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Serial circulating tumor DNA (ctDNA) monitoring is emerging as a non-invasive strategy to

predict and monitor immune checkpoint blockade (ICB) therapeutic efficacy across cancer

types. Yet, limited data exist to show the relationship between ctDNA dynamics and tumor

genome and immune microenvironment in patients receiving ICB. Here, we present an in-

depth analysis of clinical, whole-exome, transcriptome, and ctDNA profiles of 73 patients

with advanced solid tumors, across 30 cancer types, from a phase II basket clinical trial of

pembrolizumab (NCT02644369) and report changes in genomic and immune landscapes

(primary outcomes). Patients stratified by ctDNA and tumor burden dynamics correspond

with survival and clinical benefit. High mutation burden, high expression of immune sig-

natures, and mutations in BRCA2 are associated with pembrolizumab molecular sensitivity,

while abundant copy-number alterations and B2M loss-of-heterozygosity corresponded with

resistance. Upon treatment, induction of genes expressed by T cell, B cell, and myeloid cell

populations are consistent with sensitivity and resistance. We identified the upregulated

expression of PLA2G2D, an immune-regulating phospholipase, as a potential biomarker of

adaptive resistance to ICB. Together, these findings provide insights into the diversity of

immunogenomic mechanisms that underpin pembrolizumab outcomes.
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Therapeutic blockade of the programmed cell death 1 (PD-
1) immune checkpoint has provided durable clinical ben-
efit to patients with advanced cancers. When PD-1

receptor signaling is abrogated, effector functions of tumor-
specific CD8+ T lymphocytes within the tumor microenviron-
ment (TME) can be restored, resulting in disease control. While
high clinical benefit rates (37–87%) have been observed in
Hodgkin’s lymphoma, metastatic melanoma, Merkel cell carci-
noma, and microsatellite unstable cancers1, modest response rates
(10–20%)1 coupled with the development of immune-related
adverse events in a fraction of patients, have continued to drive
research into strategies to improve patient selection for ICB
therapy2.

High tumor mutation burden (high-TMB) has emerged as the
most promising and controversial pan-cancer biomarker for
predicting ICB therapeutic responses3,4. Despite pan-cancer US
FDA approval of ICB treatment for any high-TMB tumor, high-
TMB status failed to predict improved ICB response across cancer
types in a recent assessment with over 1500 tumors4, calling into
question its clinical utility. In recent years, tumor genomics stu-
dies enabled by large, multi-dimensional datasets—such as the
The Cancer Genome Atlas (TCGA), identified links between
genomic alterations in cancers, infiltrating immune cell popula-
tions and spontaneous local immune cytolytic activity5 to suggest
that immune evasion strategies are fundamental to tumor
development and may impact ICB response across cancer types.
Molecular characteristics uncovered in these studies have
potential as predictive biomarkers or therapeutic targets to
improve ICB clinical benefit. Together, this forms a strong
rationale to pursue ICB response biomarker discovery and
assessments in pan-cancer cohorts.

We previously reported that the change in circulating tumor
DNA (ΔctDNA) level at 6–7 weeks of pembrolizumab treatment
from baseline ctDNA correlated with progression-free survival
(PFS), overall survival (OS), and clinical benefit (CB)6 in meta-
static cancer patients enrolled in the INvestigator-initiated Phase-
II Study of Pembrolizumab Immunological Response Evaluation
clinical trial (INSPIRE; NCT02644369). To extend these findings,
we explored the use of ΔctDNA as an indicator of molecular
sensitivity to stratify patients into subgroups with or without
robust response to pembrolizumab for downstream comparisons
of tumor genomic and gene-expression features. Evaluating
changes in genome and immune biomarkers in patient blood and
tumor biopsies is the primary outcome for the INSPIRE trial. This
analysis draws on the clinical and molecular profiling data from
all 106 patients enrolled, building upon a previous interim report7

of the first 80 patients and germline HLA status from 101
patients8 (Supplementary Fig.1).

Here, we show that combined use of ΔctDNA and tumor
burden change define patient populations with distinct survival
outcomes. We also provide evidence that this combination bio-
marker may differentiate tumor pseudoprogression from true
progression. Based on this classification, we perform an in-depth
integrated analysis of genomic and transcriptomic data derived
from tumor biopsies collected from the INSPIRE trial and report
the primary outcomes by comparing somatic mutations, copy
number alterations (SCNAs), tumor immune microenvironment,
and gene-expression patterns between selected patients with the
lowest level of molecular responses and those with high response
or clinical benefit. Comparisons of baseline somatic and germline
mutation and copy-number profiles between sensitivity groups
reveals frequently altered genes associated with early molecular
response to pembrolizumab. Gene-expression profiling of long-
itudinal tumor tissue samples identifies differentially regulated
genes associated with clinical benefit and disease progression.
This study demonstrates the potential of ΔctDNA-guided sample

stratification for biomarker assessment and discovery. Further-
more, we highlight the added value of longitudinal tumor and
blood specimen integrated molecular profiling to uncover diverse
mechanisms of response and resistance to ICB.

Results
Early changes in ctDNA and tumor burden defines pem-
brolizumab sensitivity phenotypes associated with clinical
outcomes and mutation burden. In the INSPIRE cohort
(n= 106) of advanced solid cancer patients treated with pem-
brolizumab (head and neck (HNSCC), triple-negative breast
(TNBC), high-grade serous carcinoma (HGSC), melanoma
(MM), and other mixed solid tumors (MST)), we observed 4%
(n= 4) complete response (CR), 13% (n= 14) partial response
(PR), 25% (n= 27) stable disease (SD), 54% (n= 57) progressive
disease (PD) (Fig. 1A) as per RECIST criteria. A quarter of the
patients (n= 26) achieved CB, defined as CR, PR, and SD longer
than 18 weeks (Supplementary Data 1). At the date of data col-
lection cut-off (18 July 2019), the median follow-up duration was
11 months (range 0.6–35 months).

We performed whole-exome sequencing (WES) of baseline
tumor biopsies with matching peripheral blood derived germline
DNA to identify somatic alterations, of which one-third (n= 34)
of the samples had low DNA content or quality unsuitable for
WES. Of the 72 patients with successfully profiled baseline
tumors, 71 had undergone longitudinal assessment of ctDNA
dynamics6 and tumor burden assessment by imaging at matching
time points (Fig. 1B and Supplementary Fig.1).

When assessing the correlation between the change of ctDNA
(ΔctDNA) at 6–7 weeks and the change of target lesion
measurement (ΔTM) between baseline and 9 weeks of treatment,
we observed that the combination of these metrics stratified
patients into four subgroups associated with distinct survival
outcomes (Fig. 1C–E). As such, we defined this classification
system as a proxy of molecular sensitivity to pembrolizumab. Our
cohort included: 44% (32/71) low sensitivity (LS, ΔctDNA, and
ΔTM positive), 22% (16/71) high sensitivity (HS, ΔctDNA, and
ΔTM negative), 22% (16/71) mixed sensitivity with potential
pseudoprogression (MSPP, ΔctDNA negative, and ΔTM posi-
tive), and 10%(7/71) mixed sensitivity with emerging resistance
(MSER, ΔctDNA positive, and ΔTM negative). HS and MSPP
groups had improved OS and PFS compared to LS and MSER
(Fig. 1D, E), while the HS group had the most significant survival
improvement compared to LS (OS HR= 0.54, log-rank p < 0.001;
PFS HR= 0.048, log-rank p < 0.001). MSPP patients experienced
longer OS despite shorter PFS as compared to MSER, suggesting
that while both MSPP and MSER groups are characterized by
mixed responses, some MSPP patients may have experienced
pseudoprogression (an increase in tumor size as a result of
increased immune cell content within the tumor tissue),
previously indistinguishable from true progression by tumor
imaging alone. All patients within the LS cohort had disease
progression while the HS group had the highest CB rate (88%, 14/
16) and the largest changes in TM and ctDNA (Fig. 1C). Both HS
patients without CB (a TNBC and a HNSCC) survived beyond 2
years (within the top 25% OS of all patients treated) after
stopping treatment.

