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Optimization of C-to-G base editors with sequence
context preference predictable by machine learning
methods
Tanglong Yuan 1,6, Nana Yan 1,6, Tianyi Fei 2,6, Jitan Zheng 1,3,6, Juan Meng2,6, Nana Li 1,6,

Jing Liu 1,6, Haihang Zhang 1, Long Xie 1, Wenqin Ying 2, Di Li 1,4, Lei Shi 1, Yongsen Sun1,

Yongyao Li 1, Yixue Li 5, Yidi Sun 2✉ & Erwei Zuo 1✉

Efficient and precise base editors (BEs) for C-to-G transversion are highly desirable. However,

the sequence context affecting editing outcome largely remains unclear. Here we report

engineered C-to-G BEs of high efficiency and fidelity, with the sequence context predictable

via machine-learning methods. By changing the species origin and relative position of uracil-

DNA glycosylase and deaminase, together with codon optimization, we obtain optimized

C-to-G BEs (OPTI-CGBEs) for efficient C-to-G transversion. The motif preference of OPTI-

CGBEs for editing 100 endogenous sites is determined in HEK293T cells. Using a sgRNA

library comprising 41,388 sequences, we develop a deep-learning model that accurately

predicts the OPTI-CGBE editing outcome for targeted sites with specific sequence context.

These OPTI-CGBEs are further shown to be capable of efficient base editing in mouse

embryos for generating Tyr-edited offspring. Thus, these engineered CGBEs are useful for

efficient and precise base editing, with outcome predictable based on sequence context of

targeted sites.
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Precise alteration of single nucleotides is a powerful approach
in gene editing for biological research and therapeutic
applications1. Cytosine base editors (CBEs)2 and adenine

base editors (ABEs)3 have been developed to enable C-to-T or A-
to-G conversion at target sites, respectively. However, these BEs
are unable to install C-to-G or A-to-T transversion, which may
correct 40% of human pathogenic point mutations4. Two recent
reports have shown C-to-G transversion could be achieved by
replacing the uracil-DNA glycosylase inhibitor (UGI) of a CBE
with an uracil-DNA glycosylase (UNG)5,6. While, these C-to-G
editors showed efficient editing at limited target sites and pro-
vided few rules for efficient C-to-G editing.

In this study, we aim to further elevate C-to-G transversion
efficiency by optimizing the design of CBEs. Starting with chan-
ging the species origin and relative position of uracil-DNA gly-
cosylase and deaminase, we obtain OPTI-CGBEs for efficient C-
to-G transversion. We determine the motif preferences of these
OPTI-CGBEs using a sgRNA library comprising 41,388 sequen-
ces, and then develop a deep-learning model that accurately
predicts the OPTI-CGBE editing outcome for targeted sites with
specific sequence context. Finally, we demonstrate the capability
of these OPTI-CGBEs for efficient base editing in mouse
embryos. These CGBE variants expand the scope of base editing
and provide selection criteria for future gene editing that requires
C-to-G transversion.

Results
Generation of CGBE variants by rational gene engineering. We
first compared the efficiency of C-to-G base editing using UNGs
from human, E. coli, mouse, or C. elegans to substitute UGI of BE3
(Supplementary Fig. 1). For 34 endogenous sites in HEK293T-
cells, we found that C-to-G BE (CGBE) variants with the E. coli or
C. elegans UNG (eUNG or cUNG) achieved much higher C-to-G
transversion efficiency than that with human UNG (Fig. 1a).

Previous reports have shown that BE3 induced a substantial
amount of random DNA and RNA point mutations7–10, and the
extent of such off-target effects can be reduced by introducing
mutations into the ssDNA binding domain of BE3’s deaminase
rAPOBEC111,12. Thus, we introduced mutations W90Y and
R126E into the rAPOBEC1 module of CGBEs (abbreviated
YE1)11,12 to generate two variants: YE1-eUNG-CGBE, and YE1-
cUNG-CGBE (Supplementary Fig. 1). Testing of editing effi-
ciency for the 34 target sites in HEK293T cells showed that the
bystander C-to-A and C-to-T edits of the two variants were
substantially reduced compared to the original CGBEs with the
wild-type rAPOBEC1 (Fig. 1b). Besides, the purity of editing
products (C-to-G divided by C-to-others editing efficiency) was
significantly increased in the two CGBE variants (Fig. 1c).

To further improve the editing efficiency of YE1-eUNG-CGBE
or YE1-cUNG-CGBE, we modified the proteins by adding a
nuclear location signal peptide and optimizing the codons for
expression in human cells13. The higher expression level of the
variant (FNLS-YE1-eUNG-CGBE) resulted in higher overall
editing efficiency in HEK293T cells compared with YE1-eUNG-
CGBE (two-fold; Fig. 1b). The further change in domain position
by fusing the eUNG to the N-terminus of CGBE (FNLS-eUNG-
YE1-CGBE) instead of the original C-terminal location resulted
in further elevation of editing efficiency (to 22.7% on average;
Fig. 1b). Similarly, an improved version of FNLS-cUNG-YE1-
CGBE carrying cUNG at the N-terminus also significantly
improved the C-to-G editing efficiency of YE1-cUNG-CGBE
(3-fold; Fig. 1b). The products purity was also significantly
increased for both FNLS-eUNG-YE1-CGBE and FNLS-cUNG-
YE1-CGBE (Fig. 1c). Moreover, we found FNLS-eUNG-YE1-
CGBE and FNLS-cUNG-YE1-CGBE showed a narrowed editing

