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Plastic and low-cost axial zero thermal expansion
alloy by a natural dual-phase composite
Chengyi Yu1, Kun Lin 1✉, Suihe Jiang 1, Yili Cao1, Wenjie Li1, Yilin Wang1, Yan Chen2, Ke An 2, Li You1,

Kenichi Kato3, Qiang Li1, Jun Chen 1, Jinxia Deng1 & Xianran Xing 1✉

Zero thermal expansion (ZTE) alloys possess unique dimensional stability, high thermal and

electrical conductivities. Their practical application under heat and stress is however limited

by their inherent brittleness because ZTE and plasticity are generally exclusive in a single-

phase material. Besides, the performance of ZTE alloys is highly sensitive to change of

compositions, so conventional synthesis methods such as alloying or the design of multi-

phase to improve its thermal and mechanical properties are usually inapplicable. In this study,

by adopting a one-step eutectic reaction method, we overcome this challenge. A natural dual-

phase composite with ZTE and plasticity was synthesized by melting 4 atom% holmium with

pure iron. The dual-phase alloy shows moderate plasticity and strength, axial zero thermal

expansion, and stable thermal cycling performance as well as low cost. By using synchrotron

X-ray diffraction, in-situ neutron diffraction and microscopy, the critical mechanism of dual-

phase synergy on both thermal expansion regulation and mechanical property enhancement

is revealed. These results demonstrate that eutectic reaction is likely to be a universal and

effective method for the design of high-performance intermetallic-compound-based ZTE

alloys.
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Zero thermal expansion (ZTE) alloy plays an important role
in our daily life ranging from mechanical watches to
communication satellites because of its size-stability under

temperature flucuations1–3. However, ZTE material is rare in
nature. This behavior is especially unusual for metallic materials.
Only a few couplings among lattice, spin, and orbital induce a
reduced coefficient of thermal expansion by the virtue of the so-
called magneto-volume effect4–6, which has been reported in a
few single-phase metallic materials, such as the conventional
Invar alloy7 (Fe0.64Ni0.36) and some magnetic intermetallic com-
pounds (e.g., Tb(Co,Fe)28, La(Fe,Si,Co)139). On the other hand,
most of these ZTE compounds are brittle with low strength and
little ductility10–14, with concerned applicability due to low
fracture toughness. It is noted here that the widely used Invar
alloy shows plasticity but with low strength. An alternative way to
design ZTE alloys is to mix thermal expansion material with
thermal contraction one (e.g., La(Fe,Si)13/Cu15 and
ZrW2O8/Al16). But these artificial composites usually suffer from
undesired microstructures or weak interfacial bonding, resulting
in poor overall mechanical properties and thermal cycling per-
formances. More importantly, the magneto-volume effect is
highly composition-sensitive—a slight interfacial mass transfer
during high-temperature synthesis may suppress or vanish the
ZTE property5,13,17. The search for novel ZTE alloys with
excellent strength-plasticity performance has been challenging for
decades18–22.

In this work, we conducted a one-step strategy to design plastic
and low-cost ZTE alloy by a hypo-eutectic or hyper-eutectic
reaction in a binary system23–25. Iron is one of the most earth-
abundant elements; its conventional phase, α-Fe, has high plasti-
city and normal positive thermal expansion (PTE). Interestingly,
on the R-Fe (R= rare earth) binary phase diagram26 (see Sup-
plementary Fig. 1), Fe forms a eutectic system with R2Fe17—a
typical negative thermal expansion (NTE) intermetallic compound
driven by magnetic ordering6,27,28. This indicates that the R2Fe17
phase could coexist in equilibrium with Fe at any temperature
without losing its own NTE character. What’s more, both the
phase fraction and microstructure can be easily controlled by
tuning the chemical compositions in the binary system, which are
key factors to thermal expansion and mechanical property
improvement. Here we demonstrate that by adding only 4% Ho
atoms to pure iron, an alloy with both axial ZTE (Ho0.04Fe0.96,
αl= 0.19 × 10−6 K−1, 100 to 335 K) could be designed and fabri-
cated and a moderate strength-plasticity combination could be
achieved. We further show that the present dual-phase alloy is
highly stable under thermal circulation conditions, which is rare
among alloy materials that possessed both ZTE and plasticity, and
the cost-effective alloy sees great potential in applications.