To determine the concordance between pembrolizumab sensi-
tivity subgroups and established ICB predictive biomarkers based
on pre-specified universal cutoffs, we evaluated the distributions of
TMB and PD-L1 protein expression within the HS subgroup. TMB
as a continuous measure was significantly higher in HS tumors
compared to the overall cohort (mean 7.72 mut/Mb vs. 1.74 mut/
Mb, p < 0.05, one-sided Kolmogorov–Smirnov test) (Fig. 1F). The
majority (14 of 16) of HS TMB fell within the top-tertile of the
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study distribution, of which only 6 tumors (6 of 16; 38%) met the
TMB-high biomarker criteria (TMB ≥ 10 mut/Mb). PD-L1 expres-
sion was only detected (PD-L1 MPS > 50%) in half (5 of 10) of the
HS tumors at baseline with available immunohistochemistry (IHC)
data (Supplementary Fig. 2). Together, the discordance between
TMB-high, PD-L1, and HS classification, suggest that treatment
opportunities in otherwise treatment-sensitive patients would be
lost when using current pre-specified cutoffs of TMB and PD-L1
scoring to select patients for anti-PD1 treatment in a pan-cancer
setting.

Given that TMB-high (TMB ≥ 10 mut/Mb) status is a US FDA-
approved pan-cancer biomarker used to select metastatic cancers

for ICB therapy, we explored whether ΔctDNA provides added
benefit for risk stratification within TMB-high and TMB-low
tumors (TMB < 10 mut/Mb). We compared the OS and PFS of
TMB-high and TMB-low groups further divided based on
ΔctDNA (Fig. 1G, H). As expected compared to the patients
with the least favorable responses (TMB-low and ΔctDNA > 0,
n= 33), we observed the most favorable OS and PFS probabilities
in TMB-high and ΔctDNA < 0 (OS HR= 0.32, p= 0.007; PFS
HR= 0.41, p= 0.008, Cox proportional hazards), followed by
TMB-low and ΔctDNA < 0 (n= 18) (OS HR= 0.14, p= 0.05;
PFS HR= 0.05, p= 0.005, Cox proportional hazards). These data
suggest that ΔctDNA status provides added value to predict

Fig. 1 INSPIRE patient stratification by early ΔctDNA and ΔTM. A Overview of change of tumor measurement (ΔTM) at best response of all patients enrolled
in the INSPIRE clinical trial (n= 106). Patients are grouped by cancer cohort and sorted in order of decreasing ΔTM. Below the waterfall plot, widths of joining lines
reflect the number of patients within the corresponding tumor cohort and best overall response by RECIST. B Simplified consort diagram summarizing the number of
patients with complete ΔTM, ΔctDNA, and baseline WES profiling stratified into the four pembrolizumab sensitivity groups. LS low-sensitivity, MSER mixed-
sensitivity with emerging resistance, MSPP mixed-sensitivity with potential pseudoprogression, HS high-sensitivity. C Distribution of ΔTM and ΔctDNA for each
patient. Contours around each group indicate the density within each group with the median shown as the center of the contour. Points are colored according to
pembrolizumab sensitivity groups. Dotted red vertical and horizontal lines indicate ΔTM=0 and ΔctDNA=0. D Kaplan–Meier plot of overall survival from
treatment cycle 3 in patients grouped by pembrolizumab sensitivity. (p=0.00025). E Kaplan–Meier plot of progression-free survival from treatment cycle 3 in
patients grouped by pembrolizumab sensitivity. (p= 8.7 × 10−11) F Comparison of TMB distribution between pembrolizumab sensitivity groups. The median for each
group is shown as a horizontal line and data points are shown ordered by increasing value. The distance between the third-quartile (Q3) and first-quartile (Q1),
known as the interquartile range (IQR), is marked around the median by a black rectangle. Vertical lines extending from the top and bottom of the rectangle show
the maximum (Q3+ 1.5-times IQR) and minimum(Q1+ 1.5-times IQR). P-values shown are calculated by a two-sided Kolmogorov–Smirnov test. F Kaplan–Meier
plot for overall survival from treatment cycle 3 in patients stratified by TMB≥ 10 and ΔctDNA. (p=0.0042). G Kaplan–Meier plot for overall survival from
treatment cycle 3 in patients stratified by TMB≥ 10 and ΔctDNA. (p=0.0053). P-values for Kaplan–Meier plots reflect the outcomes of log-rank tests for the
survival model. H Kaplan–Meier plot for progression-free survival from treatment cycle 3 in patients stratified by TMB≥ 10 and ΔctDNA. (p=0.00018). P-values
for Kaplan–Meier plots reflect the outcomes of log-rank tests for the survival model. Statistical significance for all panels: ***p≤0.001; **p≤0.01; *p≤0.05;
+p≤0.10. Source data are provided in SourceData_Fig1.xlsx.
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pembrolizumab response within predetermined TMB-high and
TMB-low subgroups.

BRCA2 is frequently altered in baseline tumors from
pembrolizumab-treated patients with clinical benefit. To
uncover genomic alterations associated with pembrolizumab
response, we identified genes that were more frequently altered by
non-synonymous germline or somatic mutations in patients who
experienced CB or high pembrolizumab sensitivity (HS/CB;
n= 19) compared to patients with low sensitivity (LS; n= 27).
We identified 35 genes that were more frequently altered in HS/
CB tumors versus corresponding TCGA cohorts; of which, 8

genes (PREX2, BIRC6, CNTNAP2, PTPRB, GRM3, ANKRD11,
BRCA2, and TET3) are listed on the OncoKB Cancer Genes
catalogue (Supplementary Data 2). BRCA2 was mutated in 5 HS/
CB (26%) and none in LS of mixed cancer types (TNBC, Merkel
cell carcinoma, HGSC, MM, sarcoma, and basal cell carcinoma)
(Fig. 2A). BRCA2 mutation frequency was 12.5% (9 of 72) in our
data set and similarly distributed across cancer cohorts (HGSC: 0/
19, TNBC: 1/21, HGSC 2/21, MM: 2/12, and Mixed: 4/28).
Increased frequency of BRCA2mutations was also identified from
a similar analysis reported by Hugo et al.9 in a cohort of meta-
static melanoma patients. Interestingly, mutations in BRCA1 were
not enriched in either group (HS/CB= 1/19, LS= 3/27 (Fig. 2A).
No single gene was found to be significantly enriched for
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mutations in the LS group, possibly due to the large number of
alternate and overlapping signaling transduction pathways that
can manifest immune evasion and escape phenotypes.