window that spanned protospacer positions 4–7, with protospacer
adjacent motif (PAM) spans positions 21–23 (Fig. 1d), a feature
preferable for base editing14. We next compared our constructs
with the CGBE construct (eUNG-BE4max(R33A)ΔUGI; referred
as CGBE1) from Kurt et al.6 and found that our optimized
CGBEs showed significantly higher C-to-G editing efficiency on
the tested target sites (Supplementary Fig. 2d). Specifically, our
optimized CGBEs showed higher editing efficiencies at positions
5 and 6 within the editing window (Supplementary Fig. 2e).
Moreover, both FNLS-eUNG-YE1-CGBE and FNLS-cUNG-YE1-
CGBE produced editing products with higher purity, as the ratio
between C-to-G and C-to-others edits were significantly
increased compared with CGBE1 (Supplementary Fig. 2f). The
indel frequency of FNLS-cUNG-YE1-CGBE was significantly
reduced simultaneously (Supplementary Fig. 2g). Besides, we
compared our CGBEs with prime editors (PE2 and PE3) that can
introduce a diverse range of different edits15,16. Across six
different target sites that we tested in this comparison experiment,
we found that both PE2 and PE3 were substantially less efficient
than our optimized CGBEs (Supplementary Fig. 2h), and PE3
also induced higher frequencies of indel edits (Supplementary
Fig. 2i).

We next applied GOTI7 and RNA-seq methods9 to assess the
potential DNA and RNA off-target effects of FNLS-eUNG-YE1-
CGBE and FNLS-cUNG-YE1-CGBE. The numbers of SNVs in
CGBE-edited mouse embryos were similar to those at the
spontaneous SNV level, and is much lower than that of BE3
group, which was known to induce off-target SNVs11 (Fig. 1e).
Besides, no mutation bias was observed in the CGBE groups
(Fig. 1f), indicating that our engineered CGBE variants induced
no detectable off-target effects on DNA level. On the other hand,
cells treated with FNLS-eUNG-YE1-CGBE or FNLS-cUNG-YE1-
CGBE showed no increased number of RNA SNVs and no
mutation bias compared with control cells (Fig. 1g, h), suggesting
that the engineered CGBE variants induced no RNA off-target
effects. In addition, our target sequencing data also revealed no
obvious sgRNA-dependent off-targets predicted from Cas-
OFFinder17 (Supplementary Fig. 3). Together, these results
revealed that FNLS-eUNG-YE1-CGBE and FNLS-cUNG-YE1-
CGBE, termed hereafter as eOPTI-CGBE and cOPTI-CGBE,
respectively, could achieve high C-to-G transversion efficiency
with low off-target effects.

Motif preference analysis of OPTI-CGBEs. So far, we were
simply assessing the editing success rate across the 34 target sites.
However, when we specifically examined the sequence context
information of the successfully eOPTI-CGBE-edited sites, we
detected an obvious preferential 3nt motif (“WCW”; W could be
either A or T) conversion with no increase of bystander edits
(Fig. 2a, b and Supplementary Fig. 4a, b). A very similar pre-
ferential motif was detected for cOPTI-CGBE, albeit with a
slightly more pronounced preference for T over A in the W
position (Fig. 2a and Supplementary Fig. 4a, b).

We next conducted editing experiments in which we targeted
20 additional target sites that all contained this preferential
“WCW” motif. In support of this notion, we found significantly
higher on-target eOPTI-CGBE editing efficiency for targeted Cs
with the motif, as compared to that without the motif (3.2 fold;
Fig. 2c). A similar elevation in on-target editing efficiency was
also detected for cOPTI-CGBE editing (2.8 fold; Fig. 2c).
Interestingly, this comparative analysis of the “WCW”-motif-
bearing target sites also revealed a substantial reduction in the
frequency of bystander edits and induced indels for both eOPTI-
CGBE and cOPTI-CGBE (Fig. 2c, d). Thus, eOPTI-CGBE and
cOPTI-CGBE can achieve very high on-target C-to-G editing
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efficiency when targeting sites bearing “WCW” motifs, with high
product purity.

Due to the relatively limited scope of target sitesx examined
above, we further examined the motif-dependent editing for other
deaminases in order to expand the targeting scope of C-to-G
editors using targeted C within 3nt motifs other than WCW. We
explored three different deaminase modules (Supplementary
Figs. 4c and 5a): a mutated human APOBEC3A which showed

“TCN” motif preference18 and two variants of APOBEC3G
module (hA3G-OPTI-CGBE and hA3G-CTD-OPTI-CGBE),
which preferred C-enriched sequences19,20. We firstly analyzed
the editing efficiency and activity window of these CGBE editors at
the 34 target sites examined in the above experiments (Supple-
mentary Figs. 4d–g and 5b–f). Not surprisingly, these engineered
CGBEs also showed a narrowed editing window similar to that of
eOPTI-CGBE and cOPTI-CGBE (Supplementary Figs. 4d and 5b).
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Besides, both eA3A-eOPTI-CGBE and eA3A-cOPTI-CGBE
showed an obvious preference to “TCW”, where W was A or T
(Fig. 2e and Supplementary Fig. 4e, f), in line with the motif
preference of cOPTI-CGBE.

In contrast to the motif preference of APOBEC1 and
APOBEC3A, we found that the two variants of APOBEC3G
constructed with E. Coli UNG (hA3G-eOPTI-CGBE and hA3G-
CTD-eOPTI-CGBE) had significant preferences for the “CCN”
motif, where N could be any nt, as shown by markedly (~3–5
fold) higher editing efficiency for target sites bearing the CCN
motif, in comparison with those without this motif (Fig. 2f and
Supplementary Fig. 5c–e). Similar results were observed for
hA3G-cOPTI-CGBE and hA3G-CTD-cOPTI-CGBE, constructed
with UNG from C. elegans (Fig. 2f and Supplementary Fig. 5c–e).
In addition, when the target site comprised three or more
consecutive Cs, the efficiency of C-to-G conversion was the
highest for the third C, for APOBEC3G variants containing either
eUNG or cUNG (Fig. 2g and Supplementary Fig. 5f). This was
not the case for C-to-T editing by hA3G-CBE, which is known to
prefer the conversion of second C20.

