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Spin-valley coupling in single-electron bilayer
graphene quantum dots
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Understanding how the electron spin is coupled to orbital degrees of freedom, such as a

valley degree of freedom in solid-state systems, is central to applications in spin-based

electronics and quantum computation. Recent developments in the preparation of

electrostatically-confined quantum dots in gapped bilayer graphene (BLG) enable to study

the low-energy single-electron spectra in BLG quantum dots, which is crucial for potential

spin and spin-valley qubit operations. Here, we present the observation of the spin-valley

coupling in bilayer graphene quantum dots in the single-electron regime. By making use of

highly-tunable double quantum dot devices we achieve an energy resolution allowing us to

resolve the lifting of the fourfold spin and valley degeneracy by a Kane-Mele type spin-orbit

coupling of ≈ 60 μeV. Furthermore, we find an upper limit of a potentially disorder-induced

mixing of the K and K 0 states below 20 μeV.
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The valley pseudospin is an inherent property of two-
dimensional honeycomb crystals and - together with the
electron spin - makes graphene and bilayer graphene (BLG)

interesting for applications in spin- and valley-based electronics
and quantum computation1,2. This pseudospin arises from the
orbital degree of freedom of the independent energy valleys
located at the inequivalent vertices (K and K 0) of the hexagonal
Brillouin zone3. In analogy to the real spin, the valley pseudospin
exhibits also a valley Zeeman effect4–6, where the valley Zeeman
splitting – varying linearly with (out-of-plane) magnetic field – is a
result of the orbital magnetic moments originating from the non-
vanishing Berry curvature, Ω, at the K-points of gapped BLG (see
Fig. 1a). Since these magnetic moments, which have opposite signs
for the two valleys, crucially depend on the wave function, the
valley g-factor in BLG quantum dots can be tuned by electric
fields7,8, offering promising and interesting possibilities for
manipulation. However, to fully exploit the potential to manip-
ulate and control both the valley and spin degrees of freedom in
BLG quantum dots (QDs), a detailed understanding of their

interaction is essential. This is as relevant for a better under-
standing of spin decoherence processes as it is for exploring ways
to electrically manipulate the spin degree of freedom via spin-orbit
interaction and implementing innovative spin-valley qubits2.
Indeed, a detailed understanding of the low-energy spectrum of
single particle states within the first electronic orbital (see Fig. 1b)
is crucial for finding suitable working points and manipulation
mechanisms for possible qubit operation.

Although the single-particle spectrum in BLG QDs has been
intensively studied in recent years9–11, the low-energy spin-valley
coupling in BLG QDs has remained experimentally unexplored.
This is certainly partly due to the high energy resolution required,
as theoretical studies predict an intrinsic spin-orbit (SO) coupling
in graphene and BLG of around ΔSO ≈ 24 μeV12–16 and only
recently, experiments have – partly indirectly – reported values in
the range between 40 and 80 μeV17,18. Moreover, our current
knowledge with respect to a possible mixing of K and K 0 states is
very limited. The latter is expressed by ΔKK0 and could allow to
access helical states19.
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Fig. 1 Band structure and single particle spectrum of a BLG quantum dot. a Low energy band schematic of BLG at the K and K0 points. BLG exhibits a non-
trivial Berry curvature Ω that leads to an effective out-of-plane magnetic moment with opposite sign at K and K0. b Energy dispersion of single-particle
states in BLG QDs as a function of in-plane (B∥, left) and out-of-plane (B⊥, right) applied magnetic fields with respect to the BLG plane. The SO gap, ΔSO,
lifts the fourfold degeneracy and polarizes the spins out-of-plane for zero magnetic field and a potential K-K0 state mixing (described by ΔKK0 ) leads to an
anticrossing of the K # and K0 # state.
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In this letter, we report on measurements of the excited state
spectrum of single-electron double quantum dots (DQDs) in
BLG providing information on ΔSO as well as on ΔKK0 . By tuning
a DQD to a regime of low interdot tunnel coupling, we are able
to resolve the interdot transitions with remarkably high energy
resolution allowing to reconstruct the underlying single particle
spectrum of both quantum dots. We find that the spin and
valley degeneracy of the single particle spectrum is lifted by a
Kane–Mele type SO gap13 of ΔSO ≈ 60 μeV, which separates the
two Kramer’s pairs – ðK 0 ";K #Þ and ðK 0 #;K "Þ – similar (but
smaller in magnitude) to what has been observed in carbon
nanotube QDs20,21. The disorder-induced mixing of K and K 0

