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Exceptional dynamical quantum phase transitions
in periodically driven systems
Ryusuke Hamazaki 1✉

Extending notions of phase transitions to nonequilibrium realm is a fundamental problem for

statistical mechanics. While it was discovered that critical transitions occur even for transient

states before relaxation as the singularity of a dynamical version of free energy, their nature is

yet to be elusive. Here, we show that spontaneous symmetry breaking can occur at a short-

time regime and causes universal dynamical quantum phase transitions in periodically driven

unitary dynamics. Unlike conventional phase transitions, the relevant symmetry is antiunitary:

its breaking is accompanied by a many-body exceptional point of a nonunitary operator

obtained by space-time duality. Using a stroboscopic Ising model, we demonstrate the

existence of distinct phases and unconventional singularity of dynamical free energy, whose

signature can be accessed through quasilocal operators. Our results open up research for

hitherto unknown phases in short-time regimes, where time serves as another pivotal

parameter, with their hidden connection to nonunitary physics.
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Phase transition1,2 is one of the most fundamental collective
phenomena in macroscopic systems. Recent experiments
on artificial quantum many-body systems motivate

researchers to understand phases and their transitions in systems
out of equilibrium. Various nonequilibrium phases are proposed
including e.g., many-body localized phases3,4, Floquet topological
phases5,6, and discrete-time crystals7–9.

Recently, dynamical quantum phase transitions (DQPTs)
particularly gather great attention as a nonequilibrium counter-
part of equilibrium phase transition, which occurs for transient
times of quantum relaxation10,11. Defined as the singularity of the
so-called dynamical free energy (especially at critical times),
which is calculated from the overlap between the time-evolved
and reference states, the DQPT has been actively studied
theoretically12–25 and experimentally26,27.

Despite extensive studies, the nature of DQPTs is yet to be
elusive. One of the important problems is what mechanism leads
to DQPTs. Several studies find that some DQPTs are associated
with equilibrium/steady-state phase transition13,22. On the other
hand, DQPTs without such relations may also exist14,20, which
indicates that DQPTs can be caused by an unconventional
mechanism unique to the finite-time (high-frequency) regime of
quantum relaxation. Another open problem is the universality
and criticality of DQPTs. Although typical DQPTs are accom-
panied by cusps of dynamical free energies10,11, several works
report DQPTs with different types of singularities16,23. However,
a clear understanding of the universality and criticality of DQPTs
is far from complete.

In this work, we find universal DQPTs in periodically driven
unitary dynamics caused by the spontaneous antiunitary symmetry
(AUS) breaking. While spontaneous symmetry breaking is a funda-
mental mechanism for conventional phase transitions, several distinct
features appear in our results. First, the AUS breaking in our model
occurs uniquely at finite times and cannot be captured by conven-
tional equilibrium or steady-state phases. Second, the AUS appears as
a symmetry of a hidden nonunitary transfer operator, which is
obtained by switching the role of space and time. Consequently, the
universality and criticality found in the unitary dynamics are char-
acterized by those of the exceptional point, which recently gathers
great attention in non-Hermitian physics28,29; thus we call the
transition the exceptional DQPT. To demonstrate our discovery, we
particularly use a stroboscopic chaotic Ising chain and show that the
derivative of dynamical free energy defined at finite times can diverge
through changes of a parameter (Fig. 1a, b). Using the recently
developed technique called the spacetime duality30–33 and deter-
mining the hidden nonunitary operator, we discuss several properties
of the exceptional DQPT besides the divergence of the dynamical free
energy (Fig. 1c). For example, instead of the long-range order asso-
ciated with conventional symmetry breaking, we show that the
generalized correlation function has the divergent correlation length
at transition and exhibits oscillatory long-range order after anti-
unitary symmetry breaking. Finally, we demonstrate that the sig-
natures of the exceptional DQPTs are observed through quasi-local
observables that are accessible by state-of-the-art experiments8,34.
Notably, we argue that the signature of the exceptional DQPTs is
easier to observe than that of the normal DQPTs because of their
strong singularity. Our results make an important step toward
understanding the nature of phase transitions occurring in a short-
time regime, which goes beyond conventional phase transitions since
time serves as another crucial parameter here, with their hidden
connection to nonunitary physics.