We further investigated the relationship of BRCA2 mutation
status with known biomarkers of response: TMB and PD-L1
protein expression. We observed that tumors with germline and/
or somatic BRCA2 mutation have significantly higher TMB
compared to tumors without mutated BRCA2 (p < 0.10, Wilcoxon
rank-sum test, two-sided) (Fig. 2B), consistent with previous
studies9. We further validated this significant association using
publicly available mutation and TMB data from three indepen-
dent publicly available pan-cancer data sets (Broad MSS mixed
solid tumors10, UMich MET50011, and MSKCC-IMPACT IO
study12) (Supplementary Fig. 3). While we observe a higher
clinical benefit rate (CBR= 35%, 18 of 51) in PD-L1 expressing
tumors (PD-L1 MPS > 0%) compared to tumors without PD-L1
expression (CBR= 15%, 8 of 52), PD-L1 was only expressed
(MPS > 0%) in 3 of 9 tumors with BRCA2 mutations (Fig. 2C).
This finding suggests that BRCA2 mutation status may predict
pembrolizumab response, independent of PD-L1 expression.

High percent genome copy number alterations and B2M LOH
are associated with intrinsic resistance to pembrolizumab. We
sought to describe the prevalence of immune evasion through
somatic genomic alterations in our cohort by assessing the fre-
quency of somatic single-nucleotide variants (SNV) within a
compendium of 49 genes associated with resistance to immune
checkpoint blockade or immune-suppressed TME (Supplemen-
tary Table 1 and Fig. 2A)13,14. At least one gene in the catalog was
altered in 68% (49/72) of all sequenced baseline tumors; with
TP53 being the most frequently mutated (48.6%, 35/72). Muta-
tions in the genes associated with antigen presentation (HLA-A,
HLA-B, HLA-C, TAP1, TAP2, and B2M) and interferon-gamma
pathways (STAT1, STAT3, JAK1, JAK2, IFNGR1, and IFNGR2)
were identified at a low frequency (8%, 6/72). Loss of hetero-
zygosity (LOH) of at least one of three HLA class I loci was
observed in 39% (24/61, 11 patients had at least one homozygous
HLA class I locus) while somatic mutation occurred in only 0.5%
(4/72) of tumors prior to anti-PD-1 treatment. Together, this data
provides evidence that genomic alterations associated with
immune evasion are diverse and prevalent in solid tumors.

We previously reported that a high baseline percent genome
with copy number alterations (PGA) is significantly associated
with progressive disease7. With the updated data set, we
confirmed this observation by comparing baseline PGA between
HS/CB and LS (p= 0.01, Wilcoxon rank-sum test, two-sided,
Supplementary Fig. 4). These results show that PGA-high status
(upper cohort tertile) is associated with inferior OS and PFS
compared to the remaining cohort (Supplementary Fig. 5). When

combined with TMB to predict pembrolizumab outcome, we
observed that the proportion of patients with CB is notably higher
in the subgroup of TMB-high and PGA-low (5 out of 6)
compared to the subgroup of TMB-low and PGA-high (2 out of
15) patients (p= 0.006, Fisher’s exact test) (see detailed analysis
in Supplementary Information and Supplementary Fig. 6).

To identify immune evasion features associated with ther-
apeutic resistance to pembrolizumab, we compared the frequen-
cies of LOH events in HLA-I presentation pathway genes in
baseline tumors from HS/CB and LS patients. The frequency of
B2M LOH was higher in LS compared to HS/CB tumors (12/24,
50% vs 2/16, 13%; Fig. 2A). B2M LOH was not detected in HS
tumors (0%, 0/9; Fig. 2D). LOH events in other HLA-I
presentation and interferon-gamma pathway genes were found
infrequently and in similar proportions in both groups. While we
have reported a reduced CB rate in patients with germline
heterozygous HLA-C locus8, we did not observe notable
associations between the frequency of somatic LOH events in
HLA class I genes and pembrolizumab therapeutic benefit.
Similar to the results observed in longitudinal biopsies in ICB
treated melanoma15, we observed no significant association
between somatic SNV load within these pathways and CB or
molecular sensitivity to pembrolizumab.

Lastly, we examined the frequency of somatic copy number
alterations (SCNA) associated with regulation of anti-tumor
immune responses in pre-clinical and clinical studies: gains in
MYC16, losses of PTEN17 and gains or losses in interferon
pathway genes (PDCD1, STAT1, JAK1, and JAK2) (Fig. 2A).MYC
was gained in 17% (5/29) of LS and only 5% (1/19) of HS/CB.
Homozygous loss of PTEN was only detected in one LS patient,
while single copy loss of PTEN occurred in 10% (3/29) of LS and
21% (4/19) of HS/CB patients. Genomic loss of STAT1, JAK1,
JAK2, or CD274 were detected infrequently in our cohort.
However, it is notable that loss of STAT1, JAK2, and CD274 was
detected in a patient with HPV18-positive anal squamous cell
carcinoma who did not benefit from treatment.

Pre-existing immunological activity and immune cell compo-
sition as predictors of pembrolizumab clinical response and
sensitivity in solid tumors. To examine whether pre-existing
transcriptional signatures of immunological activity and immune
cell subpopulation composition in the tumor are associated with
pembrolizumab sensitivity and clinical response, we investigated
previously published gene-expression signatures for total immune
infiltration (IM; inferred total immune infiltration score)18,
interferon-gamma signaling (IFNG)19, cytolytic activity (CYT)5,
and abundances of 22 immune cell populations inferred by
CIBERSORT deconvolution analysis in 65 baseline tumors (CB
rate= 30%).

Fig. 2 Somatic alterations in patients sensitive and resistant to pembrolizumab. A Co-mutation plot of mutation burden, mutation signatures, somatic,
and germline mutations (purple, left) in selected DNA repair genes, known cancer and immune evasion related genes, and antigen presentation genes.
Copy number alterations for selected immune evasion and antigen presentation genes are also shown (yellow, left). Samples are grouped as
pembrolizumab-sensitive (in the HS/CB group) and resistant (in the LS group) and sorted in order of decreasing TMB within each group. Genes are
grouped by curated categories and shown in order of decreasing frequency across both groups. BRCA2 (bold) had significantly higher mutation frequency
in the ICB sensitive group. For the complete list of curated genes, refer to Supplementary Table 1. Only genes with alterations are shown. B Comparison of
TMB between samples with or without BRCA2 mutations. C Comparison of PD-L1 expression by IHC staining between samples with or without BRCA2
mutations. For violin plots in B and C, the median for each group is marked by a horizontal black line in the center of a rectangle and data points are shown
as open circles. The distance between the third-quartile (Q3) and first-quartile (Q1), known as the interquartile range (IQR), is marked around the median
by a rectangle. Vertical lines extending from the top and bottom of the rectangle show the maximum (Q3+ 1.5-times IQR) and minimum(Q1+ 1.5-times
IQR). Statistical significance was determined using two-sided Wilcoxon rank-sum tests. D Comparison of B2M LOH frequency in pembrolizumab sensitivity
groups. The number of samples with B2M LOH within each sensitivity group is annotated above each bar. Source data are provided in
SourceData_Fig2.xlsx. LS low sensitivity, HS/CB high-sensitivity/clinical benefit, TMB tumor mutation burden, ICB immune checkpoint blocker, IHC
immunohistochemistry, LOH loss of heterozygocity.
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The signatures of immunological activity varied by cancer
types and their distributions were largely overlapping (Supple-
mentary Fig. 7A). Significant correlation was observed between all
three signatures, with the strongest concordance between IM and
IFNG scores (Spearman correlation= 0.92, p < 0.01) (Supple-
mentary Fig. 7C). When comparing signatures across sensitivity
strata (Fig. 3A and Supplementary Fig. 7B), we observed the

medians of IM, IFNG, and CYT scores in the HS group were
highest amongst all sensitivity groups. IFNG (p= 0.03, two-sided
Wilcoxon rank-sum test; Fig. 3C) and IM (p= 0.07, two-sided
Wilcoxon rank-sum test; Fig. 3B, E) scores were higher in HS/CB
group compared to LS, while no difference was observed in the
CYT score (Fig. 3D, E). Patients with IFNG scores greater than
the cohort median (IFNG= 0.61) had improved OS (HR= 0.30,
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log-rank p < 0.001) and PFS (HR= 0.48, log-rank p < 0.01)
(Supplementary Fig.8).