To further broaden the targeting scope of C-to-G editing, we
also constructed 6 CGBE-NG editors, which could identify “NG”
PAM by replacing Cas9n with Cas9n-NG21, spGn22, or xCas9n23

(Supplementary Fig. 6a). We found that the editing efficiency of
Cas9n-NG and spGn were higher than the xCas9n version
(Supplementary Fig. 6b, d), and the indel frequency was lower in
Cas9n-NG than that in spGn (Supplementary Fig. 6c). Cas9n-NG
is thus the best version for C-to-G editing at sites with NG PAMs.

Editing outcome prediction of OPTI-CGBEs by computational
methods. We performed a large-scale screen to assess the motif
preference of eOPTI-CGBE and cOPTI-CGBE, using a previously
developed paired sgRNA library of 41,388 cloned oligonucleo-
tides, each comprising a 20nt sgRNA sequence together with its
targeting sequence24. HEK293T cells were infected with lentiviral
vectors containing the paired sgRNA library, followed by trans-
fection with a plasmid encoding one of the eight OPTI-CGBEs.
Deep sequencing was then performed to assess editing outcomes
and to explore impact of the sequence context on editing effi-
ciency. For sites with targeted Cs spanning 4–7 positions of the
protospacer and more than 100× coverage, we found that the
motif preference for the library sequences were largely consistent
with that found for the endogenous sites examined above (Sup-
plementary Fig. 7a–d): eOPTI-CGBE and cOPTI-CGBE preferred
“WCW” motif (Supplementary Fig. 7a), eA3A-OPTI-CGBEs
preferred “TCW” motif sites (Supplementary Fig. 7b), and

APOBEC3G variants preferred “CCN” motif (Supplementary
Fig. 7c, d).

We next built a logistic regression model to learn the motif
preference using a training dataset (80% randomly sampled) from
the paired sgRNA library. The model was then tested with the rest
20% of the library and showed good performance. The learned
parameters are visualized by sequence logos, showing the motif
preferences of eOPTI-CGBE (for WCW), cOPTI-CGBE (for
TCW), eA3A-OPTI-CGBEs (for TCW), and hA3G-OPTI-CGBEs
(for CCN) (Fig. 2h). These results indicated the impact of
sequence context on the editing efficiency of OPTI-CGBEs, for
20–30% of the variance in editing efficiency could be explained by
target motifs in the test dataset (variance explained= R2; Fig. 2h).

In order to determine the best base editor for targeting novel
sequences, it would be of great value to develop a computing
algorithm that predicts the editing efficiency of CGBEs based on
the sequence context of targeted sites. Deep-learning methods
have been successfully used to predict the editing outcome for
spCas925, C-to-T and A-to-G base editors26,27. We thus designed
and trained a deep neural network for C-to-G base editors. The
neural network model, termed “CGBE-SMART” (http://www.
sunlab.fun:3838/BE_SMART/), accepts an input target sequence
surrounding a protospacer and PAM and outputs both the per-site
C-to-G editing efficiency and the probability of each editing
outcome (Fig. 3a and Supplementary Fig. 8). For each position in
the target site, we designed networks with window sizes from 7 to
11 so that the model could focus more on the impact of adjacent
nucleotides. The final output was the weighted average of the
results from these networks. The efficiency model (CGBE-
SMART_Efficiency) was trained by minimizing the mean square
error (MSE) between observed C-to-G editing efficiency and
predicted values (Supplementary Fig. 8). Then we applied a
bayesian network to infer the dependency between each two
edited positions and further output the proportion of all outcomes
(CGBE-SMART_Proportion; Supplementary Fig. 9). We split the
dataset into a training set, a validation set and a testing set by
proportion of 6:1:3, and a separate model was trained for each of
the eight OPTI-CGBEs. The performance of each model was
evaluated on the independent test datasets using pearson’s
correlation coefficients between predicted and observed C-to-G
editing efficiency at each targeted C or proportions of editing
outcomes (Fig. 3 and Supplementary Fig. 9). Consistent with our
findings earlier, we found that higher prediction accuracy was
observed for Cs within the target window of 4–7nt than those
beyond (Supplementary Fig. 9a). Generally, we found that CGBE-
SMART achieved high prediction accuracy on editing outcomes of

Fig. 1 Engineering of CGBEs. a The C-to-G transversion efficiency of engineered CGBEs with different UNGs at 34 endogenous target sites in
HEK293T cells. hUNG for human UNG, eUNG for E.coli UNG, cUNG for C.elegans UNG, mUNG for mouse UNG. P values above each group indicated the
comparison with hUNG-CGBE group. b The base editing efficiency of engineered CGBEs at 34 endogenous target sites in HEK293T cells. YE1=W90Y+
R126E. P values above each group indicated the comparison with eUNG-CGBE or cUNG-CGBE group. c The log transformed ratios of C-to-G/C-to-Others
editing among engineered CGBEs. P values above each group indicated the comparison with eUNG-CGBE or cUNG-CGBE group. The center line indicates
the median, and the bottom and top lines of the box represent the first quartile and third quartile of the values, respectively. Tails extend to the minimum
and maximum values. d The C-to-G transversion efficiency of engineered CGBEs at each protospacer position 1–20 (where PAM is at positions 21–23) of
34 endogenous target sites. n= 3 biological replicates for each site. Data are presented as mean values ± SEM. e Comparison of the total number of
detected SNVs on DNA level. n= 3 for Cre, eOPTI-CGBE and cOPTI-CGBE group, and n= 6 for BE3 group. P values above each group indicated the
comparison with Cre group. The center line indicates the median, and the bottom and top lines of the box represent the first quartile and third quartile of
the values, respectively. Tails extend to the minimum and maximum values. f Distribution of mutation types from detected SNVs for indicated groups. g
Comparison of the total number of detected RNA SNVs among different groups. n= 3 for GFP and FNLS-BE3 groups, n= 4 for eOPTI-CGBE and cOPTI-
CGBE groups. Data are presented as mean values ± SEM. P values above each group indicated the comparison with GFP group. h Distribution of mutation
types from detected RNA SNVs for groups transfected with GFP, FNLS-BE3, eOPTI-CGBE, or cOPTI-CGBE plasmid. All P values were calculated by two-
sided Wilcoxon rank sum tests.
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the target sequences in the test dataset (R= 0.20–0.60 for CGBE-
SMART_Efficiency; R= 0.37–0.60 for CGBE-SMART_Propor-
tion; Fig. 3b and Supplementary Fig. 9b, c). Among the eight
OPTI-CGBEs, cOPTI-CGBE showed the best performance
between predicted editing efficiencies and observed ones in
CGBE-SMART_Efficiency model (Fig. 3b). Simultaneously,
eA3A-cOPTI-CGBE achieved a correlation coefficient of 0.6