Results
Stroboscopic Ising chains and dynamical free energy. To
demonstrate our finding, we introduce a one-dimensional

quantum stroboscopic spin model30,31,35 composed of Ising
interaction and subsequent global rotation. This model is a pro-
totypical model for quantum chaotic dynamics and can be rea-
lized in experiments of e.g., trapped ions8. Its unitary time
evolution for a single step can be written as

U ¼ e�i∑L
j¼1 bσ

x
j e�i∑L

j¼1 Jσ
z
j σ

z
jþ1�i∑L

j¼1 hσ
z
j ; ð1Þ

where we impose a periodic boundary condition.
Let us consider a time-evolved state UT jψii after T steps from

an initial state jψii. To characterize this nonequilibrium state, we
focus on the overlap with another state jψf i, i.e., 〈ψf∣UT∣ψi〉.
The logarithm of the absolute value of this overlap per system
size, FL,T, is dubbed as the dynamical free energy density11. We
here consider three types of dynamical free energy density. The
first one is to take jψii ¼ jψf i ¼ jψi and average the overlap over
jψi randomly taken from the unitary Haar measure before taking
the absolute value and the logarithm. Then, the (modified)
dynamical free energy density reads

FTr
L;T ðb; J; hÞ ¼ � 1

L
log jTr½UT �j þ log 2: ð2Þ

We note that FTr
L;T is the logarithm of the two-point spectral

measure through jTr½UT �j2 ¼ ∑a;be
iTðza�zbÞ, where eiza are the

eigenvalues for U. Since the appearance of trace simplifies the
discussion, we mainly use this quantity to show our results.

The second one is to take jψii ¼
NL

j¼1j"ji and jψf i¼NL
j¼1 j#ji, where j"ji/j#ji is the eigenstate of σzj with an

eigenvalue +1/−1. In this case, we have

F#"
L;T ðb; J; hÞ ¼ � 1

L
log jh# � � � # jUT j " � � � "ij: ð3Þ

The third one is to take jψii ¼ jψf i¼
NL

j¼1j"ji, leading to

F""
L;T ðb; J; hÞ ¼ � 1

L log jh" � � � " jUT j " � � � "ij.

Fig. 1 Schematic of the exceptional dynamical quantum phase transition
(DQPT). a Periodically driven unitary dynamics described by an operator U.
While our nonintegrable system thermalizes for local observables at infinite
times, we here discuss the phase transitions occurring at finite times. b Example
of the exceptional DQPT. Dynamical free energy, which is obtained from the
overlap between the time-evolved state UT jψii and the reference state jψfi, has
a divergent derivative at some critical parameter approached from the
antiunitary-symmetry (AUS) unbroken phase. cOrigin of the exceptional DQPT
as the spontaneous AUS breaking. Using the spacetime duality, we find a
hidden nonunitary transfer operator ~U that propagates in space direction. We
uncover that the exceptional DQPTs arise when the AUS for ~U is spontaneously
broken.
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The derivative of FL,T gives the (imaginary part of) so-called
generalized expectation values. For example, we have

� 1
T

dFTr
L;T

db
¼ Im Tr

1
L
∑
j
σxj ~ρ

� �� �
:¼ Im hσx1igexp

h i
; ð4Þ

where ~ρ ¼ UT=Tr½UT � and we have used translation invariance.
Importantly, the dynamical free energy density and the general-
ized expectation values can be in principle measured with an
interferometric experiment11,15.

We seek for singularities of F∞,T when some continuous
parameter is varied. In ref. 10, F∞,T exhibits singularity at critical
times for continuous-time models. Since T is discrete in our
model, instead of changing T, we consider continuously changing
other parameters (such as b) for fixed T.

Dynamical phases and their transitions. As a prime example
that highlights our discovery, we show in Fig. 2 the (real-part of)
dynamical free energy density FTr

1;Tð¼6Þ and Im½hσx1igexp� as a
function of the rotation angle b for J=−π/4 and h= 3.0 (see
Supplementary Note 1 for the data with other parameters and
initial/final states). This is calculated from the eigenvalue with the
largest modulus of the space-time dual operator, as detailed later.
We find different singular behaviors for FTr

1;T , signaling distinct
DQPTs at critical parameters. Many cusps of FTr

1;T with varying b
are are analogous to (continuous time) DQPTs studied pre-
viously, where Im½hσx1igexp� exhibits a finite jump.

Notably, we find a distinct singularity at b= bc≃ 0.0257 for

T= 6, where the derivative diverges as
dFTr

1;T

db / Im½hσx1igexp� �
jbc � bj�1=2 for b≲ bc. Such a strong singularity is prohibited for
equilibrium free energy density since the thermal expectation
value of a local observable cannot diverge. We call this transition
an exceptional DQPT, as it turns out to originate from the
occurrence of an exceptional point of a nonunitary operator that
is dual to U. As shown below, an exceptional DQPT can occur for

FfTr=#"g
1;T with J ¼ π

4 þ nπ
2 ðn 2 ZÞ and even/odd T and is robust

under certain weak perturbation (such as h), which is deeply
related to the hidden symmetry of our setup. We note that the
value of bc itself depends on the parameters, such as T. We also

note that, while the divergence of the derivative of dynamical free
energy was recently found in ref. 23 for an integrable system, the
connection to the underlying symmetry was not discussed.