states is found to be at least smaller than ΔKK0 < 20 μeV, where
the upper bound is resulting from the energy resolution of our
measurements. Figure 1b depicts the first four BLG QD states
composing the first electronic orbital (“shell”) as a function
of the magnetic fields applied in-plane (B∥) and out-of-plane
(B⊥) to the BLG sheet. At zero magnetic field, the four states
are split into two Kramer’s pairs, separated by ΔSO. Applying
an out-of-plane magnetic field linearly shifts the energy of the
states according to the spin and valley Zeeman effects
EðB?Þ ¼ 1

2 ð± gs ± gvÞμBB?, where μB is the Bohr magneton and gv
is the valley g-factor, which quantifies the strength of the valley
magnetic moment. Note, that gv strongly depends on the QD’s
wave function and thus on the size of the QD11. It is usually one
order of magnitude larger than the spin g-factor, gs= 2. As the
valley magnetic moment is oriented perpendicular to the BLG
plane, in-plane B-fields only couple to the electron spin. How-
ever, as the SO coupling acts as an effective out-of-plane mag-
netic field close to the K-points, the spin states are polarized
perpendicular to the BLG plane (see insets in Fig. 1b)12.
Applying an in-plane magnetic field therefore shifts the states

according to EðBkÞ ¼ ± 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2
SO þ ðgsμBBkÞ2

q

, recovering the
linear spin Zeeman effect for high B-fields.

Results
Device characterization. The devices consist of a BLG flake, which
has been encapsulated between two (≈ 25 nm thick) flakes of
hexagonal boron nitride (hBN) and has been placed on a graphite
flake, acting as a back gate (BG), using a dry van-der-Waals
stacking technique. Cr/Au split gates (SGs) are deposited on top,
forming a 2 μm long and 130 nm wide channel. Two layers of
metallic Cr/Au finger gates (FGs) with a width of 70 nm and a pitch
of 150 nm are fabricated across the channel. Details on the fabri-
cation process can be found in ref. 6. Figure 2a shows a scanning
electron micrograph of the gate structure, where the gates used as
plunger gates are color coded. Figure 2b shows a schematic cross
section through the heterostructure and the gate stack highlighting
the formation of the QDs and source-drain regions by electrostatic
soft-confinement. All measurements are performed in a helium
dilution refrigerator at a base temperature of 10mK, using standard
DC measurement techniques.

QDs are created using three layers of top gates, following
previous studies of gate-defined BLG QDs5,6,9,10,22,23. A band gap is
opened by applying an out-of-plane displacement field24,25 with the
help of the SG (VSG= 1.73 V) and BG (VBG=−1.56V), while the
Fermi energy (EF) is tuned into the band gap. This leaves a narrow
p-type conducting channel, connecting source and drain. A single
electron DQD can be formed using adjacent FGs on the lower
FG layer (GL and GR), locally overcompensating the BG voltage
(see lower illustration in Fig. 2b and the band edge diagram in
Fig. 2c, highlighting the potential landscape along the narrow
channel)6. By applying VGC=−4 V to the central FG between GL
and GR, the interdot tunnel coupling is reduced in order to enhance
the energy resolution of the bias spectroscopy measurements.
Figure 2d shows a charge stability diagram of the first four pairs of
triple points (see Supplementary Fig. 1 for more details).

