malignant nonimmune stromal cells (e.g., CAFs and
TECs) and suppressive immune cells (e.g., Treg, TEX, and TAM).
These results suggest that cells in the ESCC TME are interwoven
together for promoting tumor survival and development. Inter-
estingly, we have found an extensive cooperation between active
cancerous epithelial cells, exhibited by the expression programs,
and malignant nonimmune cells or suppressive immune cells.
The proliferative tumors had high amount of CAFs and TECs in
their TME, providing aberrant extracellular matrix, cytokines and
vascular niche for tumor cells to be progressive and invasive19.
These results present a high-resolution picture of entire and
detailed cellular interactions in the ESCC tumor ecosystem, which
would be significant in developing new therapeutic strategies.

Furthermore, we have also linked the single-cell transcriptomes
to the genomic alterations detected by bulk-tissue WES. The
results have shown that the mutations in NOTCH1 are associated
with decreased expression of the Epi1/2 programs but elevated
expression of the Mes program in epithelial cells, indicating that
the mutations may impair the differentiation of epithelial cells, a
well-known hallmark of cancer. However, ESCC having the
NOTCH1 mutations seem to have more infiltrated TEFF cells,
suggesting that tumors with the mutations have more effective
immunity. In contrast, the TP53 mutations confer ESCC to be
more proliferative and immunosuppressive and have an effect on
the expression of the Epi1 program opposite to NOTCH1
mutations. It has been shown that the NOTCH1 mutations are
less frequent in ESCC tumors than in aged normal esophageal
tissues8,9. This phenomenon can be explained by scRNA-seq
results showing that tumors with the TP53 mutations have higher
transcriptomic expressions related to proliferation and immu-
nosuppression than tumors with the NOTCH1 mutations. The
proliferative advantage of cancer cells may result in accumulation
of TP53 mutations in ESCC, whereas the differentiation-related
NOTCH1 mutations are accumulated in aged noncancerous
esophageal epithelium.

Most importantly, we have found the expression levels of the
mucosal immunity-like (Mucosal) program are significantly

associated with ESCC survival time in patients. Because the high
expression levels of the Mucosal program in tumor are strongly
associated with the amount of infiltrating effective immune
compositions such as TFH1, GC B, and cDC, one may expect that
patients with high expression of the Mucosal program would have
higher antitumor immunity and thus have better prognosis.
Notably, GC B cells are the major cell type in TLS, which have
been shown to be able to promote immunotherapy response in
several types of malignancies66–68. We have identified that within
the program the expression levels of CXCL17, AGR2 and MUC20
are the best markers associated with ESCC survival. Although the
underlying mechanisms for AGR2 and MUC20 are currently not
evident and warrant further investigation, CXCL17 has been
reported as an antitumor factor since it can recruit dendritic cells
into tumors, which may enhance antitumor immunity58. These
results may be clinically relevant in precision and individualized
care of ESCC patients. Furthermore, the production of genes in
the Mucosal program, such as CXCL17, might be useful in
treatment of cold ESCC tumors.

In summary, the present study provides an atlas of the ESCC
ecosystem based on the large-scale single-cell RNA-seq results.
We have depicted a comprehensive picture of interactive network
among cancerous epithelial cells, stromal cells, and various
infiltrating immune cells in the ESCC tumors and their TME. We
have also linked the transcriptome in cancerous epithelial cells to
their somatic genome alterations and identified several significant
markers associated with patients’ survival. These results deepen
and extend our understanding of the complexity of ESCC tumors.

Methods
Human biospecimen collection. In this study, we carried out integrative analysis
in 4 independent cohorts consisting of 519 patients with ESCC. The cohort for
scRNA-seq analysis was comprised of 60 patients including 44 males and 16
females. Their ages ranged from 40 to 78 with a median of 63.5. Among these
patients, 16 patients were diagnosed as stage I, 18 patients as stage II, and 26
patients as stage III. Fresh ESCC tumors, adjacent normal esophagus tissues (at
least 5 cm away from tumor site), and peripheral blood samples were collected at
the time of surgery in 2018. For survival analysis, the Discovery cohort containing
139 ESCC patients including 100 males and 39 females were recruited between
2015 and 2017, and their ages ranged from 42 to 82 with a median of 65; Validation
cohort 1 comprised 94 ESCC patients including 83 males and 11 females were
recruited between 2010 and 2014 as described in our previous report5, and their
ages ranged from 43 to 77 with a median of 61; and Validation cohort 2 consisting
of 226 ESCC patients including 169 males and 57 females were obtained between
2015 and 2016, and their ages ranged from 44 to 78 with a median of 63. All
patients were unrelated Han Chinese hospitalized in the Linzhou Cancer Hospital
and Linzhou Esophageal Cancer Hospital (Henan Province, China). ESCC was
confirmed by histopathological examination of surgically removed tumors or
biopsy specimens. All patients were not treated with chemotherapy or radiotherapy
before tumor resection. Biospecimens were collected immediately upon removal
from patients and analyzed as detailed below. This study was approved by the
Institutional Review Boards of Cancer Hospital, Chinese Academy of Medical
Sciences. Informed consent was obtained from each patient, and clinical infor-
mation was collected from medical records.