The exceptional DQPT occurs at a different point from the
self-dual points, which are J ¼ π

4 þ nπ
2 and b ¼ π

4 þ mπ
2 ðn;m 2 ZÞ

and known in the context of quantum many-body chaos31,32. As
discussed in Supplementary Note 5, we find that crossing self-

dual points entail DQPT universally for FTr=""=#"
1;T with any T and

h, whose criticality is analogous to that for the conventional
DQPT (see Fig. 2).

We stress that DQPTs in our model do not appear as infinite-
time averages of expectation values of local observables (see
Supplementary Note 4), in contrast with the observation in ref. 22.
Indeed, our DQPTs occur at nonintegrable points, where the
infinite-time averages of expectation values trivially thermalize
because of the Floquet eigenstate thermalization hypothesis36.
This means that our DQPTs are unique to finite-time regimes, in
which time serves as an important parameter in stark contrast
with conventional phase transitions.

Spacetime duality and hidden symmetries. To understand the
above behaviors, we employ the space-time duality30 of our
Floquet operator. This is an exact method to switch the role of
time and space and rewrite UT with L product of a space-time-
dual transfer matrix ~U , which involves T spins. Using this
method, we can rewrite the dynamical free energy as

FL;T ¼ � 1
L
log jTr½~UL�j; ð5Þ

where the nonunitary operator ~U depends on the type of FL,T. For
example, we have

~UTr ¼ Ce�i∑T
τ¼1

~bσxτ e�i∑T
τ¼1

~Jσzτσ
z
τþ1�i∑T

τ¼1 hσ
z
τ ð6Þ

with the periodic boundary condition for FTr
L;T

30–32 (see Supple-
mentary Note 2 for the proof and the similar construction for
~U""=#", which corresponds to F""=#"

L;T ). Here,
~b ¼ �π=4� ilog ðtan JÞ=2, ~J ¼ �π=4� ilog ðtan bÞ=2 and

C ¼ ðsin 2b= sin 2~bÞT=2=2.
Let λM;α ¼ jλMjeiθα be eigenvalues of ~U whose modulus gives

the largest one among all eigenvalues. Here, α(=1,… , ndeg) is the
label of the degeneracy, where ndeg is the number of eigenvalues
giving the maximum modulus. For large L, FL,T is dominated by
these largest eigenvalues, i.e.,

FL;T ’ �log jλMj �
1
L
log ∑

α
eiθαL

����
����: ð7Þ

In the thermodynamic limit, the second term vanishes.
Similar to the discussion noted in ref. 14, DQPTs occur when

the eigenstate that gives the largest eigenvalue switches. For
typical cases, conventional DQPTs occur when a maximum of
two eigenvalues with different θα switches accidentally, where
ndeg= 1 for each phase and ndeg= 2 at transition (Fig. 3a).

In contrast, hitherto unknown dynamical phases and transi-
tions can appear when ~U possesses AUS37–39. In nonunitary
physics, the operator ~U is said to have the AUS when some
unitary operator V and ϕ 2 R exist and V ~U

�
Vy ¼ eiϕ ~U is

satisfied (see Table 1). As detailed in the “Methods” section,
nonunitary operator ~U is called Class A if ~U does not have the
AUS, Class AI when the AUS exists and the corresponding V
satisfies VV� ¼ I, and Class AII when the AUS exists and the
corresponding V satisfies VV� ¼ I. A particularly important class
is Class AI, where the spectral transition unique to nonunitarity,
i.e., spontaneous AUS breaking, occurs with the change of

Fig. 2 Dynamical quantum phase transitions (DQPTs) caused by the
variation of the rotation angle b. a Dynamical free energy density FTr1;T ,
whose singularities indicate DQPTs. Among DQPTs, we have the
exceptional DQPT (red circle), which shows divergent derivative, and the
DQPT crossing the self-dual point (blue circle). b Imaginary part of the
generalized expectation value given in Eq. (4), which is proportional to the
b-derivative of FTr1;T . While it exhibits a jump for typical DQPTs, it diverges
at the exceptional DQPT. (inset) The divergence obeys ðbc � bÞ�1=2 (red
dashed line). We use J=−π/4 and h= 3.0, and T= 6.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25355-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5108 | https://doi.org/10.1038/s41467-021-25355-3 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


parameters. In this case, the eigenstates do and do not respect the
AUS for each phase separated at the critical point, which is called
the exceptional point. Through the transition, two eigenvalues are
attracted, degenerated (at the exceptional point), and repelled in a
singular manner (see Fig. 3b).