Next, we focus on the (0,1)–(1,0) charge transition, where each
of the QDs is at most occupied by a single electron. Importantly,
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Fig. 2 Device tuning. a False-color scanning electron micrograph of the metallic gates. A pair of split gates defines the conducting channel, which can be
modulated by voltages applied to the finger gates. The gates used in the following are color coded. b Schematic cross-section of the device. The upper part
shows the metallic gates on top of the hBN/BLG/hBN van-der-Waals heterostructure. The lower part color codes the charge carrier density within
the channel and the two quantum dots (red: holes and blue: electrons). c Schematics of the band edge profile along the narrow channel, highlighting how
the finger gates are used to form a DQD consisting of QDL and QDR connected to the p-type conducting channel. d Charge stability diagram showing the
current through a double quantum dot as function of the potential applied to the two gate fingers, VGL and VGR. A constant bias voltage of Vb= 1 mV is
applied and the central finger gate voltage is kept at VGC=−4 V.
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the combined tunneling rate is reduced to Γ < 1 GHz by GC on
the upmost gate layer (see Fig. 2a–c). This reduces the tunnel
broadening of the resonance lines and strongly suppresses
transport if the states in the two QDs are off resonance.

Magneto-transport spectroscopy. Figure 3a–c show finite bias
charge stability diagrams of the first triple point pair at out-of-
plane magnetic fields of B⊥= 0, 0.2 and 0.4 T. In order to
describe the configurations of the DQD, we introduce the
orthogonal axes δ and ε, which describe how far the states in both
QDs are tuned into the bias window (δ) and how large their
energy detuning (ε) is, respectively. Note, that in the single
electron regime, the QD transitions (chemical potentials) are
equivalent to the single particle energies. At zero B-field, two
resonances close to zero detuning (resonances (i) and (ii), (iii))
are visible, while the rest of the triple point shows only suppressed
current. Increasing B⊥ shifts one of the resonances (ii) to higher
detuning (compare green arrows in Fig. 3a–c). Eventually, a third
resonance appears (iv), which does not extend as far on the δ-axis
as the other transitions (see Fig. 3c).

The nature of these resonances can be explained in terms of
transitions from single-particle states in the left QD (QDL) to
single-particle states in the right QD (QDR). For the present
interdot tunneling times (≈ 10 ns), we assume that the electron
spin is entirely conserved, while phonon-assisted valley
relaxation may occur on these time scales, as well as during
interdot tunneling26. We consider the combined tunneling rate,
Γcomb to be limited by the interdot tunneling rate, Γm:
I/e= Γcomb ≈ Γm, where I is the current through the DQD
device and e the elementary charge. This is supported by the
absence of any δ dependence of the transitions. Figure 3d shows
a line cut through the triple point in Fig. 3a along the yellow
dashed line. The two transitions (black arrow and green arrows
in Fig. 3a) result in two distinct peaks in the tunneling current.
The first resonance, (i) occurs at ε= 0, where every state in the
left QD can tunnel into its equivalent state in the right QD,
highlighted by the black arrow (see left schematic in Fig. 3d).
The second resonance occurs at ε= ΔSO= 68 ± 7 μeV, where
two processes are possible, both requiring valley flips, namely
transition (ii): ðK 0 "ÞL ) ðK "ÞR and transition (iii):
ðK #ÞL ) ðK 0 #ÞR, highlighted by the two green arrows (see
right schematic in Fig. 3d).