between the predicted proportions of editing outcomes and
observed ones in CGBE-SMART_Proportion model (Supplemen-
tary Fig. 9c). In comparison with the deep conditional
autoregressive model from BE-Hive27 or DeepCBE26, we found
that CGBE-SMART showed much higher prediction accuracy for
seven CGBE editors except for hA3G-CTD-cOPTI-CGBE model
(averaged R= 0.47 vs. 0.15 vs. 0.33; Supplementary Fig. 9d). Since
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CGBE-SMART can be trained on different observed data and
predict editing outcome for novel inputs, we next applied our
model to predict C-to-T editing efficiency and compared with BE-
Hive and DeepCBE using the test datasets from the two

corresponding studies26,27 (see Methods). We found that CGBE-
SMART achieved high prediction accuracy in C-to-T editing
efficiency for all the four datasets (averaged R= 0.75; Supplemen-
tary Fig. 9e). In comparison with BE-Hive, CGBE-SMART

Fig. 2 Motif analysis of OPTI-CGBEs. a The C-to-G transversion efficiency induced by eOPTI-CGBE or cOPTI-CGBE of targeted Cs bearing different
nucleotides 1nt upstream. N=A, T, G, or C. P values above each group were calculated between the group with “GCN” group. b The C-to-G transversion
efficiency induced by eOPTI-CGBE or cOPTI-CGBE of targeted Cs bearing different nucleotides 1nt downstream. P values above each group were calculated
between the group with “NCG” group. c Comparison of base editing efficiency of eOPTI-CGBE or cOPTI-CGBE at “WCW” or other motif of the 34 original
and 20 additional target sites. W=A or T. d Indel frequency of eOPTI-CGBE or cOPTI-CGBE at “WCW” or other motif of the 34 original and 20 additional
target sites. e Comparison of C-to-G editing efficiency of OPTI-CGBEs with eA3A deaminase at “TCW” or other motif of the 34 original and 20 additional
target sites. f Comparison of C-to-G editing efficiency of OPTI-CGBEs with hA3G or hA3G-CTD deaminase at “CCN” or other motif of the 34 original target
sites and 26 additional target sites. The center line indicates the median, and the bottom and top lines of the box represent the first quartile and third
quartile of the values, respectively. Tails extend to the minimum and maximum values. n= 3 biological replicates for each site. All P values were calculated
by two-sided Wilcoxon rank sum tests. g C-to-G editing efficiency of each C induced by OPTI-CGBEs with hA3G or hA3G-CTD deaminase when the target
sites had more than 2 Cs. n= 3 biological replicates for each site. Data are presented as mean values ± SEM. h Motif logo detected by a logistic regression
model developed with a training dataset (80%) sampled from the detected base editing activities with the paired sgRNA library. The y-axis represents
learned weights from the regression model for each nucleotide.
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Fig. 3 Machine-learning models of OPTI-CGBEs. aModel design for predicting C-to-G base editing efficiency. b Comparison of predicted versus observed
base editing efficiency or faction of sequenced reads with base editing activities at target sites of OPTI-CGBEs using lentiviral paired sgRNA library.
c Comparison of predicted versus observed base editing efficiency or faction of sequenced reads with base editing activities at 80 endogenous target sites
of OPTI-CGBEs. R values demonstrated Pearson’s correlation coefficients.
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achieved much higher prediction accuracy for BE4-CP dataset,
similar performance for BE4 dataset, but lower prediction
accuracy for BE4max dataset (Supplementary Fig. 9e). CGBE-
SMART achieved high performance in C-to-T base editing
efficiency prediction for HT_CBE_Test dataset similar to
DeepCBE (R= 0.69 vs 0.67; Supplementary Fig. 9e). These results
represent that CGBE-SMART is a general method for modeling
and comparing the on-target accuracy of different base editors.

The evaluation of CGBE-SMART above is only based on
artificial sequence library, so we further tested the generalization
of the model using natural genomic targets as inputs. We applied
the trained CGBE-SMART model to predict the C-to-G editing
efficiency of the 80 endogenous sites examined in above
experiments, and found a high correlation (averaged R= 0.64)
between predicted and experimentally observed editing efficien-
cies (Fig. 3c and Supplementary Fig. 9f). Similarly, CGBE-
SMART_Proportion also achieved great performance on predict-
ing the fraction of sequenced reads with base editing frequency
for the eight CGBEs (averaged R= 0.66; Fig. 3c and Supplemen-
tary Fig. 9g). Taken together, we have shown that our CGBE-
SMART model is capable of predicting editing efficiencies and
outcomes for both exogenous and endogenous target sites.
Although base editing efficiency is subjected to various experi-
mental conditions such as the cell type and transfection efficiency,
the editing of exogenous and endogenous target sites follows
similar patterns.