We find that some of our Floquet operators U can have hidden
AUS of ~U for J ¼ π

4 þ nπ
2 ðn 2 ZÞ (see Table 2 and “Methods”

section). Particularly, ~UTr belongs to Class AI for even T (and AII
for odd T), and ~U#" belongs to Class AI for odd T (and AII for
even T) as long as J ¼ π

4 þ nπ
2 ðn 2 ZÞ. In contrast, ~U"" does not

have AUS and belongs to Class A in general.
The above symmetries clearly explain the origin of the

exceptional DQPT: as shown in Fig. 3b, this transition occurs
when eigenvalues with the largest and the second-largest modulus
collide under Class AI AUS, i.e., at the many-body exceptional
point40–42 for λM. It is known that this (second-order)
exceptional point entails a universal spectral singularity, where
the gap between two eigenvalues behave like ∣b− bc∣1/2. This leads
to the previously-mentioned notable divergence of the general-
ized expectation value � ðbc � bÞ�1=2 for b < bc, where −1/2 is
also known to be a universal critical exponent.

For FTr
1;T¼6, the phases with b < bc≃ 0.0257π and b > bc

correspond to hidden AUS-unbroken and AUS-broken phases,
respectively. This is highlighted by the generalized correlation
function, CðrÞ ¼ jhσz1σzrþ1igexp � hσz1igexphσzrþ1igexpj (see Fig. 4 and
the “Methods” section). While C(r) decays exponentially as �

e�r=ξcor in the AUS-unbroken phase, the correlation length
diverges as ξcor � ðbc � bÞ�1=2 as it approaches the exceptional
DQPT point. At AUS-broken phases, ξcor diverges and long-range
order appears. Notably, we find that C(r) oscillates with the
oscillation length ξosc, which also diverges near the exceptional
DQPT ξosc � ðb� bcÞ�1=2. We remark that the qualitative
signature of the transition can be captured by the existence of
the long-range order even for relatively small systems, which are
relevant for experiments (see Supplementary Note 6).

Here, we comment on the relation with the seminal work by
Lee, Yang43,44 and Fisher45, who investigated thermodynamic
phase transitions by non-Hermitian operators. While our
motivation is to investigate DQPTs occurring at finite times,
which is different from their motivation, there exists some
mathematical analogy. In fact, the exceptional DQPT can be
regarded as the realization of the edge singularity of the partition-
function zeros at physical (i.e., real) parameters, as discussed in
the “Methods” section.

Hidden Class AI AUS also enables us to discuss conditions for
having exceptional DQPTs. In our prototypical stroboscopic Ising
model, we can observe the exceptional DQPT by considering
FTr
1;T with even T and F#"

1;T with odd T under the condition
J ¼ π=4þ nπ=2 ðn 2 ZÞ (see Supplementary Note 3 for the
example of F#"

L;T). Note that this transition is robust even if the
value of h is slightly perturbed since the transition is protected by
AUS. We also stress that J cannot be generic in our anlysis: J ¼
π=4þ nπ=2 ðn 2 ZÞ is important for the exceptional DQPT
because it ensures the antiunitary symmetry for ~U . Investigation
of the exceptional DQPT for other values of J is a future problem.

Signature through quasi-local observables. Next, we show that
the signature of our DQPTs is accessible through the expectation
values of quasi-local observables, which are more experimentally
friendly than the overlap itself (in other words, the DQPT affects
the behavior of the expectation values of the quasi-local obser-
vables). We also demonstrate that the exceptional DQPT is easier
to measure with finite-size scaling analysis than the conventional
DQPT, thanks to its strong singularity. We here explain this fact
by focusing on F#"

L;T in Eq. (3), instead of FTr
L;T , since its opera-

tional meaning in experimental situations is more direct. We note
that F#"

1;T shows the exceptional DQPT for b= bc≃ 0.446π with
h= 1.3, T= 5 and J=−π/4, where the AUS is broken for b < bc
and unbroken for b > bc (this is opposite to the case for FTr

1;T).
To see our argument, we introduce the following quantity

F#"ðlÞ
L;T ¼ � 1

2l
log hψijPðlÞ

f ðTÞjψii; ð8Þ

where PðlÞ
f ¼

Nl
i¼1j #iih# ji and PðlÞ

f ðTÞ ¼ U�TPðlÞ
f U

T is the

Heisenberg representation. While Pðl¼LÞ
f ¼NL

i¼1j #iih# ji ¼
jψf ihψf j and Eq. (8) reduces to F#"

L;T for l= L, PðlÞ
f becomes

quasi-local when l=O(L0)≪ L24,25. For the latter case, Eq. (8) is

Fig. 3 Schematic of eigenvalue dynamics of the spacetime-dual operator
~U. a Typical eigenvalue dynamics (small circles) near dynamical quantum
phase transition (DQPT). Green dashed circles have the radius that
corresponds to the eigenvalue(s) with the largest modulus. The eigenvalue
with the largest modulus (red circles) switches at the critical point, at which
two eigenvalues have the same modulus. b Eigenvalue dynamics through
the exceptional DQPT. Eigenvalues with the largest and the second-largest
modulus lie on the same radial direction protected by antiunitary symmetry
(AUS) of ~U when AUS is unbroken. When the parameter changes, the
eigenvalues coincide at the critical parameter and show spectral singularity
as an exceptional point. They then form a complex-conjugate pair (i.e., AUS
breaking) and the modulus of two eigenvalues becomes equivalent.