Sample collection and processing for single-cell RNA sequencing. Fresh ESCC
tumors and their adjacent normal tissue samples were placed in RPMI-1640
medium (Invitrogen) with 20% fetal bovine serum (FBS; GE Healthcare Life Sci-
ences) on ice immediately after surgical resection. Tissue sample processing was
completed 10 h after collection. A portion of sample was cryosectioned,
hematoxylin-eosin (H&E) stained, and microscopically examined to assure that the
tumor sample contains >40% cancer cells and normal tissue contains no cancer
cells. Another portion of the same sample was designated for bulk whole-exome
sequencing (WES) or whole-genome sequencing (WGS). The remaining tissue was
processed for single-cell RNA sequencing (scRNA-seq).

Preparation of single-cell suspension. Fresh ESCC tumors and adjacent normal
tissues were rinsed with PBS, gently cut into small pieces on ice and digested in
RPMI-1640 medium (Invitrogen) containing 2 mg/ml collagenase IV (Gibco) and
0.5 mg/ml hyaluronidase (Sigma Aldrich) for 1 h at 37 °C. The digested cell sus-
pension was subsequently filtered through a 70-μm cell strainer (BD Biosciences)
and incubated in 1x red blood cell lysis buffer (BD Biosciences) on ice for 5 min.
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The remaining cells were suspended in 50 μl of PBS containing 1% FBS after
washing once with the same medium.

Preparation of single-cell RNA sequencing and T cell receptor sequencing
libraries. Single-cell suspension was stained with CD45-FITC (BD Biosciences,
555482, dilution 1:100) and sorted into immune (CD45+) or nonimmune
(CD45−) cells using a FACSAria flow cytometer (BD Biosciences, BD FACSDiva
(version 8.0.1); Supplementary Fig. 1a). Sorted cells were examined and counted
before subject to 10x Genomics Chips. We targeted for 7000 cells recovered from
each channel and used Chromium Single Cell 5′ Reagent Kits (10x Genomics) to
prepared whole transcriptome RNA-sequencing libraries. For CD45+ cells, we also
used Chromium Single Cell V(D)J Enrichment kit to analyze the T cell receptor
(TCR) sequences. All libraries were sequenced on Illumina HiSeq X Ten with
2 × 150 bp paired-end mode.

Processing of single-cell RNA-sequencing data. We processed the scRNA-seq
data using Cell Ranger Single-Cell Software Suite (10x Genomics, version 2.1.0)
with default parameters, aligned to the GRCh38 reference genome and the raw
gene expression matrices were generated for each sample. On average, we recov-
ered 1804 CD45− and 1841 CD45+ cells from each sample with sequencing depth
of 143,559 and 80,615 reads per cell respectively. The Seurat package (version 2.3.4)
was used for quality filtering and downstream analysis. For quality filtering, we
removed genes whose expressions were detected in <0.1% of all cells and filtered
out cells that had gene counts <500 or mitochondrial RNA content >20%. Genes
that had highly variable expression were selected based on average expression and
dispersion level thresholds using the FindVariableGenes function with default
settings. The normalized expression levels for each gene were further linearly
regressed against the total UMI counts and mitochondrial RNA content per cell
using the ScaleData function and performed principal component analysis (PCA)
with RunPCA. We performed graph-based Louvain clustering on the top 10
principal components (PCs) using FindClusters. The resolution parameter (Res) set
to 0.6 and k for the k-nearest neighbor algorithm set to 30 for most clustering
analysis if not particularly indicated. Specially, for endothelial cells, the Res= 0.3
and for T cells, the Res= 2.0. The annotated clusters were robust and consistent by
using other clustering parameters (PCs= 30, Res= 0.3 or 0.6). The cluster-specific
marker genes were identified using the Wilcoxon test implemented in FindAll-
Markers function with Bonferroni correction of P values. The cells clusters were
manually annotated according to these marker genes. Finally, gene expression and
clustering results were visualized on a tSNE plot of the top ten PCs using
RunTSNE.