C-to-G editing of OPTI-CGBEs in mouse embryos. Having
obtained CGBE variants that exhibited high editing efficiency for
C-to-G base editing under various sequence contexts and very
few off-target effects, we then used these variants to edit genomic

DNA in mouse embryos. The mRNA encoding eOPTI-CGBE or
cOPTI-CGBE was injected into zygotes, together with one of
three selected sgRNAs (Fig. 4a). The embryonic development was
not deleteriously affected by the injection (Supplementary
Fig. 10a). We first found that both CGBE variants achieved high
C-to-G base transversion efficiency for three targeted sites on Tyr
gene (Fig. 4b). In light of previous reports on optimizating gene
editing in mice28, we tested OPTI-CGBE-mediated base editing in
two-cell stage embryos. Consistent with previous findings, the C-
to-G transversion efficiency of OPTI-CGBEs was indeed sub-
stantially increased by injection at the two-cell stage for all the
three Tyr target sites (Fig. 4b), as further validated by Sanger
sequencing (Fig. 4c). Notably, we found that the indel frequency
of cOPTI-CGBE was much lower than that of eOPTI-CGBE
(Supplementary Fig. 10c), consistent with our observation in
HEK293T cells (Fig. 2d). We also applied CGBE-SMART to
predict the C-to-G editing efficiency on the three target sites
based on the sequence content, and found good agreement of two
of the three Tyr sites (Tyr-A and Tyr-B). The predicted efficiency
for Tyr-C was much higher than the observed one (Supplemen-
tary Fig. 10b), presumably resulting other in vivo factors other
than the sequence context.

We have also examined the phenotypic consequence of the
higher editing efficiency of OPTI-CGBEs in Tyr gene-edited mice.
Tyr-C editing introduced a stop codon on Tyr gene that results in
the Albino phenotype in C57BL/6J mice29. We injected eOPTI-
CGBE mRNA and sgRNA-Tyr-C in either zygotes or two-cell
embryos, transplanted the embryos into recipient mothers, and
tracked the hair-color phenotype of pups. Consistent with the
earlier editing efficiency analysis, we found that pups derived
from two-cell-injected embryos also showed higher C-to-G
editing rates at the Tyr gene, as compared to those from

a b

c d

Zygote

Two-cell

Zygote

CGBE mRNA+sgRNA

CGBE mRNA+sgRNA

Tyr-A

C6

C5

Tyr-B

C5

Tyr-C

C
-to

-G
 e

di
tin

g 
ef

fic
ie

nc
y 

(%
) site: Tyr-A site: Tyr-B site: Tyr-C

0

25

50

75

100
0.014

0.81

0.0081
0.91

0.0084

0.39

eOPTI-CGBE cOPTI-CGBE

eOPTI-CGBE(Two-cell injection) Zygote (F0)

Two-cell (F0) Two-cell (F1)

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Two-c
ell

(F1)

Two-c
ell

(F0)

Zygo
te

(F0)

White
Mosic
Black

25
6

26
35

4

13
15

Fr
eq

ue
nc

y 
(%

)

WT (F
0)

WT(F0)

eOPTI-CGBE cOPTI-CGBE eOPTI-CGBE cOPTI-CGBE

Zygote
Two-cell
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zygote-injected embryos (Fig. 4d). Furthermore, pups derived
from zygote-injection embryos mostly wild-type (WT) black hair
and a small percentage of black-white mosaic hair, whereas those
derived from two-cell-injected embryos mostly showed much
larger fraction of mosaic hair and small percentage of uniformly
white hair (Fig. 4d). Mating mosaic hair females and males from
the latter group produced more than 50% of white-hair offspring,
and no offspring with mosaic hair (Fig. 4d). These results
demonstrate that OPTI-CGBEs is an efficient tool for genome
base editing in mammalian embryos.

Discussion
By using the UNG domain from species and shuffling sequences
and positions of deaminase domain in various base editors, we
obtained engineered CGBE variants (OPTI-CGBEs) that achieve
both high C-to-G transversion efficiency and low off-target
effects. Our OPTI-CGBEs outperformed previously reported
CGBE16 and prime editors15,16 in C-to-G editing efficiency and
product purity across the tested target sites. Very recently, Chen
et al. reported a C-to-G base editor by replacing the UGI of BE3
with base excision repair (BER) proteins with improved C-to-G
editing efficiency at specific motifs30. Notably, in our study we
found that OPTI-CGBEs differ from corresponding CBEs in their
motif preferences, and CGBEs with deaminases of different ori-
gins prefer distinct sequence context. The motif preferences of
these C-to-G base editors would possibly be explained by the
distinct binding modes adopted by the corresponding deaminases
of different CGBEs. The increased C-to-U editing by deaminases
thus increased the C-to-G editing efficiency of CGBEs. We also
conducted high-throughput analysis of the editing efficiency of
these variants using a DNA library containing 41,388 target
sequences, in order to elucidate their motif preferences. Two
computational methods, including a deep-learning model
(CGBE-SMART), were developed for predicting C-to-G editing
efficiency and proportions of editing outcomes. The CGBE-
SMART model enabled effective sgRNA selection at target sites
with specific sequence context, and could be generalized to sup-
port efficient sgRNA selection for optimal use of BEs. Indeed,
CGBE-SMART also achieved high performance in predicting
editing efficiency for CBEs, comparable to previously developed
deep-learning models for the same purposes26,27. While, CGBE-
SMART showed better performance in our CGBE datasets than
other models (Fig. 3 and Supplementary Fig. 9), which could
probably be explained by that CGBE-SMART was designed for
predicting C-to-G editing efficiencies and have taken the char-
acteristics of CGBEs into consideration. This empirical discovery
of the sequence motif preference of BEs points to an important
aspect in engineering BEs with optimal base editing. Nevertheless,
the low C-to-G editing efficiencies in the high-throughput ana-
lyses would underrate the performance of computational model.
Our studies in HEK293T cells and in embryos also suggest that
the editing outcome could be affected by in vivo factors like
epigenetic regulation, chromatin accessibility and DNA repair
activities, which deserve to be further examined in addition to
sequence context of the target site. In this work, we demonstrated
the high C-to-G transversion efficiency for diverse sequence
context and minimal off-target effects of a group of optimized
CGBE variants, and their efficiency in producing genome-edited
offspring. Guided by the computational algorithm we have
developed for predicting editing efficiency based on sequence
motif, these CGBE variants may prove to be valuable for future
gene editing that requires C-to-G transversion.