We observed good correlations between flow cytometry and
estimated abundances in B-cells (R= 0.74, p < 0.001) and
CD8+ T-cells (R= 0.61, p < 0.001) in 51 tumor samples with
matching flow-cytometry data7 (Supplementary Fig. 9). While we
detected elevated levels of tumor-infiltrating immune cells with
tumor recognition potential such as CD8 T-cells, T follicular
helper cells (Tfh), activated natural killer (NK) cells, and M1
macrophages in HS/CB patients when compared LS patients, the
findings were not statistically significant (p > 0.10, two-sided
Wilcoxon rank-sum test, Fig. 3E). Plasma cell score was notably
lower (p= 0.09, two-sided Wilcoxon rank-sum test, Fig. 3E) in
HS/CB patients compared to LS patients. When we evaluated the
association between cell scores and CB, PFS, and OS, we found
that high Tfh was significantly associated with favorable
outcomes (log-rank p < 0.10, unadjusted for multiple testing,
Supplementary Fig. 8). Conversely, high neutrophil levels were
associated with resistance and diminished overall survival
(HR= 0.30, log-rank p= 0.09, unadjusted for multiple testing,
Supplementary Fig. 8). We used the top tertile (>66-percentile)
scores of each cell type to define the high signature comparison
sample group. Elevated levels of cell types previously observed in
the pembrolizumab sensitivity comparison (CD8+ T cells,
CD4+ T-cell populations including T regulatory cells (Tregs),
activated NK cells and M1 macrophages) were notably associated
with overall survival (log-rank p < 0.10, unadjusted for multiple
testing, Supplementary Fig. 8). Here, we conclude that measure-
ments of spontaneous immunological activity and infiltrate
composition differ between individual tumors and may have
potential to predict patient outcome to anti-PD1 treatment.

Pembrolizumab therapy induces immune microenvironment
sculpting in solid tumors. We hypothesized that modulations in
the immunological activity as a pharmacological consequence of
pembrolizumab therapy may be reflected by changes in the
transcriptional signatures and immune cell tumor infiltration
associated with immune responses. In the subset of 43 patients
with available paired baseline and on-treatment tumor gene-
expression profiles, we observed increased IM, IFNG, and CYT
scores after pembrolizumab treatment in 70% of the patients (Fig.
3A and Supplementary Fig. 10). Notably higher levels of CD8+
T-cells, CD4+memory resting T-cells, Tfh, gamma-delta T-cells,
M1 macrophages, and eosinophils were observed in tumors post-
pembrolizumab therapy compared to baseline (p < 0.10, unad-
justed for multiple testing, two-sided Wilcoxon rank-sum test)
(Supplementary Fig. 10). Our results are consistent with increased
immune cell populations in melanoma tumors in response to
nivolumab treatment20. Here, we demonstrate that regardless of
tumor type, anti-PD1 therapy modulates both the immune
response and immune cell repertoire within the tumor tissue.

Gene expression profiling in longitudinal tumor biopsies
identifies immune regulatory factors in patients treated with
pembrolizumab. To identify the differences in gene expression
changes between matched baseline and on-treatment tumor
samples that could differentiate HS/CB (n= 11) from LS (n= 11)
patients, we performed a supervised differential gene expression
analysis using a negative binomial generalized model design that
included control for patient-specific variations. Within the HS/
CB group, we detected a robust change in tumor transcriptional
profiles characterized by 1443 differentially regulated genes
(DRG) (FDR-adjusted p-value ≤ 0.10) with large effect sizes (log2
fold-change from baseline range=−28–29) (Fig. 4B and Sup-
plementary Data 3). In contrast, few changes in tumor gene-
expression (185 genes differentially regulated, log2 fold-change
from baseline range=−1.8–2.5) were observed in LS tumors
(Fig. 4B and Supplementary Data 4).

We focused on the 57 DRGs shared by both groups and
observed that 93% (53/57) were up-regulated following treatment
(Fig. 4A and Supplementary Data 5). A STRING21 protein-
protein interaction (PPI) network analysis of the up-regulated
DRGs identifies positive regulation of immune process and T-cell
activation amongst the enriched molecular functions.

We hypothesized that genes with larger expression increase
post-ICB in LS characterize the activity of immune evasion
factors while those in HS/CB reflect anti-tumor activity or
emerging adaptive resistance to anti-PD1. Within the DRGs more
highly induced in LS than HS/CB, we found that 7 of 8 DRGs
(CHI3L1, CLEC4E, CXCL9, VNN2, GBP2, TLR8, and ADAM-
DEC1) were abundantly expressed by immune-suppressive
myeloid cells22–28. This suggests that recruitment or activation
of immune-suppressive myeloid cells contribute to pembrolizu-
mab resistance in solid tumors. Within the 45 DRGs with higher
level of induction in HS/CB, we identified CD8 marker genes
(CD8A and CD8B), IFN gamma response genes (PYHIN1,
CXCR6, CXCL13, CXCL11, WAS, GBP5) inhibitory checkpoint
molecules (PDCD1, TIGIT, CTLA4)1 (Fig. 5A, C), and cytolytic
molecules with anti-tumor activity (GZMA, GZMB)5. Interest-
ingly, in both LS and HS/CB samples we identified increased
expression of PLA2G2D (Fig. 4D), with a trend towards higher
magnitude of increase in the HS/CB group. PLA2G2D is a
secreted phospholipase with experimental evidence to suggest its
function to attenuate T helper 1 immune responses by
maintaining the steady-state levels of anti-inflammatory lipids
in murine lung tissues during viral infections29. In a pan-cancer
analysis with TCGA data of primary tumors5, PLA2G2D
expression was correlated with CYT, to a similar degree with
other immunosuppressive factors and interferon-stimulated T-
cell attracting cytokines. We further validated its up-regulation in
an independent dataset of 62 metastatic melanoma tumors upon
nivolumab treatment20 (p= 0.078 two-sided Wilcoxon rank-sum
test). We also found evidence that responders to anti-PD1 or anti-

Fig. 3 Pan-cancer assessment of gene-expressed based immune scores as predictive biomarkers for pembrolizumab. A Distribution of immune (IM)
score within each pembrolizumab sensitivity group. Scores derived from baseline and cycle 3 tumor samples are shown. Lines connect samples collected
from the same patient. P-values were calculated by two-sided Wilcoxon rank-sum tests. B Comparison of IM, C Interferon gamma (IFNG), and D cytolytic
(CYT) scores between LS and HS/CB groups at baseline and cycle 3 of treatment. For all violin plots in A–D, the median for each group is shown as a solid
horizontal line dot and data points are shown as black dots. The distance between the third-quartile (Q3) and first-quartile (Q1), known as the interquartile
range (IQR), is marked around the median by a black rectangle. Vertical lines extending from the top and bottom of the rectangle show the maximum
(Q3+ 1.5-times IQR) and minimum (Q1+ 1.5-times IQR). Statistical significance was determined using two-sided Wilcoxon rank-sum tests between
indicated sample groups. E Forest plot summaries of comparisons between HS/CB and LS baseline tumor gene-expression derived immune activity/
infiltrating immune cell signatures. Two-sided Wilcoxon rank-sum tests were performed to assess statistical significance of the observed differences in
signatures between groups. For each score, the difference between group means (MeanHS/CB−MeanLS) is shown as a solid dot with whiskers indicating the
95% confidence interval. P values are uncorrected for multiple testing. Source data are provided in SourceData_Fig3.xlsx. LS low sensitivity, HS/CB high-
sensitivity/clinical benefit.
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PDL1 had higher PLA2G2D expression in pre-therapy tumors
compared to non-responders in urothelial cancer30 and anti-
CTLA4 pre-treated advanced melanoma20 data sets (p < 0.10,
uncorrected for multiple testing, Supplementary Fig. 11)31.
Together, this data suggest the potential of PLA2G2D as a
biomarker of tumor immunity.