Table 1 Summary of antiunitary symmetry (AUS) classes.
Only Class AI can exhibit the AUS-breaking transition.

AUS class V ~U
�
Vy ¼ eiϕ ~U? AUS-breaking transition

Class A No No
Class AI VV� ¼ I Yes
Class AII VV� ¼ �I No

Table 2 Antiunitary symmetry classes for ~U.

~U with J ¼ π
4 þ nπ

2 even T odd T
~UTr Class AI Class AII
~U#" Class AII Class AI
~U"" Class A Class A

We consider the case with J ¼ π
4 þ nπ

2 ðn 2 ZÞ. The AUS-breaking transition can occur for Class
AI, which corresponds to ~UTr with even T and ~U#" with odd T.
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represented by the standard expectation value of the quasi-local
observable, which describes the presence of consecutive spin-down
domain at size l, at time T. Note that such spin domains have been
measured in ion experiments using single-site imaging8,34.

We argue that the signature of the exceptional DQPT can be
captured by F#"ðlÞ

L;T and its derivative even for relatively small l, which
is more experimentally friendly than the dynamical free energy
density itself. Figure 5 shows the b-dependence of F#"ðlÞ

L;T and

∂F#"ðlÞ
L;T =∂b for different l(=2, 3, 4, 5, 6,∞). We find that the peak

develops even for small l around the exceptional DQPT (b≃ 0.44π).
Particularly, the peaks for the derivative become rapidly sharper as
increasing l, reflecting the divergence for l= L→∞. Our results
physically mean that, in this setting, large spin-down domains are
rapidly suppressed toward the exceptional DQPT critical point.

We also note that the sharp peaks indicate the experimental
advantage of considering the exceptional DQPT compared with
the conventional DQPT. Indeed, as shown in Fig. 5, we cannot
find sharp peaks for l ≤ 6 for the conventional DQPT (b≃ 0.33π).
This indicates that the exceptional DQPT is easier to detect even
with small l than the conventional DQPT because of its unique
singularity, which is another advantage for our analysis.

Discussion
Although we have demonstrated the singularity of the dynamical
free energy and the oscillatory long-range order for the sponta-
neous antiunitary symmetry breaking, one may wonder whether
we can define an order parameter that is nonzero only for the

symmetry-breaking phase. As detailed in Supplementary Note 7,
we show that an order parameter can be explicitly constructed
using different-time generalized observables. This indicates that
antiunitary symmetry breaking cannot be diagnosed by the usual
single-time expectation values.

The exceptional DQPT appears in other situations, as well as
the above situation. When we change h instead of b, AUS of
~UTr=#" is preserved and the exceptional DQPT appears for even/
odd T, meaning that hσzi igexp diverges. We also stress that the
exceptional DQPT is not restricted to the stroboscopic Ising
model but occurs for a broader class of Floquet systems, as shown
in Supplementary Note 8.

To conclude, we have shown that the spontaneous antiunitary
symmetry breaking leads to the unconventional universal DQPT,
i.e., the exceptional DQPT, uniquely at finite times in Floquet
quantum many-body systems. The appearance of finite-time
phase transitions related to nonunitary physics can be understood
from the spacetime duality. We have also demonstrated that the
signatures of the exceptional DQPTs are observed through quasi-
local observables that are accessible by state-of-the-art
experiments8,34. Notably, the signature of the exceptional
DQPTs is easier to observe than that of the normal DQPTs
because of their strong singularity.

Our result paves the way to study completely unknown phases
in short-time regimes, where time is regarded as a crucial para-
meter. As demonstrated in this work, our method via spacetime
duality is useful for investigating unconventional finite-time phase
transitions for quantum many-body unitary dynamics through the
scope of nonunitary many-body physics. One of the promising

Fig. 4 Generalized correlation function and correlation/oscillation lengths ξcor, ξosc corresponding to FTr1;T . a Generalized correlation function C(r) for
different values of b for L= 500. In the antiunitary symmetry (AUS) unbroken phase (b < bc≃ 0.0257π), the correlation decays exponentially. In the AUS
broken phase (b > bc), the correlation exhibits oscillatory long-range order. b Divergence of ξcor (solid line) and ξosc (dotted line) in the thermodynamic
limit. Approaching the exceptional dynamical quantum phase transition, they both behave as ~∣b− bc∣−1/2. We use J=−π/4 and h= 3.0, and T= 6.