When applying an out-of-plane B-field, the energies of the
single particle states shift according to their spin and valley
Zeeman effect, as depicted on the right-hand side of Fig. 1b.
Consequently, the detuning energy necessary for the transition
(ii) increases linearly with magnetic field, highlighted by the light
green arrow in Fig. 3e. The observed increase in detuning energy
corresponds to a valley g-factor of gv ≈ 15. This observation
validates the assumption that valley flips are allowed, since
otherwise interdot transitions should not shift as function of B⊥.
The detuning required for transition (iii), decreases to zero, once
the involved states are equal in energy, which is the case at
B⊥ ≈ 0.18 T (see Fig. 3e). At higher magnetic fields, the reversed
process, transition (iv): ðK 0 #ÞL ) ðK #ÞR becomes possible,
which also shifts with a valley g-factor of gv ≈ 15. This transition is
marked by the orange arrow in Fig. 3c and offset to the transition
(ii) by Δε= 2ΔSO, which becomes apparent from Fig. 3e. Since
transition (iv) originates from an excited state (ES) in the QDL, it
only becomes accessible as soon as the ES enters the bias window.
Therefore, the transition line (iv) has a shorter extent along the δ-
axis, as it only sets in at finite δ, which is highlighted by the black
line in Fig. 3c. The observation of transition (iv) also justifies the
assumption of spin conservation. If the spin lifetime would be
shorter than the tunneling rate, ðK 0 #ÞL would decay into ðK 0 "ÞL,

blocking this process and the resonance would not be visible.
Please note that the tunneling current corresponding to
transitions (ii)-(iv) is energy (ε) and δ-dependent as resonant
tunneling (in particular with the drain reservoir) leads to higher
tunneling currents (see Fig. 3a–c).

Figure 4 shows the interdot transitions as function of in-plane
(Fig. 4a, b) and out-of-plane (Fig. 4c, d) B-field highlighting the spin
and valley texture of the low energy spectrum. In Fig. 4a, we show
the derivative of the tunneling current I with respect to ε as function
of ε and B∥. Apart from the zero detuning transition (horizontal
dashed line), one additional feature is visible (curved dashed line),
which corresponds to the transitions from the energetically lower
Kramer’s pair to the energetically higher Kramer’s pair, namely
ðK 0 "ÞL ) ðK "ÞR and ðK #ÞL ) ðK 0 #ÞR, as highlighted by
the schematic insets of Fig. 3d. Increasing the in-plane B-field
increases the energy difference between the Kramer’s pairs due to
the spin Zeeman effect and therefore the required detuning shifts

according to ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2
SO þ ðgsμBBÞ2

q

:
Fitting this equation with fixed gs= 2, which is in good

agreement with earlier measurements22, incl. electron spin
resonance experiments27, yields ΔSO= 62 ± 6 μeV. This results
in the dashed and solid lines in Fig. 4a, b showing good
agreement with the experiment. Applying an in-plane magnetic
field tilts the spin from an out-of-plane orientation induced by
the SO coupling into the plane of the BLG (see insets in Fig. 4b).
This effect continuously reduces the overlap between the spin
states from different Kramer’s pairs, e.g., the spin state from K 0 "
is not perfectly parallel to K " anymore, until for large B∥ they
will eventually be completely orthogonal. This effect becomes
visible in the tunneling current of the ES transition, which
decreases with increasing in-plane magnetic field. In the top panel
of Fig. 4b, we show the ratio between the current through the
exited and the ground state (ε= 0) as a function of B∥
highlighting this effect, which is in good agreement with what
is expected from theory (see dashed line and figure caption).

Figure 4c shows the derivative of the tunneling current with
respect to ε, as function of energy and B⊥. Here, according to Fig. 1b
the transition spectrum is significantly richer and all three transitions
(ii), (iii) and (iv) discussed in Fig. 3e can be observed (see dashed
lines and labels in Fig. 4d). If we denote the valley g-factor in the
left and right QD with gv,L and gv,R, respectively, then we can
express the different transition energies as a function of B⊥ by
εii ¼ ΔSO þ 1