Annotation of cell types. Cell types were annotated based on the expression of
known markers, i.e., EPCAM, SFN, KRT5, and KRT14 for epithelial cell; FN1, DCN,
COL1A1, COL1A2, COL3A1, and COL6A1 for fibroblast; VWF, PECAM1, ENG and
CDH5 for endothelial cell; RGS5, MCAM and ACTA2 for pericyte; CCL21 and
PDPN for fibroblastic reticular cell; CD2, CD3D, CD3E and CD3G for T cell; CD19,
CD79A, MS4A1, JCHAIN and MZB1 for B cell and CD68, LYZ, CD14, IL3RA,
LAMP3, CLEC4C and TPSAB1 for myeloid cell. We introduced previously defined
epithelial markers, EPCAM, SFN, and all expressed cytokeratins for CD45− cells30

to identify epithelial cells. For each CD45− cluster, we calculated the average
normalized expression level of the epithelial marker gene set and expressed as
epithelial score. The clusters were ordered by epithelial scores and a significant
drop between epithelial and non-epithelial clusters was seen. We defined a robust
epithelial score threshold as 10 for epithelial clusters. Subclustering of epithelial
cells, fibroblasts, endothelial cells, T cells, B cells and myeloid cells was further
performed with the same approach as CD45- and CD45+ cells. For epithelial cells,
tumor samples (N= 52) with >100 epithelial cells were retained for subclustering.
For T-cell specific clustering, we additionally removed genes related to general cell
stress, type I Interferon (IFN) response and cell cycle as previously suggested41. The
contaminating immune cells in CD45- dataset and nonimmune cells in CD45+
dataset were removed prior to clustering on the basis of their expression patterns.
T cells with expression of both CD4 and CD8A/B were considered as unresolved
T cells, which were not included in downstream analysis.

Detection of single-cell copy number variations. Copy number variations
(CNV) in each epithelial cell were estimated by expression level from the scRNA-
seq results using an approach similar to that described previously30. Briefly, we
sorted genes according to their genomic location and calculated average gene
expression within each chromosome using a sliding window of 100 genes to deduce
the CNV. Epithelial cells from normal tissues were used as a normal karyotype
reference for the estimation. The numbers of epithelial cells in normal tissues were
limited due to the thin epithelium of normal esophagus (about 25 cell layers
thick)69 and vulnerable characteristic of normal epithelial cells70,71. However, it did
not impact their role as reference for copy number inferences.

Compared to CNV calculated from bulk WGS data, the resolution of CNV
inference using scRNA-seq data is limited. The sliding windows of this method
require 100 genes which usually span about than 50Mb in the genome for tumor
cells, which hinders the ability to identify small CNV segments. However, for those

large CNVs spanning the whole chromosome or chromosome arm, they were in
good concordance with WGS result.

Comparison of the cell proportions between the adjacent normal tissues and
ESCC tumors. The Wilcoxon test was used to explore the cell-type proportion
changes between adjacent normal tissues and ESCC tumors. As the number of
tumor tissues (N= 60) greatly exceeded that of normal tissues (N= 4), for sig-
nificantly changed cell types, we performed down-sampling analysis to remove the
influence of this unbalanced sample sizes. We randomly selected 4 samples among
all tumor samples without replacement for 1000 times and performed the Wil-
coxon test on corresponding cell proportions. We counted the number of tests with
P-value less than 0.05 to confirm the cell-type proportion changes under the
reduced sample size. For most cell types, we found their differences of cell pro-
portion between adjacent normal tissues and ESCC tumors were robustly validated
in more than 50% of the tests. Three cell types, namely TEFF, tDC, and NAF1, had
less than 50% of the tests with P-value less than 0.05. However, we could still detect
the cell-type proportion changes under a moderate significance threshold (P < 0.10)
supported by about 50% of the tests. It could be associated with their relative high
variance among samples that influence the result of statistical tests. By down-
sampling tumor tissues into 8 samples, all the claimed cell types showed significant
proportion changes with P < 0.05 in more than 50% of the tests.