Methods
Animals. Four-week-old female mice were maintained in a SPF facility under a 12
h dark-light cycle and mated with male mice. Female mice were used for embryo

collection. The animal usage and care complied with the guideline of the Biome-
dical Research Ethics Committee of Shanghai Institutes for Biological Science,
Chinese Academy of Sciences.

Plasmid construction and cloning. pCMV-BE3 (Addgene plasmid#73021) and
pCMV-YE1-FNLS-BE3 (Addgene Plasmid #154005) were used as backbones. A
CMV-mCherry expression cassette was inserted into backbone plasmid and the
sequence encoding UGI was replaced by codon optimized UNG sequence (Gen-
ewiz). Site-directed mutagenesis was performed using NEBuilder HiFi DNA
Assembly Master Mix (New England BioLabs) for constructing plasmids expres-
sing different CGBEs. U6-sgRNA-scaffold-pCMV-EGFP-poly A was generated
through NEBuilder HiFi DNA Assembly, by combining a PCR-amplified U6-
sgRNA-scaffold with a digested pCMV-EGFP-poly A backbone. The amino-acid
sequence for OPTI-CGBEs was supplied in Supplementary Data 1.

Cell culture, transfection, and FACS. HEK293T (ATCC#: CRL-3216) cells were
cultured in Dulbecco’s modified Eagle medium (DMEM, Gibco) supplemented
with 10% FBS (BI) and 1% penicillin/streptomycin (Gibco) at 37 °C in 5% CO2

incubators. The pCMV-CGBE variants-poly A-pCMV-mCherry-poly A and U6-
sgRNA-scaffold-pCMV-EGFP-poly A plasmids were co-transfected using poly-
ethyleneimine (PEI, Polyscience) according to the manufacturer’s protocols. Forty-
eight hours after transfection, cells were washed with PBS and digested with 0.25%
trypsin (Gibco). Then cells were filtered with a 40 μm cell strainer. The mCherry
and GFP double-positive cells were sorted by flow cytometer (FlowJo X 10.0.7).
The gating strategy in the identification of GFP+ and mCherry+ cells for on-target
editing efficiency evaluation was supplied in Supplementary Fig. 2a.

Lentivirus production and transduction. Paired sgRNA library was a gift from
Dr. Leopold Parts in Wellcome Sanger Institute. For lentivirus production,
supernatants containing lentiviral particles were collected 48 h after transfecting
HEK293T with 30 μg paired sgRNA lentiviral vector, 22.5 μg psPAX2 and 15 μg
pMD2.G in a 15 cm dish. For lentiviral transduction of HEK293T cells, paired
sgRNA library cell lines were incubated with the lentiviral supernatant. HEK293T
cell line stably expressing the paired sgRNA library (HEK293T-sgRNA-library) was
generated by lentiviral transduction at MOI 0.3 followed by selection in the pre-
sence of 2 μg/ml puromycin. The HEK293T-sgRNA-library cell lines were next
transfected with base editor plasmids expressing mCherry, and positive cells were
collected by FACS according to the expression level of mCherry. Genomic DNA
was next extracted from the mCherry+ cells using TIANamp Genomic DNA Kit
(TIANGEN) according to the manufacturer’s protocols. Sites of interest were
amplified by nested PCR using gene-specific primers (Supplementary Table 1)
flanking the target sequence. PCR products were purified using universal DNA
purification kit (TIANGEN) according to the manufacturer’s instructions. The
PCR products were then ligated to adapters and sequencing was performed on the
Illumina HiSeq X Ten platform.

In vitro transcription of OPTI-CGBE mRNA and sgRNA. T7 promoter was added
to the coding region of OPTI-CGBE by PCR amplification from plasmid expressing
OPTI-CGBE, using CGBE-F and CGBE-R primer. T7-OPTI-CGBE PCR product
was purified and used as the template for in vitro transcription (IVT) using
mMESSAGE mMACHINE T7 ULTRA kit (Life Technologies). T7 promoter was
added to sgRNA template by PCR amplification of px330 using primer Tyr-IVT-F
and sgRNA IVT-R. The T7-sgRNA PCR product was purified and used as the
template for IVT using MEGA shortscript T7 kit (Life Technologies). OPTI-CGBE
mRNA and sgRNAs were purified using MEGA clear kit (Life Technologies),
eluted in RNase-free water and stored at −80 °C.

CGBE-F: 5’-TCCGCGGCCGCTAATACGACT-3’
CGBE-R: 5’-TGGTTCTTTCCGCCTCAGAAGCC-3’
Tyr-A-IVT-F:
5’-TAATACGACTCACTATAGGGTCAGTCTATGTCATCCCCACGTTTTAGAGCTAGAAATAG-3’
Tyr-B-IVT-F: 5’-TAATACGACTCACTATAGGGACATCTACGACCTCTTTGTAGTTTTAGAGC
TAGAAATAG-3’
Tyr-C-IVT-F: 5’-
TAATACGACTCACTATAGGGGTGTCAAGGGACACACTGCTGTTTTAGAGCTAGAAATAG-3’
sgRNA IVT-R:
5’-AAAAGCACCGACTCGGTGCC-3’

Zygote or two-cell injection and embryo transplantation. Four-week-old BDF1
female mice were super ovulated and mated with BDF1 male mice overnight.
Fertilized embryos were collected. For zygote and two-cell injection, the mixture of
CGBE mRNA (50 ng/μl) and sgRNA (50 ng/μl) was injected into the cytoplasm of
embryos in the droplet of M2 medium containing 5 μg/ml cytochalasin B (CB)
using a FemtoJet microinjector (Eppendorf). The injected embryos were cultured in
KSOM medium at 37 °C under 5% CO2 in air for 24 h (zygote) or 2 h (two cell) and
then transferred into oviducts of pseudopregnant ICR females.