2 ðgv;R þ gv;LÞμBB?, εiii ¼ ΔSO � 1
2 ðgv;R þ gv;LÞμBB?,

εiv ¼ �ΔSO þ 1
2 ðgv;R þ gv;LÞμBB?. Here, the electron spin Zeeman

effect has no influence on the transition energies, as transitions only
occur between states of the same electron spin. If that would
not be the case, many more transitions would be possible, e.g.,
ðK 0 #ÞL ) ðK 0 "ÞR, which would yield a line originating at
ε=ΔSO with much flatter slope of gs= 2. Taking ΔSO from the
analysis of the in-plane B-field data (Fig. 4a, b) and choosing the
valley g-factors to be gv,L= gv,R= 15 we find – without any
additional parameter – good agreement with the experimental data
(see dashed and solid lines in Fig. 4c, d). The values of gv are similar
to those reported in previous studies of similar BLG QDs and
compatible with theoretical calculations6,23. Considering the same
geometry of both QDs and the similar voltages applied to GL and
GR, it is reasonable to assume that both QDs have very similar valley
g-factors. Note, that as soon as a transition requires negative
detuning, it becomes Coulomb blockaded, which is the reason why
no transition is observed below ε= 0. The lack of clear signatures of
the transition (ii) at low B-field (see Fig. 4c, d) can be explained by
their reduced tunneling current compared to transition (iii) due to
the stronger detuning of the ðK 0 "ÞL ground state from the source
chemical potential compared to ðK #ÞL, combined with strong
resonant tunneling from source to the left QD.
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Fig. 3 (0,1)-(1,0) triple point. Charge stability diagrams of the first pair of triple points ((1,0)-(0,1) transition) measured at Vb= 1mV and a B⊥= 0 T,
b B⊥= 0.2 T, c B⊥= 0.4 T. The white arrows in panel a indicate the orthogonal detuning axis ε and the DQD’s common energy δ. At zero magnetic field,
two transition lines are visible (green and black arrows). d Cut along the yellow dashed line in the first triple point at B= 0 T. Two Lorentzian peaks are fit
to the data to extract a splitting of ΔSO= 68 ± 7 μeV. Inset: Schematic energy diagrams of a DQD in the finite bias regime for different interdot detuning
energies ε, illustrating resonant transport through the ground state of each QD (transition (i); left inset) and resonant transport at ε=ΔSO (transitions (ii)
and (iii); right inset). e Schematic of the single particle energy spectra of the first orbital of each QD as a function of B⊥. The arrows (color coding as in
panels a–c) indicate spin conserving transitions from single particle states in the left QD (solid lines) to single particle states in the right QD (dashed lines).
The inset shows the transition (iv) at finite magnetic field.

Fig. 4 Magnetospectroscopy measurements. a Magnetotransport measurements showing dI/dε as function of detuning energy and in-plane B-field. The
horizontal dashed line marks the ground state (GS) transition (ε= 0) and the curved line marks the excited state (ES) transition. b The upper panel shows
the ratio of the ES current with respect to the GS current. From a simple projection model, we obtain the dashed line, which describes the expected decay in
amplitude of the ES due to the spins tilting in-plane. c Similar data as in panel a but for out-of-plane B-field. The dashed lines mark all transitions described
in Fig. 3e. d Extracted transition energies as function of B⊥ highlighting the transitions (ii), (iii) and (iv) (see labels). The inset shows a low-energy close-up
around the transition (iii) highlighting the presence of a finite K � K0 mixing. The dashed line corresponds to transition energies, including a ΔKK0 ¼ 20 μeV.
The solid lines below and above correspond to ΔKK0 ¼ 10 μeV and 30 μeV, respectively.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25498-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5250 | https://doi.org/10.1038/s41467-021-25498-3 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


By closely inspecting the transition (iii), especially close to the B-
field regime where the K # state is crossing the K 0 # state (i.e.,
around ε= 0), we can provide an estimate of the upper limit of a
possible disorder-induced mixing of the K and K 0 states. The inset
of Fig. 4d shows a close up, where we included the expected
transition energies for different values of ΔKK0 (see also Supple-
mentary Fig. 3). We do not observe any anticrossing within the
margin of the energy resolution of our measurement, neither for the
device presented in Fig. 4d nor for a second single-electron DQD
device presented in Supplementary Fig. 2. From this comparison,
we estimate that ΔKK0 is surely not exceeding a value of 20 μeV in
both DQD devices. Note, that this upper limit is significantly
smaller than for carbon nanotubes with values on the order of
100 μeV20,21. In carbon nanotubes the present ΔKK0 may also
influence the magnitude of the zero-field splitting of the Kramer’s
pairs and thus potentially lead to an overestimation of ΔSO. As the
zero field splitting consists of the quadratic sum of the two effects,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2
SO þ Δ2