Fig. 5 The signature of the exceptional dynamical quantum phase transition (DQPT) using quasi-local observables. We show F#"ðlÞL;T and its derivative,
which are described by the expectation value of quasi-local observables. We find that the peaks (indicated by the dots and arrows) develop even for small l
around the exceptional DQPT (b≃ 0.44π). Particularly, the peaks for the derivative become rapidly sharper as increasing l, reflecting the divergence for
l= L→∞. This is in contrast with the conventional DQPT (b≃ 0.33π), where we cannot find sharp peaks for l≤ 6. We use L= 100 for l= 2 (black), 3
(blue), 4 (green), 5 (red), 6 (orange) and L=∞ for l=∞ (purple dotted), T= 5, J=−0.25π and h= 1.3.
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directions is to classify such dynamical phases by the symmetries
of the spacetime-dual operator in light of non-Hermitian sym-
metries, which are completely classified only recently37,39.

Methods
Antiunitary symmetry of ~U . Let us assume that a nonunitary operator ~U satisfies
V ~U

�
Vy ¼ eiϕ ~U for some unitary operator V and ϕ 2 R. According to the recent

classification of non-Hermitian systems39, ~U is called Class A without AUS, Class
AI when V with VV� ¼ I exists, and Class AII when V with VV� ¼ �I exists. If
we consider ϕ= 0 without loss of generality, the eigenvalues of ~U in Class AI are
either real or form complex conjugate pairs. Furthermore, at certain parameters,
two real eigenvalues collide and form a complex conjugate pair, which can be
called spontaneous AUS-breaking transition. In fact, while eigenstates jϕi are
symmetric under AUS in the AUS-unbroken phase, i.e., V jϕi� ¼ jϕi, Vjϕi� and
jϕi are different in the AUS-broken phase. At the transition point, known as the
exceptional point, two eigenstates become equivalent, which offers a unique
feature for nonnormal matrices. In Class AII, on the other hand, eigenvalues
generically form complex conjugate pairs and are not real in the presence of the
level repulsion46.

Our Floquet operators U can have such hidden antiunitary symmetries of ~U
for J ¼ π

4 þ nπ
2 ðn 2 ZÞ: indeed, we find V ¼QT

τ¼1 e
iπ2σ

y
τ for ~UTr and V ¼

PQT�1
τ¼1 e

iπ2σ
y
τ for ~U#" , where P is the parity operator exchanging τ and T− τ (see

Supplementary Note 3 for the detailed calculation). Since VV* takes either þI or
�I depending on T, we find that ~UTr belongs to Class AI for even T and AII for
odd T, and that ~U#" belongs to Class AI for odd T and AII for even T as long as

J ¼ π
4 þ nπ

2 ðn 2 ZÞ. On the other hand, ~U"" does not have AUS and belongs to
Class A in general.

Generalized correlation function. To calculate the generalized correlation func-
tion, we first note the dual representation

CðrÞ ¼ Tr½~UL�r
σzτ¼1

~U
r
σzτ¼1�

Tr½~UL�
� Tr½~UL

σzτ¼1�
Tr½~UL�

 !2�����
�����: ð9Þ

Here, we choose the time point τ for the dual spin σzτ as τ= 1. Inserting the
eigenstate decomposition of ~U ¼ ∑αλα ϕα

�� �
χα
� ��, we have

CðrÞ ! λ1
λ0

� �r

hχ0jσzτ¼1jϕ1ihχ1jσzτ¼1jϕ0i
����

���� ð10Þ

for b≲ bc and large L. Here, 0 and 1 respectively indicate the labels of eigenvalues
with the largest and the second-largest modulus. From this, the generalized cor-
relation length is obtained as ξcor ¼ �ðln λ1=λ0Þ�1 ’ λ0=ðλ0 � λ1Þ and behaves as
� ðbc � bÞ�1=2 near the exceptional DQPT.

For b > bc, C(r) contains a term e−irΔ even in the thermodynamic limit, where
Δ ( < π) is the difference between angles of two complex-conjugate eigenvalues.
Thus the oscillation length becomes ξosc ¼ 2π

Δ and behaves as � ðb� bcÞ�1=2 near
the exceptional DQPT.

Partition-function zeros. Phase transitions occur when the zeros of the partition
function e�LFL;T , whose parameter (especially b in our context) regime is extended
to a complex one, accumulate at real values in the thermodynamic limit11,45.
Accumulation points of the partition-function zeros are thus read out from the
points where maximum eigenvalues switch when we add proper perturbation
δb ð2 CÞ whose magnitude is infinitesimal14. Notably, the partition-function
zeros accumulate along the real axis when the complex-conjugate pair contributes
to maximum eigenvalues with ndeg= 2 owing to AUS of ~U . This is because one of
the eigenvalues that form the complex conjugate at b 2 R becomes larger and
smaller than the other for b+ δb and b� δb ðδb 2 iRÞ, respectively. Moreover,
we find that these zeros on the real axis (say b ≥ bc) terminate at the exceptional
DQPT (b= bc). This means that the exceptional DQPT corresponds to the rea-
lization of the edge singularity of the partition-function zeros at physical para-
meters on the real axis.