Results
Phase and crystal structure. The targeted samples with compo-
sitions of HoxFe1−x (x= 0.03, x= 0.04, x= 0.05, x= 0.07, x=
0.09, labeled as S-3 to S-9) were synthesized by traditional arc-
melting. High-resolution synchrotron X-ray powder diffraction
(SXRD) measurement was employed to identify the phase frac-
tions and crystal structures. It shows that all the samples are dual-
phase alloys consist of the Ho2Fe17 phase (denoted as H) and α
iron phase (denoted as α) without other detectable impurities (see
Fig. 1a). Increasing the content of Ho, the positions of Bragg
peaks for both the H and α phases keep almost unchanged as
indicated by (220)H and (110)α reflections in Fig. 1b, suggesting
that the two phases reached thermodynamic equilibrium and can
coexist in any proportion to ensure desired thermal expansion
regulation. These results agree well with the Ho–Fe binary phase
diagram.

Figure 1d shows the crystal structure of the H and α phases
refined by SXRD data. The H phase adopts Th2Ni17-type
structure (space group: P63/mmc) with cell parameters a= 8.45
± 0.01 Å, c= 8.32 ± 0.01 Å, V= 514.09 ± 0.03 Å3 and has six
Wyckoff sites (Ho2b, Ho2d, Fe4f, Fe6g, Fe12j, and Fe12k); while the α
phase is a body-centered-cubic phase (space group: I m− 3m)
with cell parameters a= 2.87 ± 0.00 Å, V= 23.56 ± 0.02 Å3 and
has only one Wyckoff site (Fe2a). Due to a large difference in
atomic radius, Ho (1.79 Å) and Fe (1.26 Å) atoms occupy separate
sites in the H phase selectively: Ho atoms are surrounded by Fe
atoms and form [HoFe16] cages (Fig. 1d). This guarantees the
structural stability of the H phase when Fe atoms can diffuse
through the interface during the high-temperature synthesis.
Further Rietveld refinements quantified the phase fractions of the
H phases (29.6 ± 0.1%, 39.8 ± 0.1%, 49.8 ± 0.1%, 69.7 ± 0.2%, and
86.5 ± 0.3% for S-3 to S-9, respectively, see Fig. 1c and
Supplementary Fig. 2).

Microstructure and crystallographic orientation. Electro-probe
microanalyzer (EPMA) shows that the dendritic lamellar α phase
(in dark, 50–100 μm) is homogeneously dispersed into the H
phase (in white, 50–100 μm) matrix (see Figs. 2a–2e for S-4, see
Supplementary Fig. 3 for other samples). Besides, the grains
appear to grow along the loading direction (LD) (see Fig. 2b).
Electron back-scattered diffraction (EBSD) inverse pole image
demonstrates that the H and α phases are highly textured
(Fig. 2c). This is caused by the large temperature gradient and
cooling rate in the cooling process, in which the phases tend to
nucleate and grow along a certain direction and form bulk
materials with strong anisotropy. To further investigate the lattice
matching between the two phases in the bulk, neutron diffraction
texture analysis was carried out. The pole figures demonstrate a
strong fiber texture in the as-cast sample: the H phase is highly
textured with the {004} grains are parallel to the loading direction
(LD) while the {600} grains are perpendicular to LD; the α phase
has a less-strong orientation with [110]α roughly parallel to LD
(see Fig. 2h). Consequently, the main orientation relationship
between the H and α phase is [001]H//[110]α. This facilitates the
formation of semi-coherent matching at the dual-phase interface
and will be discussed later.