Determination of heterogeneity levels of epithelial cells. Epithelial cells were
subclustered using the Seurat pipeline as described above. To capture major
information and reduce the noise, we used PCs instead of original gene expression
profiles to measure the intra-tumor and inter-tumor heterogeneity levels. We
demonstrated the correlation of intra-tumor and inter-tumor heterogeneity scores
calculated using the number of PCs ranging from 10 to 50 (Supplementary Fig. 2c).
The intra-tumor heterogeneity scores were highly robust to the number of PCs and
inter-tumor heterogeneity scores were robust and stable for PC number exceeding
15. We found that using PCs of 30 gave satisfactory results showing high corre-
lation coefficient with more numbers of PCs (r ≥ 0.98). Accordingly, we adopted 30
PCs for the further analyses. The coordinates of global average and patient average
in the PC space were calculated by averaging the PC scores for all epithelial cells or
cells from each patient. The intra- or inter-tumor heterogeneity of each patient was
defined as the average Euclidean distance between all epithelial cells from the
patient and the Patient average or the Global average.

Besides the PCA-based method, we also used cellular correlation coefficients
(Pearson) to quantify the heterogeneity scores. Specifically, we performed the
correlation analysis on the gene expression matrix of all epithelial cells for each
sample and calculated the complement of averaged correlation coefficients as the
correlation-based intra-tumor heterogeneity. We also performed the cross-
correlation analysis between transcriptome data of cells from individual sample and
all other cells and used the complement of averaged correlation coefficients as the
correlation-based inter-tumor heterogeneity. We found that they were significantly
correlated with the PCA-based intra-tumor (r= 0.71, P= 3.2 × 10−9) and inter-
tumor (r= 0.64, P= 2.9 × 10−7) heterogeneity scores (Supplementary Fig. 2c). We
found that PCA-based scores differentiate better the differences of relative
heterogeneity between patients with and without Group 1 cluster. (Supplementary
Fig. 2d).

To demonstrate the robustness of the thresholds for Group1 and Group2
clusters and samples (0.75 for cluster and 0.6 for sample), we have calculated the
ratio of samples in overlap with the 21 Group 1 sample for each cluster and sample
threshold set. The result shows that under very loose thresholds such as 0.4 for
cluster and 0.4 for sample, 70% of the Group 1 samples match to the threshold of
0.75 for cluster and 0.6 for sample, indicating that the Group 1 samples we
identified are robust to the choice of thresholds of separation. To validate this
analytical method in different sample numbers, we downsampled the original
52 samples to 40% (N= 20), 60% (N= 30) and 80% (N= 40) of samples and found
that in each case, the Group 1 samples can be robustly identified.

Identification of epithelial expression programs. For each of the 52 ESCC
samples that had >100 epithelial cells analyzed, we re-clustered the epithelial cells
individually using the Seurat pipeline as described above. In total, we gathered
274 subclusters across the 52 samples and the top 30 marker genes of each sub-
cluster were defined as an expression module for further analysis. The 274 gene
modules were further hierarchically clustered based on their expression profiles
and 8 epithelial expression programs were identified. The top-scoring genes
(N= 30) of each program were manually selected as program genes. These genes
were further hierarchically clustered to identify the most significantly correlated
gene modules and refine the marker genes for each program. To explore the
program expression status of individual cells, we applied a uniform threshold for all
programs. For a single cell, if it expressed ≥70% of the genes within a given
program, it was considered as a cell having the activated program, namely,
program cell.

As the stress program was probably associated with technical factors such as
tissue dissociation, we regressed out the expression of key stress markers (DUSP1,
EGR1, FOSB, JUNB, FOS, BTG2, and DNAJB1) in the normalized expression
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matrix for each sample and then performed the program analysis. After removing
the influences of stress genes, we still detected the Stress program in epithelial cells
but with reduced abundance. All the other programs were retained, and we did not
find new programs.

Analysis of gene set variation. To functionally describe the epithelial expression
programs and non-epithelial cell subtypes, we performed the pathway analysis
based on the 50 hallmarks from the MSigDB database (version 6.2)72 and estimated
the pathway activity of individual cells using the gene set variation analysis (GSVA)
package (version 1.30.0)73 with standard settings. To assess the differential activ-
ities of pathways between program cells and non-program cells or between dif-
ferent cell subtypes, activity scores were contrasted for each cell group using Limma
package (version 3.38.3)74.