FACS for GOTI. We apply GOTI method to determine genome-wide off-target of
CGBEs according to previous study31. Breifly, the mixture of CGBE mRNA,
sgRNA and Cre mRNA was injected into one blastomere of a two-cell embryo,
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derived from Ai9 stain male mice mating with 4-week-old wild-type C57BL/6 J
female mice. The injected embryos were transferred into oviducts of pseudopreg-
nant ICR females. To isolate mouse embryonic cells, the prepared tissues were cut
into small pieces and dissociated enzymatically with 5 mL 0.05% trypsin (Gibco) at
37 °C for 30 min. The digestion was stopped by adding 5 mL of DMEM with 10%
FBS. Fetal tissues were then homogenized with 1 mL pipette tips. The cell sus-
pension was centrifuged for 6 min (200 g), and the pellet was resuspended in 2 ml
DMEM. Finally, the cell suspension was filtered through a 40 μm cell strainer, and
tdtomato+ and tdtomato− cells were isolated by FACS. Samples were found to be
>95% pure when assessed with a second round of flow cytometry and fluorescence
microscopy analysis. Genomic DNA from sorted cells was extracted using the
DNeasy Blood and Tissue Kit according to the manufacturer’s instructions. The
gating strategy for the separation of tdTomato+ and tdTomato− cells was supplied
in Supplementary Fig. 2c.

Target sequencing of endogenous sites. The mCherry and GFP double-positive
cells were isolated by FACS at 48 h after transfection. Genomic DNA was extracted
by using TIANamp Genomic DNA Kit (TIANGEN) according to the manu-
facturer’s protocols. Target sites were amplified by nested PCR using site-specific
primers (Supplementary Data 2). The PCR reaction was performed for two rounds.
Every round was performed at 95 °C for 3 min, 30 cycles at 95 °C for 30 s, 59 °C for
30 s, 72 °C 60 s, and a final extension at 72 °C for 5 min. PCR products were
purified using universal DNA purification kit (TIANGEN) according to the
manufacturer’s instructions. The amplicons were ligated to adapters and sequen-
cing was performed on the Illumina HiSeq X Ten platforms.

Whole-genome sequencing (WGS) and RNA-seq. Genomic DNA was extracted
using DNeasy blood and tissue kit (Qiagen) according to the manufacturer’s
protocols. WGS was performed by Illumina HiSeq X Ten. Total RNA was extracted
from mCherry and GFP double-positive cells (~500,000; top 5%) according to the
standard protocol for RNA-seq. Sequencing was performed on the Illumina HiSeq
X Ten platform. The gating strategy in the identification of GFP+ and mCherry+

cells RNA off-target effects analysis was supplied in Supplementary Fig. 2b.

WGS and RNA-seq data analysis. WGS was performed at mean coverages of 50×
by Illumina HiSeq X Ten. BWA (v0.7.16) was used to map qualified sequencing
reads to the reference genome (mm10). The mapped BAM files were then sorted
and marked using Picard tools (v2.25.5). To identify the genome-wide de novo
SNVs with high confidence, we conducted single nucleotide variation calling on
three algorithms, Mutect2 (v4.2.0.0), Lofreq (v2.1.5), and Strelka (v2.9.10) with
default parameters, separately32–34. The overlap of three algorithms of SNVs were
considered as the true variants.

For RNA-seq data analysis, FastQC (v0.11.3) and Trimmomatic (v0.36)35 were
used for quality control. Qualified reads were mapped to the reference genome
(Ensemble GRCh38) using STAR (v2.7.1)36 in 2-pass mode with default
parameters. Picard tools (v2.25.5) was then applied to sort and mark duplicates of
the mapped BAM files. The refined BAM files were subject to split reads that
spanned splice junctions, local realignment, base recalibration, and variant calling
with SplitNCigarReads, IndelRealigner, BaseRecalibrator, and HaplotypeCaller
tools from GATK (v4.2.0.0)37, respectively.

Target sequencing data analysis. Sequencing data were firstly demultiplexed by
Cutadapt (v2.8) and in-house script according to sample barcodes. Target
sequences with fewer than 100 reads were discarded to ensure the accuracy of
statistics. The demultiplexed reads were then processed by CRISPResso2 for the
quantification of mutations, insertions, and deletions at each target site38. The on-
target editing efficiency was calculated by the number of reads containing only the
target mutations divided by the total number of reads. The indel frequency was
calculated as the number of reads including indels divided by the total number
of reads.

Sequence motif models. We randomly sampled 80% target sites (1470) and
applied a logistic regression model to predict the C-to-G transversion efficiency
ranged from 0 to 1. Features were obtained by one-hot-encoding nucleotides per
position relative to the targeted C nucleotides within the positions 4–7. The
remaining 20% target sites (368) were used as the test set for calculation of R by
Pearson’s correlation coefficient.

CGBE-SMART model. We designed and implemented a deep-learning model,
CGBE-SMART, which uses nearby sequences of a target site to predict the sub-
stitution frequency of base editing results. The model predicts substitutions from
protospacer positions 1–20. Inspired by Google inception networks39, we designed
a series of networks with different window size for each position. The final output
is the weighted average of the results from these networks. The model is trained by
minimizing the mean square error (MSE) between observed data and predicted
values. Since the model can be trained on different observed data, this could be a
powerful and general method for modeling and comparing different base editors.