KK0

q

, and our observed splitting is at least a factor of three

larger than ΔKK0 , the influence of the intervalley mixing on the
observed values of ΔSO is smaller than 10% and thus lies within the
range of our measurement uncertainties.

Discussion
Apart from the Kane–Mele SO coupling, which is intrinsically
present in graphene and BLG, extrinsic Bychkov–Rashba SO
coupling and pseudospin inversion asymmetry (or principal plane
asymmetry) SO coupling can in principle also play a
role12–16,28,29. The latter, which arises for example when placing
graphene or BLG on substrates, such as e.g., hBN, depends on the
magnitude of k (measured from the corners of the Brillouin zone)
and is thus suppressed at the K and K 0-points16, where our
devices are operated. The Rashba-type SO coupling needs to be
discussed in more detail, since in our devices the inversion
symmetry is explicitly broken by the applied out-of-plane dis-
placement field. The breaking of inversion symmetry and the
magnitude of the resulting Bychkov–Rashba SO gaps have the-
oretically been investigated by Kane and Mele for single-layer
graphene13 and by Konschuh et al. for BLG12. Both studies
conclude that the Rashba-type SO coupling is negligible (≈1 μeV)
compared to the Kane–Mele coupling term. In addition, the
Bychkov–Rashba SO coupling term is expected to be strongly
suppressed in BLG single-electron QDs, since specifically in BLG
this term vanishes for the low energy bands close to the K and
K 0-points12. Thus, all this is expected to lead to a displacement-
field-independent SO gap that can be experimentally verified.

In Fig. 5, we show the SO gap as function of displacement field,
D. Here, ΔSO has been extracted from zero B-field data similar to
the measurements shown in Fig. 3a, d but with different back and
split gate voltages such that the D-field is tuned from D= 0.24 V/
nm to 0.34 V/nm, also resulting in different band gaps in the BLG
as highlighted by the insets in Fig. 5. From all data presented in
Fig. 5 – including data from a second single-electron DQD device
(red triangles) and data from a different single-electron QD
device (yellow square, more details Supplementary Fig. 4) – we
conclude that the observed SO gaps are all consistent and within
the error bars constant over the investigated D-field range, with a
mean value around ΔSO ≈ 60 μeV. From the absence of any
dependency of ΔSO as function of the strength of the potential
breaking the inversion symmetry, we conclude that the experi-
mentally extracted ΔSO is dominated by the Kane–Mele coupling
term. Interestingly, our ΔSO values are slightly larger than what
has been extracted in previous experiments performed in bulk
graphene on trenched SiO2

18. Also this value is larger than the-
oretically predicted12, but might be explained by an enhancement
due to phonon-assisted SO coupling30. In our case we expect that

the SO coupling is slightly enhanced due to the proximity effect
when encapsulating BLG with hBN crystals17, very similar to the
proximity enhanced SO coupling when placing BLG on WSe231.

In summary, we studied the low-energy excited state spectrum
of a gate-defined single-electron quantum dot in bilayer gra-
phene. We find a spin-valley coupling dominated by a Kane–Mele
type SO coupling with ΔSO ≈ 60 μeV, giving rise to two Kramer’s
pairs with either parallel or anti-parallel spin-valley orientation.
The small value for ΔKK0 (< 20 μeV) is not entirely unexpected for
flat and disorder-free BLG, and raises the hope that the existing
spin-valley coupling – without K � K 0 mixing – will be helpful
for a future qubit operation.

Data availability
The data supporting the findings are available in a Zenodo repository under https://
doi.org/10.5281/zenodo.5258323.
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