Analysis of epithelial expression program dependency. Pairwise Fisher’s exact
test was used to examine the dependency among epithelial expression programs, by
detecting co-occurring or mutually exclusive pairs of expression programs. The
likelihood and strength were indicated by the odds ratios and their P-values.

Scoring of gene expression signatures in T cells. Treg signature was derived
from differentially expressed genes across all CD4+ T cell subtypes. Pearson
correlation between the reference gene IL2RA and all other genes across CD4+
T cells using scaled expression values was analyzed. The top 30 genes having the
highest correlation with the reference gene were defined as Treg signature genes.
For CD8+ T cells, the HAVCR2 gene was chosen as the reference gene for defining
the exhaustion signature using the same method, and the cytotoxicity signature was
calculated by the cytotoxicity associated genes (PRF1, IFNG, GNLY, NKG7, GZMB,
GZMA, GZMH, KLRK1, KLRB1, KLRD1, CTSW, CST7, CCL4, CCL3)75,76. We
computed signature scores for individual cells using AddModuleScore function in
Seurat.

Analysis of T cell receptors. The TCR sequences of single cell were processed
using the cellranger vdj (10x Genomics, version 2.1.1) and aligned to the reference
cellranger-vdj-GRCh38-alts-ensembl-2.0.0. In total, 87% of annotated T cells were
assigned with a TCR sequence. Each unique TCR sequence was defined as a clo-
notype and T cells derived from the same cell clone were considered to share the
same clonotype. Clonal cells were considered as cells with clonotype presenting in
at least two cells (clone size ≥2). To demonstrate the lineage relationship between T
cell subtypes, we profiled the shared TCR clonotypes between T cell subtype pairs.
It was measured as the proportion of clonotypes belonging to a primary phenotype
subtype (rows) shared with the secondary phenotype subtype (columns).

Coculture experiment of tDC and CD8+ T cells. Fresh ESCC tumor was placed
in RPMI-1640 medium with 20% FBS on ice immediately after surgical resection.
Tumor was rinsed with PBS, gently cut into small pieces on ice and digested in
RPMI-1640 medium containing 2 mg/ml collagenase IV and 0.5 mg/ml hyalur-
onidase for 1 h at 37 °C. The digested cell suspension was subsequently filtered
through a 70-μm cell strainer and incubated in 1X red blood cell lysis buffer on ice
for 5 min. The remaining cells were suspended in 1000 μl of PBS containing 1%
FBS after washing once with the same medium. Single-cell suspension was stained
with CD45-FITC (BD Biosciences, 555482, dilution 1:100), CCR7-PE (BioLegend,
353203, dilution 1:100) and CD274-PerCP/Cy5.5 (BioLegend, 329737, dilution
1:100). Tumor-infiltrating tDCs (CD45+CCR7+CD274+) were sorted by using a
FACSAria flow cytometer for downstream coculture experiments. Peripheral blood
was obtained from the same patient, autologous CD8+ T cells were enriched by
Human CD8+ T cell enrichment cocktail (Stemcell, negative isolation) and then
collected by Ficoll-Paque density gradient centrifugation. Autologous CD8+ T cells
(about 105) were incubated in T cell expansion medium (RPMI-1640 medium with
1000 U/ml human IL-2) in 96-well plate, tDCs were co-cultured with autologous
CD8+ T cells (tDC: T cell ratio of 1:10) with CD3/CD28 T cell activator (Gibco,
Dynabeads Human T-Activator). For inhibition of the PD1/PD-L1 pathway, PD-
L1 antibody (Bio X Cell, BE0285, dilution 100 μg/ml) was added to the well at a
final concentration of 100 μg/ml. T cell number was calculated using hemocyt-
ometer at day 1 and day 2. The coculture supernatant was collected at day 2, IL-2
and IFN-γ levels were measured with cytometric bead arrays (BD Biosciences, CBA
Human IFN-γ and IL-2 Flex Set).