Data availability
All the data that support the plots and other findings of this study are available from the
corresponding author upon reasonable request.

Code availability
All the computational codes that were used to generate the data presented in this study
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Received: 15 December 2020; Accepted: 4 August 2021;

References
1. Landau, L. D. & Lifshitz, E. M. Statistical Physics: Volume 5 Vol. 5 (Elsevier,

2013).
2. Sachdev, S. In Handbook of Magnetism and Advanced Magnetic Materials.

Cambridge University Press. https://www.cambridge.org/core/books/
quantum-phase-transitions/33C1C81500346005E54C1DE4223E5562 (2007).

3. Schreiber, M. et al. Observation of many-body localization of interacting
fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).

4. Smith, J. et al. Many-body localization in a quantum simulator with
programmable random disorder. Nat. Phys. 12, 907–911 (2016).

5. Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in
semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

6. Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496,
196–200 (2013).

7. Choi, S. et al. Observation of discrete time-crystalline order in a disordered
dipolar many-body system. Nature 543, 221 (2017).

8. Zhang, J. et al. Observation of a many-body dynamical phase transition with a
53-qubit quantum simulator. Nature 551, 601–604 (2017).

9. Moessner, R. & Sondhi, S. L. Equilibration and order in quantum Floquet
matter. Nat. Phys. 13, 424 (2017).

10. Heyl, M., Polkovnikov, A. & Kehrein, S. Dynamical quantum phase transitions
in the transverse-field Ising model. Phys. Rev. Lett. 110, 135704 (2013).

11. Heyl, M. Dynamical quantum phase transitions: a review. Rep. Prog. Phys. 81,
054001 (2018).

12. Karrasch, C. & Schuricht, D. Dynamical phase transitions after quenches in
nonintegrable models. Phys. Rev. B 87, 195104 (2013).

13. Heyl, M. Dynamical quantum phase transitions in systems with broken-
symmetry phases. Phys. Rev. Lett. 113, 205701 (2014).

14. Andraschko, F. & Sirker, J. Dynamical quantum phase transitions and the
Loschmidt echo: a transfer matrix approach. Phys. Rev. B 89, 125120 (2014).

15. Canovi, E., Werner, P. & Eckstein, M. First-order dynamical phase transitions.
Phys. Rev. Lett. 113, 265702 (2014).

16. Heyl, M. Scaling and universality at dynamical quantum phase transitions.
Phys. Rev. Lett. 115, 140602 (2015).

17. Sharma, S., Suzuki, S. & Dutta, A. Quenches and dynamical phase transitions
in a nonintegrable quantum Ising model. Phys. Rev. B 92, 104306 (2015).

18. Budich, J. C. & Heyl, M. Dynamical topological order parameters far from
equilibrium. Phys. Rev. B 93, 085416 (2016).

19. Sharma, S., Divakaran, U., Polkovnikov, A. & Dutta, A. Slow quenches in a
quantum Ising chain: dynamical phase transitions and topology. Phys. Rev. B
93, 144306 (2016).

20. Halimeh, J. C. & Zauner-Stauber, V. Dynamical phase diagram of quantum
spin chains with long-range interactions. Phys. Rev. B 96, 134427 (2017).

21. Zauner-Stauber, V. & Halimeh, J. C. Probing the anomalous dynamical phase
in long-range quantum spin chains through fisher-zero lines. Phys. Rev. E 96,
062118 (2017).

22. Žunkovič, B., Heyl, M., Knap, M. & Silva, A. Dynamical quantum phase
transitions in spin chains with long-range interactions: merging different
concepts of nonequilibrium criticality. Phys. Rev. Lett. 120, 130601 (2018).

23. Bhattacharyya, S. & Dasgupta, S. Exotic signature of dynamical quantum
phase transition in the time evolution of an engineered initial state. J. Phys. A:
Math. Theor. 53, 265002 (2020).

24. Bandyopadhyay, S., Polkovnikov, A. & Dutta, A. Observing dynamical
quantum phase transitions through quasilocal string operators. Phys. Rev. Lett.
126, 200602 (2021).

25. Halimeh, J. C., Trapin, D., Van Damme, M. & Heyl, M. Local measures of
dynamical quantum phase transitions. Preprint at https://arxiv.org/abs/
2010.07307 (2020).

26. Jurcevic, P. et al. Direct observation of dynamical quantum phase transitions
in an interacting many-body system. Phys. Rev. Lett. 119, 080501 (2017).