Differential regulation of T- and B-cell activation and signal-
ing transcription programs in anti-PD-1 treated tumors is
predictive of clinical response. To identify the molecular pro-
cesses that are differentially regulated by pembrolizumab

treatment between HS/CB and LS, we performed gene-set
enrichment analysis32 of Gene Ontology (GO) biological pro-
cesses to derive biological meaning of the genes differentially
regulated by pembrolizumab between HS/CB and LS. We iden-
tified 93 significantly enriched GO terms (FDR-adjusted p < 0.05)
in genes with increased abundance following treatment in HS/CB
compared to LS, and 104 terms enriched in genes with increased
abundance in LS compared to HS/CB (Fig. 5A and Supplemen-
tary Data 6). Processes such as B-cell receptor signaling pathway,
immunoglobulin production, T-cell activation, and migration
were up-regulated in HS/CB versus LS, reflecting a high level of
pembrolizumab treatment-induced immune cell activity in the

Fig. 4 Genes differentially regulated by pembrolizumab treatment in treatment sensitive and resistant tumors. A Heatmap of differentially regulated
genes by pembrolizumab treatment to differentiate treatment sensitive from insensitive tumors. Samples are grouped by HS/CB or LS and sorted by
hierarchical clustering within each group based on the similarity of change in gene-expression of selected genes. Genes are organized into four groups
according to the combination of gene-regulation and differences between the two comparison groups. From top to bottom: genes up-regulated in both
groups with higher expression in the HS/CB group, genes up-regulated in both groups with higher expression in the LS group, genes down-regulated in
both groups with a greater degree of down-regulation in LS, and genes down-regulated in both groups with a greater degree of down-regulation in HS/CB.
Genes in each group are listed in decreasing order of the difference of median change in gene-expression between HS/CB and LS groups. B Volcano plots
of differentially expressed genes comparing paired early on-treatment to baseline tumor gene-expression in HS/CB or LS groups. Statistical significance for
gene selection: FDR-adjusted p-value≤ 0.10. C Distributions of change in gene-expression of immune checkpoint genes (TIGIT, PDCD1, CTLA4) in HS/CB
(n= 11) versus LS (n= 11) baseline and on-treatment tumor pairs. The median for each group is marked by a horizontal line in the center of a rectangle and
data points are shown as open circles. The distance between the third-quartile (Q3) and first-quartile (Q1), known as the interquartile range (IQR), is
marked around the median by a rectangle. Vertical lines extending from the top and bottom of the rectangle show the maximum (Q3+ 1.5-times IQR) and
minimum (Q1+ 1.5-times IQR). D PLA2G2D gene expression before and after pembrolizumab treatment in HS/CB (n= 11, p= 0.001) or LS (n= 11,
p= 0.005) tumors before and after 2–3 cycles of pembrolizumab treatment. P-values were calculated by two-sided Wilcoxon rank-sum tests and
uncorrected for multiple testing. The median for each group is marked by a horizontal line in the center of a rectangle and data points are shown as open
circles. The distance between the third-quartile (Q3) and first-quartile (Q1), known as the interquartile range (IQR), is marked around the median by a
rectangle. Vertical lines extending from the top and bottom of the rectangle show the maximum (Q3+ 1.5-times IQR) and minimum(Q1+ 1.5-times IQR).
Source data are provided in SourceData_Fig4.zip. LS low sensitivity, HS/CB high-sensitivity/clinical benefit, FDR false discovery rate.
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TME. Unsurprisingly, processes associated with DNA replication
and mitosis were up-regulated in LS, possibly reflecting continued
growth of malignant cells resistant to pembrolizumab treatment.

Next, we asked whether the observed changes in gene
expression profiles are associated with changes in abundance of
the specific cell types within the TME. Guided by the GO
enrichment analysis results, we compared the change in cell

scores obtained from CIBERSORT deconvolution for B-cell
(n= 3), T-cell (n= 6), NK cell (n= 1), and macrophage (n= 3)
subsets between HS/CB and LS. While we observe the largest
increases in multiple T-cell subsets in HS/CB versus LS (Tfh and
gamma-delta T-cells, two-sided Wilcoxon rank-sum test uncor-
rected p value < 0.10), we did not observe increases in B-cell score
(Fig. 5B). We also observed a trend towards increased CD8+ T
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cell scores in HS/CB versus LS, however, the range of the score
was large and overlapped substantially between groups. A survival
analysis revealed that increased Tfh score early on-treatment was
associated with improved PFS (HR increase from baseline= 0.11,
p= 0.0007, Cox proportional hazards log-rank test) (Fig. 5C).
This finding indicates that early change in Tfh score may have
predictive value in the pembrolizumab treatment setting.

Discussion
Biomarkers correlated with pembrolizumab clinical response
often lack robust concordance between studies due to poorly
defined response subgroups9,20,33–35. Here, we show that changes
in ctDNA and tumor measurement by imaging detected from
baseline as early as 6 to 7 weeks from the start of treatment can
stratify patients into subgroups with distinct survival outcomes.
We leveraged this approach to strengthen the sample selection
criteria of response for molecular biomarker assessments. We
demonstrated that patients with high molecular sensitivity to
pembrolizumab had the highest TMB, baseline total immune
score, and interferon-gamma signaling pathway gene expression
levels. This association was observed across tumor types without
the need to pre-define tumor-type specific cutoffs. Tumors with
low sensitivity were differentiated from patients with mixed
response, reducing molecular heterogeneity of the non-responder
group. The application of ctDNA dynamics complements existing
studies that suggest that assessment of tumor responses using
tumor or blood specimens collected early during the course of
ICB treatment is highly predictive of overall clinical
response20,35,36 and highlights the importance of longitudinal
sample collection for translational research.

Using baseline tumor mutation and gene-expression profiles,
we identified mutated and copy number altered genes, and gene-
sets associated with clinical benefit and high molecular sensitivity
to pembrolizumab that are in agreement with a recent analysis of
anti-PD1 treated cancers9,20. In cancer studies, BRCA2 is often
investigated in conjunction with BRCA1 for their DNA repair
tumor suppressor function and association with breast and
ovarian cancer risks37. Our results demonstrate that non-
synonymous mutations in BRCA2, but not BRCA1, were more
frequently observed in patients with clinical benefit and early
molecular sensitivity. In a recent retrospective analysis of the pan-
cancer MSKCC-IMPACT patient cohort, Samstein et al.38 iden-
tified clinical benefit in 44% of patients with BRCA2-deficient
cancers following ICB treatment. Our finding, not only supports
previous reports of improved response to single-agent ICB in
BRCA2-deficient tumors, but also emphasizes the need to eval-
uate BRCA1 and BRCA2 mutated patients separately in future
clinical trial designs. Due to the limited sample size, subset ana-
lysis of germline or somatic SNVs was not explored. Further
studies are warranted to examine the functional effect of specific
germline BRCA2 mutations on the activity of immune cells as
well as the impact of BRCA2mutations on the immunogenicity of
tumor cells.