Analysis of correlations among the ESCC ecosystem components. Pairwise
Spearman correlation between different immune cells, immune and nonimmune
stromal cells, and stromal cells and epithelial expression programs were examined
to indicate the interactions among the ESCC ecosystem components. Cell types
within the same major lineage develop from the same common progenitor cells and
have their own differentiation trajectories. The proportion of cell subtypes was
normalized within the major lineage groups including CD4+ T cells, CD8+ T cells,
B cells, DCs, non-DC TIMs, fibroblasts/pericytes and endothelial cells, respectively.
We tested whether the dissociation conditions would influence the cell proportion
levels. According to average expression levels of 132 dissociation-induced genes77,

we divided the samples into two groups with high or low expression level of
dissociation related genes, namely high or low dissociation group. We compared
the mean and coefficient of variation (CV) of cell proportions for each cell type
between two groups and found little difference between two dissociation condi-
tions. These results are shown in Supplementary Fig. 5k–m.

The correlation coefficients were calculated based on the proportion of each cell
subtype to show the interplays among different immune cell subtypes or stromal
cell subtypes. Spearman correlation between the epithelial program scores and the
proportions of stromal cells was calculated to indicate the interactions of epithelial
cells and stromal cells. Significant correlations (P < 0.05) were visualized by
heatmap.

Construction of single-cell trajectories. Single cells assigned to fibroblasts and
pericytes were used to construct the diffusion map and perform the partition-based
graph abstraction (PAGA) analysis. Diffusion-map dimensionality reduction was
performed using the RunDiffusion function in Seurat and the first 3 components of
the diffusion map were calculated. The PAGA analysis was performed with Scanpy
package (version 1.2.2)78 to quantify the connectivity of fibroblast/pericyte
subtypes.

Analysis of the cell–cell interaction. The cell-cell interaction between endothelial
cells and fibroblasts/pericytes was predicted with CellphoneDB (version 2.0)79. The
interaction between two cell types was measured based on the expression of the
receptors in one cell type and ligands in the other cell type. Based on random
permutations of cell types, the mean of the average receptor/ligand expression level
in the interacting pair and P-value for the likelihood of cell-type specificity of the
given interacting pair were calculated.

Prediction of activated TFs using SCENIC analysis. The activities of gene reg-
ulatory networks (GRNs) and TFs were identified by the SCENIC python workflow
(version 0.9.1) using default parameters (https://github.com/aertslab/pySCENIC).
The human TF gene list was collected from the same resource. Activated TFs were
identified in the Binary matrix, and the differentially activated TFs were selected
using the Wilcoxon test based on the AUC matrix (FDR < 0.05 and Fold change
>2).

Whole-exome and whole-genome sequencing and data analysis. Genomic
DNA from blood, adjacent normal tissue and tumor samples of scRNA-seq cohort
was extracted using the QIAamp DNA mini Kit (Qiagen). The sequencing libraries
for WGS were constructed using Tn5 transposase and sequenced on HiSeq XTen
(Illumina) with 2 × 150 bp paired-end mode. WES libraries were constructed using
NEBNext Ultra DNA Prep Kit for Illumina (New England Biolabs), followed by
exome enrichment using SureSelect Human All Exon V6 (Agilent Technologies).
The WES libraries were sequenced on NovaSeq 6000 (Illumina) with 2 × 150 bp
paired-end mode. The mean sequencing depth for WES samples was about 150X
(for tumor tissues) while the depth was about 1X for WGS samples.

The baseqCNV pipeline80 was used for CNV analysis of WGS results. In brief,
the raw reads were aligned to reference genome (GRCh38) using BWA-MEM
(version 0.7.17). The read counts in each dynamic bin were counted, normalized
with bin size and sequencing depth, then corrected GC bias using LOWESS
smoothing. For these bulk samples, the ploidy number was set to 2 and the DNA
copy number data was segmented to identify abnormal genomic regions.

Whole-exome sequencing results of tumor and adjacent normal tissues were
mapped to the GRCh38 reference genome using BWA-MEM (version 0.7.17). The
WES data from 46 ESCC was retained for the subsequent analysis. Deduplication
was performed with Picard (http://broadinstitute.github.io/picard/; version2.18.16)
and base quality recalibration was done using BQSR module of GATK (version
4.0). The variants were called with mutect2 module of GATK. The high-quality and
reliable single nucleotide variations required at least 100x coverage, minimal allele
frequency (AF) ≥ 10% in tumor and AF < 2% in normal tissue. The annotation of
variants was conducted with ANNOVAR (version 2017jun)81. Mutational
signatures were extracted using the R package maftools and the previously
published data were combined to increase the power and accuracy5. The frequency
of each signature was estimated in 46 ESCC samples. We identified 4 mutational
signatures showing high similarities with COSMIC signatures (all cosine similarity
>0.8), including alcohol drinking related signature A (Sig. A), tobacco smoking
related signature B (Sig. B), ageing related signature C (Sig. C) and APOBEC
related signature D (Sig. D).