The whole model is implemented in python based on pytorch. Each nucleotide
in the original sequence is first embedded into a vector of length 16. For every
nucleotide, we build 9 base models with window size 7, 9, 11 each three. Each base
model is coupled with a learned weight towards producing the final outcome. For a
base model, the first and second layer contains 256 and 128 neurons using ReLU
activation, respectively. The third layer only contains a single neuron which
outputs the prediction using Sigmoid activation. Finally, the results of base models
are averaged using the learned weights. During training, a dropout rate of 30% is
used by default to prevent overfitting.

We consider the editing of each position as a Bernoulli distribution. In order to
further output the proportion of all outcomes, we need to further model the
dependency between each position. A Markov network is introduced to model such
dependency. To simplify this problem, we only consider the relation between
adjacent editing positions. Such Markov network is equivalent to a Bayesian
network, which is much easier to learn and perform probabilistic inference. The
probability of each position being edited can be obtained from the neuronal
network model above. The correlation between different editing position is
estimated using c ¼ p11p00

p01p10
from the training set. Here p11 and p00 denotes the two

positions being edited or not simultaneously, and p01 and p01 denotes the two
position being edited separately.

The above learning process can be formulated as follows. For a sequence s, the
editing positions are denoted as as X1;X2; ::Xn. The joint probability of the
Bayesian network is defined as
p X1;X2; ¼ ;Xn

� � ¼ p X1

� �
p X2; j;X1

� � � � � p Xn�1; j;Xn

� �
. The editing efficiency

p Xi ¼ 1
� �

of each position is estimated by the output of the neuronal network
g s;Xi

� �
, for i ¼ 1; 2; ¼ ; n. The conditional probability p Xi; j;Xi�1

� �
can be

learned by preserving the correlation c between position Xi;Xi�1. The proportions
of all outcomes can be then inferred from the Bayesian network.

Training models from exogenous libraries. Datasets are assembled where each
gRNA-target pair is matched with a table of observed edited read counts at each
position. Reads with indels are discarded. For an experimental replicate, we
dropped datapoints with fewer than 100 reads. Data from multiple experimental
replicates are then combined by summing read counts for each observed genotype.
Since C to G editing is much more difficult, some positions at some target sites
observed 0 edited counts. For the convenience of frequency calculation and sub-
sequent analysis, we applied smoothing by adding one count to every edited
outcome.

We use the deep conditional autoregressive model from BE-Hive and our
CGBE-SMART model to learn the frequency distribution of base editing outcomes.
In the original BE-Hive model, both C and G are considered as substrate
nucleotides. Herein, we separate reads into reverse and forward directions and
transform all reverse reads into forward formats. In this way, only C is considered
as the substrate nucleotide. All other hyperparameters accord with the
original paper.

Since the proportion of different positions have a big influence on results,
splitting the dataset randomly into training and testing sets may not be very
appropriate. Herein, we split the dataset into trisection and each time use two for
training and one for testing. During training, 10% of the training set is used for
validation. At last, the three results are merged to yield the final result. For BE-
Hive, we use the default configurations for training. As for benchmarking, we use
Pearson correlation and Root Mean Square Error between observed and predicted
values for evaluation. The model with the highest performance on the validation set
during training process is used in the final benchmarking.

Comparison with BE-Hive and DeepCBE models. We compared the performance
of CGBE-SMART with BE-Hive and DeepCBE from previous studies26,27 using the
above exogenous libraries. We applied the default configurations for training BE-
Hive and DeepCBE models. As for benchmarking, we use Pearson correlation and
root mean square error between observed and predicted values for evaluation. The
model with the highest performance on the validation set during training process is
used in the final benchmarking.

To further compare the three models, we used CBE datasets from BE-Hive and
DeepCBE from previous studies. In total, four datasets are included:
HEK293T_12kChar_BE4 (BE4), HEK293T_12kChar_BE4-CP1028 (BE4-CP), and
HEK293T_12kChar_BE4max_H47ES48A (BE4-max) are from BE-Hive and
HT_CBE_Test from DeepCBE. The four datasets contain 7156, 5925, 1785, and
4459 gRNA-target pairs, respectively. We split the datasets into proportions of 6:1:3
for training, validating and testing. The same splitting is used for the training of all
three models. Finally, the efficiency for each position in the editing window is
inferred and compared.

Testing models with endogenous data. We use the same model and data pro-
cessing pipelines on endogenous data as exogenous data. In this section, the model
is trained on exogenous data but evaluation is carried out on endogenous data.
During the training progress, the dataset is split into a ratio of 4:1 for training and
validation. All hyperparameters and training configurations accord with the last
section.
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The evaluation metrics for testing endogenous data is the average Pearson
correlation between observed and predicted frequency of each edited position at
the target site. The root mean square error is not applied here due to the
heterogeneity of endogenous and exogenous environments. Although a larger
absolute error is observed, there is still a strong correlation between predicted and
observed values.

Statistical analysis. R version 4.0.1 (http://www.R-project.org/) was used to
conduct all the statistical analyses in this work. All tests conducted were two-sided,
and the difference was considered significant at P < 0.05. In box-and-whisker plots,
the center line indicates the median, the bottom and top lines of the box represent
the first quartile and third quartile of the values, respectively. The bottom and top
lines represent the minimum and maximum values.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper as Source Data files. All the raw sequencing and
processed data generated in this study have been deposited in the NCBI Sequence Read
Archive (SRA) under accession PRJNA749814 and National Omics Data Encyclopedia
(NODE) database under accession code OEP001625. Source data are provided with
this paper.

Code availability
The website of CGBE-SMART (http://www.sunlab.fun:3838/BE_SMART/) facilitated the
practical application of our model. Source code for CGBE-SMART is available on github
(https://github.com/tyfei216/BE-SMART).
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