While we observed several mutations in genes related to anti-
gen presentation and interferon-gamma pathways, their presence
or frequencies did not provide predictive information for ICB
treatment outcomes in our cohort. This is consistent with a study
of these features restricted to metastatic melanoma15. Our
observation of increased frequency of B2M LOH events in
baseline tumors of LS patients provides evidence to support B2M
as an essential protein component for HLA Class I antigen pre-
sentation that is highly susceptible to immunoediting during
tumorigenesis. This association between B2M LOH events and
ICB resistance has been demonstrated in three independent
melanoma cohorts9,15,33. The authors postulate that B2M LOH
may serve as the initial step towards complete loss of B2M trig-
gered by a second mutation or dysregulation event and provided
experimental evidence to demonstrate that cancer cells lacking
B2M expression are susceptible to elimination by NK cells15. Our
data illustrate the importance of this mechanism outside mela-
noma and the need to evaluate B2M LOH as exclusion criterion
for ICB or prioritization for NK cell therapy.

To better understand how tumors adapt to immune modula-
tion by anti-PD-1 in treatment sensitive and resistant individuals,
we profiled and compared changes in gene expression and TME
immune cell composition in tumor samples collected before and
after treatment. As expected, we observed up-regulation of known
inhibitory immune checkpoints and markers of progressive T cell
exhaustion39 (PDCD1, TIGIT, CTLA-4), all of which have
demonstrated anti-tumor activity when inhibited alone or in
combination with PD-1 inhibitors in various cancer
indications15,35,40. We also identified increased levels of genes
related to CD8+ cytotoxic T lymphocyte activity and interferon-
gamma signaling in patients with improved clinical outcomes.

We identified and validated increased phospholipase PLA2G2D
expression in tumors upon anti-PD-1 treatment. While the bulk
of current literature has characterized the role of Pla2g2d in fatty-
acid metabolism within the contexts of autoimmune disorders
and viral infections41–43, little is known of its relevance in cancer
development and immunotherapy response. Rooney et al.5

reported that PLA2G2D expression is correlated with the cytolytic
activity score to suggest its participation in counter-regulatory
activities that limit immune responses in primary solid tumors5.
Moreover, Miki et al.44, in a melanoma mouse model, demon-
strated that Pla2g2d deficiency is associated with delayed tumor
growth. Our findings along with growing literature, together
suggest that future investigations to elucidate the mechanistic role
of PLA2G2D in tumor contexts will enrich our understanding of
tumor immunobiology.

Finally, we observed increased B- and T-cell activation asso-
ciated with favorable response and survival benefit in patients
with increased expression of the Tfh gene signature after pem-
brolizumab treatment. It has been demonstrated in murine
models of breast cancer that B-cell activation by ICB depended on
the activity of Tfh within the germinal centers of spatially orga-
nized tertiary lymphoid structures (TLS)45. This finding was
further corroborated by recent studies reporting prognostic and

Fig. 5 Changes in immune cell composition in the TME associated with pembrolizumab sensitivity. A Top 10 enriched down-regulated and up-regulated
Gene Ontology Biological Processes from genes differentially regulated by pembrolizumab in treatment-sensitive compared to treatment-insensitive
tumors. B Comparison of change in immune cell abundance in the TME at cycle 3 of pembrolizumab treatment between sensitive and insensitive tumors.
The median for each group is marked by a horizontal black line in the center of a rectangle and data points are shown as open circles. The distance between
the third-quartile (Q3) and first-quartile (Q1), known as the interquartile range (IQR), is marked around the median by a rectangle. Vertical lines extending
from the top and bottom of the rectangle show the maximum (Q3+ 1.5-times IQR) and minimum (Q1+ 1.5-times IQR). P-values were calculated by two-
sided Wilcoxon rank-sum tests. C. Kaplan-Meier plot of progression-free survival in patients stratified by increase or decrease in Tfh score from baseline.
(p= 0.0007). P-values reflect the outcomes of a two-sided log-rank test of a univariate Cox proportional hazards model. Source data are provided in
SourceData_Fig5.xlsx. TME tumor microenvironment.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25432-7

10 NATURE COMMUNICATIONS |         (2021) 12:5137 | https://doi.org/10.1038/s41467-021-25432-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


predictive value of B-cell signatures and TLS abundance in MM,
NSCLC and soft tissue sarcoma treated with ICB39,46–48. Col-
lectively, these findings lead us to consider an in-depth evaluation
of predictive and prognostic value of TLS abundance and ther-
apeutic strategies to promote TLS formation and B-cell activity in
the design of future checkpoint blockade clinical trials.

Together, this study illustrates the need for integrating com-
prehensive genome and transcriptome profiling of tumor speci-
mens to capture the diversity of cancer genome and
immunogenomic mechanisms to complement molecular-based
sensitivity measurements using circulating tumor DNA to
monitor response to contemporary immunotherapies. An
increasing number of clinical trials are being performed evalu-
ating ICB in combinations with chemotherapy, molecularly tar-
geted therapy, and other immunotherapeutic agents49. As such,
delineation of the molecular and immune milieu before and after
ICB monotherapy is crucial to provide a benchmark against
which the effects of additional anti-tumor agents can be
investigated.

Methods
Clinical trial and subject details. One-hundred and six patients were accrued
from 21 March 2016 to 9 May 2018 to a single-center, investigator-initiated phase
II interventional clinical trial (NCT02644369, registered here: https://
clinicaltrials.gov/ct2/show/NCT02644369) to interrogate the pharmacodynamic
activity of pembrolizumab in metastatic solid tumors. The clinical trial was
approved by the Research Ethics Board at University Health Network in Toronto,
Canada. The trial was conducted in accordance with the principles of Good Clinical
Practice, the provisions of the Declaration of Helsinki, and other applicable local
regulations. All patients gave their written informed consent. Patients were pro-
spectively enrolled into one of five cohorts: metastatic head and neck carcinoma,
triple negative breast cancer, high-grade-serous ovarian cancer, melanoma, and
other rare solid tumor types. Key inclusion and exclusion criteria have been
summarized and published previously8. The study protocol is provided in Sup-
plementary Note 1. All patients received pembrolizumab (200 mg/kg every 3 weeks
intravenously) until disease progression or for a maximum of 2 years supplied in
kind by Merck. More detailed description of the clinical selection criteria has been
described previously7. Response assessment by radiographic imaging was per-
formed every 9 weeks (3 cycles of treatment) until progression is confirmed.
RECIST v1.1 criteria50 was used to determine tumor responses for patients at each
measured radiographic time point. Clinical benefit was defined by best overall
response with complete response, partial response, or stable disease >6 cycles
(18 weeks). All patients underwent biopsy before starting therapy and underwent a
repeat biopsy, collected from the same site, on cycle 2 or 3 of treatment. Tumor
tissue was divided into two for formalin-fixed paraffin-embedded treatment and
immediately digested into single cells (Mitenyl GentleMACs System). Tumor cells
were flash frozen and stored at −80 °C for DNA/RNA co-extraction (Qiagen DNA/
RNA co-isolation kit). A detailed breakdown of tumor types and RECIST response
and clinical benefit is provided in Supplementary Data 1.