Analysis of effects of genomic alterations on ESCC ecosystem components.
To examine whether the somatic driver gene mutations identified by WES have
impacts on the epithelial expression programs and components in the ESCC TME,
the Wilcoxon test was performed to compare the epithelial program scores and
TME subtype proportions between ESCC samples with or without the mutations.

RNA sequencing in bulk tumor tissues. Bulk RNA-seq was conducted in samples
obtained from the Discovery cohort of 139 ESCC patients for survival analysis. The
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library preparation and sequencing were performed as previously described5.
Briefly, RNA from the tissue samples was extracted using the Allprep RNA Kit
(Qiagen) and sequenced by Illumina NovaSeq 6000 with a total of 10 Gb data.
RNA-seq data were mapped to GRCh38 reference genome and the gene expression
values were calculated using RSEM82.

Immunohistochemical staining of marker genes. Tissue microarrays were pre-
pared from 226 ESCC tumors in Validation cohort 2. Slides were incubated with
antibody against AGR2 (Abcam, ab76473, dilution 1:1000), CXCL17 (Proteintech,
18108-1-AP, dilution 1:50) or MUC20 (Abgent, AP7830b, dilution 1:100) and
detected with the Dako REALTM EnVisionTM Detection System (K5007). DAB
(3,3′-diaminobenzidine) staining intensity was analyzed by color deconvolution
algorithms in inForm software (PerkinElmer; version 2.4.2). The H-score method
was used to evaluate the percentage of positive stained cells and staining intensity.
The average intensity of staining in positive cells was assigned as an intensity score
(0, none; 1, weak; 2, moderate, and 3, strong). The score was obtained by the
formula: 3 × % of strongly stained cells + 2 × % of moderately stained cells + 1 × %
of weakly stained cells.

Analysis of the correlation between gene expression levels and ESCC survival
time. The correlations between the expression levels of genes in the epithelial
expression programs and ESCC survival time were examined in the Discovery
cohort (N= 139) and validated in two Validation cohorts (N= 94 and N= 226,
respectively). For discovery, the RSEM normalized read counts of bulk RNA-seq
were log2 transformed and the possible effects of TME compositions were removed
using the R package estimate (version 1.0.13)83. The expression levels of each gene
were normalized by tumor purity and the median level of each gene was used as
dividing point of high (≥median) or low (<median) expression for survival analysis.
The median survival time in patients with high or low expression of the genes was
estimated by Kaplan–Meier method and the significance of difference was exam-
ined by log-rank test. We identified 14 genes significantly correlated with ESCC
survival (all P < 0.05) in the Discovery cohort. The significantly correlated gene
expressions were further validated using the same method in Validation cohort 1,
which was described in our previous study5 and in Validation cohort 2 using
H-scores of the protein staining in tissue microarray of ESCC samples. The
minimum log-rank P-value analysis was performed to demonstrate potential
H-score threshold values of the interest proteins for prognostic stratification. The
threshold with the smallest log-rank P-value is selected.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw RNA and DNA sequencing data of this study have been deposited into the Gene
Expression Omnibus (GEO) with accession number GSE160269 and Sequence Read
Archive with accession number SRP327447, respectively. The raw sequencing data are
also available from the Genome Sequence Archive of Beijing Institute of Genomics,
Chinese Academy of Sciences with accession number HRA000195. Gene expression
matrix of ESCC and paired adjacent normal samples are also available from the GEO
with accession number GSE160269. VCF files containing variants called from ESCC
genomes have been deposited into the European Variation Archive with accession ID
PRJEB41091. We obtained the hallmark gene sets from the MSigDB database (http://
www.gsea-msigdb.org/gsea/msigdb/genesets.jsp?collection=H). The remaining data are
available within the article, supplementary information and Source data. Source data are
provided with this paper.

Code availability
Example scripts to process and analyze data are available at https://github.com/friedpine/
scRNASeq_ESCC. Detailed information will be available from the corresponding author
upon reasonable request.
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