27. Fläschner, N. et al. Observation of dynamical vortices after quenches in a
system with topology. Nat. Phys. 14, 265–268 (2018).

28. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14,
11 (2018).

29. Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363,
eaar7709 (2019).

30. Akila, M., Waltner, D., Gutkin, B. & Guhr, T. Particle-time duality in the
kicked Ising spin chain. J. Phys. A: Math. Theor. 49, 375101 (2016).

31. Bertini, B., Kos, P. & Prosen, T. Exact spectral form factor in a minimal model
of many-body quantum chaos. Phys. Rev. Lett. 121, 264101 (2018).

32. Bertini, B., Kos, P. & Prosen, T. Entanglement spreading in a minimal model
of maximal many-body quantum chaos. Phys. Rev. X 9, 021033 (2019).

33. Bertini, B., Kos, P. & Prosen, Tcv Exact correlation functions for dual-unitary
lattice models in 1+ 1 dimensions. Phys. Rev. Lett. 123, 210601 (2019).

34. Tan, W. et al. Domain-wall confinement and dynamics in a quantum
simulator. Nat. Phys. 17, 742–747 (2021).

35. Prosen, Tcv General relation between quantum ergodicity and fidelity of
quantum dynamics. Phys. Rev. E 65, 036208 (2002).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25355-3

6 NATURE COMMUNICATIONS |         (2021) 12:5108 | https://doi.org/10.1038/s41467-021-25355-3 | www.nature.com/naturecommunications

https://www.cambridge.org/core/books/quantum-phase-transitions/33C1C81500346005E54C1DE4223E5562
https://www.cambridge.org/core/books/quantum-phase-transitions/33C1C81500346005E54C1DE4223E5562
https://arxiv.org/abs/2010.07307
https://arxiv.org/abs/2010.07307
www.nature.com/naturecommunications


36. Kim, H., Ikeda, T. N. & Huse, D. A. Testing whether all eigenstates obey the
eigenstate thermalization hypothesis. Phys. Rev. E 90, 052105
(2014).

37. Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8,
031079 (2018).

38. Kawabata, K., Higashikawa, S., Gong, Z., Ashida, Y. & Ueda, M. Topological
unification of time-reversal and particle-hole symmetries in non-Hermitian
physics. Nat. Commun. 10, 297 (2019).

39. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in
non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

40. Ashida, Y., Furukawa, S. & Ueda, M. Parity-time-symmetric quantum critical
phenomena. Nat. Commun. 8, 15791 (2017).

41. Hamazaki, R., Kawabata, K. & Ueda, M. Non-Hermitian many-body
localization. Phys. Rev. Lett. 123, 090603 (2019).

42. Luitz, D. J. & Piazza, F. Exceptional points and the topology of quantum
many-body spectra. Phys. Rev. Res. 1, 033051 (2019).

43. Lee, T. D. & Yang, C. N. Statistical theory of equations of state and phase
transitions. ii. lattice gas and Ising model. Phys. Rev. 87, 410–419
(1952).

44. Yang, C. N. & Lee, T. D. Statistical theory of equations of state and phase
transitions. i. theory of condensation. Phys. Rev. 87, 404–409
(1952).

45. Fisher, M. E. Yang-lee edge singularity and ϕ3 field theory. Phys. Rev. Lett. 40,
1610–1613 (1978).

46. Hamazaki, R., Kawabata, K., Kura, N. & Ueda, M. Universality classes of non-
hermitian random matrices. Phys. Rev. Res. 2, 023286 (2020).

47. Weinberg, P. & Bukov, M. Quspin: a python package for dynamics and exact
diagonalisation of quantum many body systems. part ii: bosons, fermions, and
higher spins. SciPost Phys. 7, 020 (2019).

Acknowledgements
We are grateful to Kohei Kawabata, Nobuyuki Yoshioka, Keiji Saito, and Mamiko Tat-
suta for fruitful comments. We thank Jad C. Halimeh, Amit Dutta, and Subinay Das-
gupta for notifying us of related papers. The numerical calculations were carried out with
the help of QUSPIN47.

Author contributions
This work was carried out by R.H.

Competing interests
The author declares no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-25355-3.

Correspondence and requests for materials should be addressed to R.H.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25355-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5108 | https://doi.org/10.1038/s41467-021-25355-3 |www.nature.com/naturecommunications 7

https://doi.org/10.1038/s41467-021-25355-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Exceptional dynamical quantum phase transitions in periodically driven systems
	Results
	Stroboscopic Ising chains and dynamical free energy
	Dynamical phases and their transitions
	Spacetime duality and hidden symmetries
	Signature through quasi-local observables

	Discussion
	Methods
	Antiunitary symmetry of UŨ
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