Longitudinal ctDNA Assessment. WES-generated patient-specific tumor somatic
mutation profiles were used to design bespoke ctDNA assays by Natera Inc. (San
Carlos, USA) using their proprietary SignateraTM assay. The assay uses calculated
mutation frequencies and estimated clonality to select and design multiplex PCR
primers targeting 16 highly-ranked tumor variants in each patient51–54. Illumina
sequencing platform was used to perform amplicon deep sequencing of products
obtained from targeted PCR. For each baseline and on-treatment time-point
plasma sample, ctDNA was quantified in units of mean tumor molecules (MTM)
per mL of plasma. This takes into account mean allele frequencies across all
mutations, cfDNA extracted, and plasma volume. The early change in ctDNA was
calculated as the percentage difference in absolute ctDNA levels between the sec-
ond or third treatment cycle and baseline time-points. An increase was defined
greater than zero, while decrease was <0.

Whole-exome sequencing. DNA from tumor and pre-therapy peripheral blood
mononuclear cells were extracted from frozen cell pellets stored at −80 °C (Qiagen
DNA/RNA co-isolation kit). Agilent SureSelect V5+UTR probes were used for
hybrid selection to enrich for exonic sequences. Prepared libraries were sequenced
with paired-end 125 bp reads on the Illumina HiSeq2000 or 2500 platform per
manufacturer’s protocols at the Princess Margaret Genomic Centre or Transla-
tional Genomics Laboratory in Toronto, ON. Tumor samples were sequenced to a
median depth of 250x and normals to a median depth of 50x. Sequence alignment
to human reference genome version hg38 using the Burrows-Wheeler Alignment
tool (v.0.7.12), co-cleaning, and duplicate removal was performed7,55. Pathogenic
germline mutations were identified using GATK HaplotypeCaller (GATK

v.4.0.5.1)56 and overlapped with mutations annotated as having reported evidence
for likely pathogenic consequence contributing to cancer within the ClinVar
database (v022019)57. Candidate germline mutations occurring in more than
4 subjects within the entire cohort were not considered to be truly pathogenic.
Somatic single-nucleotide variations (SNVs) were identified using a combination of
5 mutation callers (Mutect 2 GATK v.3.858, Mutect v1.1.459, Strelka v1.0.1460,
Varscan v2.4.261, and Vardict v1.5.862). Small insertions and deletions (indels)
were identified using a combination of 4 mutation callers (Mutect 2 GATK v.3.858,
Strelka v1.01460, Varscan v2.4.261, and Vardict 1.5.862). All mutations were
annotated with Variant Effect Predictor (v92)63 and filtered with dbSNP (v150)64,
gnomAD (v170228)65 to remove variants likely to be germline. Tumor mutation
burden was defined as the number of remaining non-synonymous mutations per
million bases covered by supporting sequencing reads20,66. Contributions of
mutational signatures in COSMIC67 were determined in each sample using non-
negative least-squares regression provided by the deconstructSigs v1.8.0 R
package68. Analysis and visualization of mutations were performed using maftools
R package69.

Data quality control was assessed using Picard metrics (v.2.10.9) and genotype
matches between normal/tumor sample pairs using NGSCheckMate [https://
parklab.github.io/NGSCheckMate]70.

Mutation enrichment analysis. To identify differentially mutated genes in HS/CB
or LS tumors, we selected candidate genes that are recurrently mutated in at least
25% of the samples in one group (5 out of 21 in HS/CB or 13 out of 51 in LS) and
at most 5% in the other (1 out of 21 in HS/CB or 3 in LS). We considered only non-
synonymous somatic events (missense, nonsense, non-stop, translational start site,
splice site, in-frame, and frame-shift insertions and deletions) and pathogenic
germline mutations in this analysis. Using these criteria, a total of 49 genes were
selected (47 enriched in HS/CB and 2 enriched LS) and tested for occurrence
higher than the estimated background mutation rate (Fisher exact test, FDR-cor-
rected, p < 0.05). To account for the effects of uneven distribution of cancer
histologies in the HS/CB and LS groups within our data, the background mutation
rate was estimated for each gene of interest as the weighted sum of mutation rates
from cancer types with WES sequencing data made available through the TCGA
PanCancer Project (30 solid cancer types, n= 10,195) (https://cbioportal.org).

Copy number analysis. Tumor cellularity, ploidy, and allele-specific DNA copy
number for each sample was determined from WES using the Sequenza R
package71 with supplied cancer-type specific ploidy prior calculated from TCGA.
Manual inspection was performed to select the most likely model-fit from the top
5 solutions selected by Sequenza. Samples with estimated cellularity of <20% are
excluded from further analyses. The percent of copy-number altered genome was
defined as the percentage of the genome with non-diploid total copy-number. Loss-
of-heterozygosity was defined as genomic regions with a total copy number of 1.
Copy number gain is defined as greater than tumor ploidy + 2.

HLA class I typing, mutation, and LOH detection. Class I HLA types for each
patient were first inferred from the germline WES data and patient ethnicity
information using PolySolver72 to 4-digit resolution. Using the patient-specific
HLA type information, somatic mutations, and loss-of-heterozygosity in HLA class
I genes were identified in tumor samples using PolySolver72 and HLA-LOH
[https://bitbucket.org/mcgranahanlab/lohhla/src/master/]73.

Microsatellite instability status prediction. Microsatellite instability status for
each sample was determined from WES using mSINGS [https://bitbucket.org/
uwlabmed/msings.git]74 with default threshold and cutoffs. The pooled normal
baseline is generated from the distribution of unique alleles at the 2539 loci for
analysis of WES TCGA data from all patient normal samples as provided by the
mSINGS software.

RNA sequencing. Extracted RNA from tumor cells were sequenced using pre-
viously published protocols55 at the Princess Margaret Genomic Centre and
Translational Genomics Laboratory. FASTQs were aligned to the hg38 human
reference genome using STAR 2.4.2a75 aligner with default settings. Data quality
was assessed using RNA-seQC (v.1.1.8). Expression levels of all transcripts were
quantified using RSEM 1.3.076 with the GENCODE transcript reference version 26.
RNA data quality metrics were collected using RNAseQC v1.1.877 on genome
aligned and duplicate-marked BAM files. Upon manual inspection of principal
component analysis of quantile normalized log2-transformed gene-expression data,
outliers corresponding to high transcript 5’ to 3’ coverage bias, strand-specific bias,
and low gene counts, were removed from downstream analysis. Batch effects
arising from technical differences between sequencing facilities were normalized
using sva R-package (v.3.36)78 implementation of ComBat79 on log2-transformed
quantile normalized data across all remaining samples. RSEM quantified normal-
ized read counts per transcript were used as input for differential expression
analyses. Log2-transformed and batch-normalized gene-expression in transcripts
per million (TMP) were used for visualizations in heatmaps and boxplots.
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Gene set enrichment scores. To derive absolute enrichment scores from pub-
lished and experimentally validated gene signatures of total immune infiltration
(ESTIMATE immune score)18 and IFNG.GS (MSigDB Hallmarks signatures)19 for
each tumor sample, we used the GSVA R package80 implementation of ssGSEA to
calculate single-sample gene set enrichment (ssGSEA) scores. Batch normalized
and log2-transformed gene-expression profiles were used as input to ssGSEA.

Differential gene expression. DESeq281 was used for differential gene expression
analysis. We used a pairwise approach controlling for each patient to compare on-
treatment (cycle 2 or 3) to baseline expression levels separately in each group (HS/
CB and LS). Transcripts with a low mean read count (<10) were excluded from the
analysis36. Binomial Wald test was used after correcting for size factor and dis-
persion by applying default DESeq2 parameters. To explore significant differences
between HS/CB and LS responses to anti-PD-1 treatment, we tested for interaction
between treatment and ICB sensitivity grouping (HS/CB; n= 11 or LS; n= 11).

Identification of ICB-regulated genes and gene set enrichment. To identify
genes commonly regulated by ICB treatment between HS/CB and LS groups, we
selected genes that were responsive (up or down-regulated) to treatment at FDR-
adjusted p < 0.10 separately in each group. We then overlapped the two lists of
candidate genes to identify the subset genes common in both groups.

Gene set enrichment analysis to identify treatment responsive pathways that are
differentially regulated in HS/CB and LS, we ranked genes in order of differential
induction (metric=−log10(p-value)/(sign of fold-change)). Gene-set enrichment
analysis (GSEA)82 was performed on the ranked gene-list and metric with the
GSEA implemented in R package fgsea32 and gage83 using the GO biological
processes84,85 terms and pathways containing 15–500 genes, with 1000
permutations (custom code provided). Pathways and terms at FDR < 0.10 are
selected as statistically significant and enrichment scores are visualized using R
ggplot286.

TME cell-type inference. The relative fractions of 22 cell subsets within the TME
lymphocyte population were inferred from batch-normalized gene-expression
profiles in linear-space for each tumor sample using CIBERSORT v.1.06 [https://
cibersort.stanford.edu/]87. The program was run with the default LM22 reference
matrix on absolute-mode estimated abundance of cell subsets and in the TME.
Based on prior knowledge of cell-type similarities, we aggregated estimated values
of similar cell types to reduce the cell subset complexity in specific analyses.

The log2 fold change for inferred cell type abundances to reflect the dynamic
effects of ICB treatment on the TME is calculated in two ways. In patients with
paired baseline and on-treatment tumor measurements, the change is calculated as
the difference of the log2-transformed absolute values for each cell type between
the pre- and on-treatment sample pair. For samples without a baseline tumor
measurement, the fold-change is calculated as the difference of the log2
transformed absolute values between the on-treatment sample and median value
from all baseline tumors in the study data cohort (n= 65).

Flow cytometry. Flow cytometry for quantifying CD3+ T- and CD19+ B- cells in
the tumor tissue was performed using optimized antibodies and dilutions provided
in Supplementary Table 2. Briefly, tumor single-cell suspensions were stained for
immune markers of interest. The 5 laser LSR Fortessa X-20 (BD, Mississauga,
Ontario, Canada) was used for data acquisition. Marker quantification and analysis
were performed using FlowJo v10 (Treestar, Ashland, Oregon, USA). The gating
strategy is shown in Supplementary Fig. 9A.

PD-L1 immunohistochemistry. Immunohistochemical (IHC) staining for PD-L1
using the mouse monoclonal anti-PD-L1 antibody (clone 22C3 at 2 μg/mL, Merck,
Palo Alto, CA) was performed by Qualtek Molecular Laboratories (Newtown, PA,
USA). The PD-L1 IHC assay has been previously validated and being used in the
Merck Investigator Studies Program88. The level of PD-L1 staining is reported by
Qualtek as a modified proportion score (MPS, range 0–100), indicating the per-
centage of PD-L1-expressing tumor cells and mononuclear inflammatory cells
within the tumor nest. Briefly, 4–5 μm formalin-fixed, paraffin-embedded baseline
tumor tissue sections are mounted on positively charged slides. To prepare the
slides for antigen/epitope retrieval and primary antibody staining, slides are baked
(60 °C dry heat for 45 min) and de-waxed and rehydrated using a seers of solvent
washes in decreasing concentration (4 × 100% xylene, 100%, 70%, 30% ethanol, and
distilled water). Antigen retrieval was performed in two steps: first using a low pH
Target Retrieval Solution (Dako Cat. No. S1700) at 90 °C for 20 min, followed by
1:160 Proteinase K treatment for 10 min at room temperature (Dako Cat. No.
S3020 diluted in EnVisionTM FLEX+wash buffer). Prepared slides are incubated
off-platform for 16 ± 1 h in a dark humidified chamber with the primary antibody
diluted in Primary Antibody Diluent (Dako Cat. No. S0809). The EnVisionTM

FLEX+ reagent system (EnVision FLEX+HRP-Polymer kit (Dako Cat. No.
K8012). EnVisionTM FLEX+Mouse Linker (15 min), EnVisionTM FLEX+HRP-
polymer (25 min), EnVisionTM FLEX+DAB Chromogen (10 min), nickel
chloride (Ni2+ Cl2) DAB Enhancer (10 min), with hematoxylin counterstain (1/5
dilution, 1 min)) were used for the subsequent wash, block, and signal

amplification and detection automated with a TechMate Instrument (Roche
Diagnostics, QML workmate v3.96.) at room temperature. PD-L1 IHC reactivity
interpretation was evaluated by a board-certified pathologist at QualTek.

Statistics and survival analysis. All statistical analyses were performed in the R
Statistical Computing Environment v3.3.1 (R Foundation for Statistical Comput-
ing, Vienna, Austria. URL https://www.R-project.org/). Custom code to reproduce
key figures and results reported in the manuscript are available at https://
github.com/pughlab/inspire-genomics. Wilcoxon rank-sum test (for two groups)
or Kruskal–Wallis test (for more than two groups) was performed to examine
group differences for continuous measures. Wilcox rank-sum tests were performed
on continuous measures between two groups to examine differences in distribu-
tions. Cox proportional hazards regression models (univariate) were used to assess
the impact of pembrolizumab sensitivity groups, TMB, immune gene set scores at
baseline and change in immune cell inference scores on OS and PFS. Fisher’s exact
test was used to assess the enrichment of mutations in a given gene as compared to
the background mutation rate. All tests were two-sided with p ≤ 0.10 considered to
be statistically significant. Nominal p-values were reported throughout. Multiple
testing adjustments using the Benjamini–Hochberg False Discovery Rate method
was applied to differential gene-expression and GSEA GO enrichment analyses.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Anonymized patient normal, tumor exome, and RNA-seq bam files containing
alignments of the original raw sequencing reads used in this study have been deposited in
the European Genome-phenome Archive repository under accession code
EGAS00001003280. The processed variant calls are available at EGAD00001006569. The
datasets are available under restricted access in compliance with patient consent for data
sharing, access can be obtained by approval from the University Health Network data
access committee (Contact person: Natalie Stickle, Email: natalie.stickle@uhn.ca). A
redacted version of the clinical trial study protocol is provided in Supplementary Note 1
in the Supplementary Information file. The publicly available datasets (Broad MSS mixed
solid tumors10, UMich MET50011, and MSKCC-IMPACT IO study12) used in this study
are available via cBioPortal [https://www.cbioportal.org/]89,90. The remaining data,
including de-identified clinical data, are available within the Article, Supplementary
Information or Source Data file. Source data are provided with this paper.

Code availability
Custom code for analysis and producing visualization of the paper can be accessed via
the project github repository [https://github.com/pughlab/inspire-genomics]91.
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