Thermal expansion and mechanical properties. The hexagonal
H compound shows NTE but is brittle, while the bcc α phase
shows positive thermal expansion (PTE) and is plastic. Hence,
both the coefficient of thermal expansion (CTE) and mechanical
properties of the dual-phase alloys could be well controlled by
adjusting phase content. Figure 3a indicates that the linear ther-
mal expansion along LD of alloys can be successively tailored
from moderate positive (αl= 2.7 × 10−6 K−1, S-3) to strong
negative (αl=−12.9 × 10−6 K−1, S-9). Especially, an axial ZTE
over a wide temperature range (100 to 335 K) has been obtained
in S-4 alloy (αl= 0.19 × 10−6 K−1). Such a ZTE performance
demonstrates dimensional stability even under hundreds of
thermal cycling conditions (see Supplementary Fig. 4 and 5). Due
to the strong texture in the alloys, the CTEs in-plane (TD-ND)
from S-3 to S-9 are varied from 7.7 × 10−6 K−1 to −0.1 × 10−6 K
−1 (see Fig. 3b). The lattice thermal expansions in the S-4 alloy
were extracted by the temperature resolved SXRD, which are
9.40 × 10−6 K−1 for α phase along the a axis and −5.91 × 10−6 K
−1 for H phase along the c axis (see Supplementary Fig. 6 and
Table 2). This leads to an overall thermal expansion along the LD
of the alloy to be 1.19 × 10−6 K−1 in the temperature range of 100
to 335 K (ΣaS-4=mol.α%× aα+mol.H% × cH, see Supplementary
Methods), consistent with that of dilatometer measurement (see
Fig. 3c). What’s more, S-4 displays good plasticity during
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Fig. 1 Phase and crystal structures. a, b High-resolution synchrotron X-ray diffraction profiles for S-3 to S-9 (λ= 0.23991 Å), the marked red diamond is
the α phase. c The mass fractions of H and α in S-3 to S-9 are determined via Rietveld refinements. d Crystal structures of H and α phase, respectively.

Fig. 2 Microstructures of the ZTE alloy. a–b, d–e The morphology of the as-cast S-4 alloy confirmed by electro-probe microanalyzer (EPMA) in TD
(transverse direction)-ND (normal direction) plane (a) and LD (loading direction)-TD plane (b), respectively. (d) and (e) are enlarged regions in (a) and
(b) marked with a red box. c Electron back-scattered diffraction (EBSD) inverse pole figure of crystal orientation for S-4 inside the TD-ND plane. f–g
Element mappings of Ho (f) and Fe (g). h Pole figures by neutron diffraction texture analysis for the bulk orientations of (004)H, (600)H, (110)α, and
(002)α directions.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25036-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4701 | https://doi.org/10.1038/s41467-021-25036-1 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


compressive loading, as shown in the engineering stress-strain
curve in Fig. 3d. The ultimate compressive stress (δUS) is up to
0.80 ± 0.02 GPa and the alloy undergoes almost 15.5% compres-
sive strain with an obvious strain-hardening before failure. We
note that although S-9 shows ZTE performance in the ND-TD
plane, this alloy is brittle with low strength (δUS= 0.41 ± 0.01
GPa, see Supplementary Fig. 7), similar to many other ZTE
intermetallic compounds5–11. Thereafter, the S-4 alloy will be
comprehensively discussed because of its ZTE behavior and
plasticity. To date, such a high strength-plasticity combination
has been scarcely achieved among known ZTE or low thermal
expansion (LTE) metallic materials5–12,15,18.

Discussion
To shed light on the mechanism for enhanced strength and plas-
ticity in the ZTE alloy, we investigated the co-deformation process
of the two phases by in-situ neutron diffraction measurements
under uniaxial compression29,30 (see Supplementary Fig. 8). Two
sets of neutron diffraction patterns were simultaneously recorded in
the longitudinal direction (LD, along loading direction) and
transverse direction (TD, perpendicular to loading direction) upon
loading (see Supplementary Fig. 9). The dramatic difference in peak
intensities between LD and TD directions for both the H and the α
phases is caused by fiber texture in the samples, in agreement with
previous microstructure analysis (Figs. 4a and 4b). The lattice strain
evolution with applied axial strain includes three stages (see Fig. 4c):
the soft α and brittle H phases co-deformed elastically in stage I; the
α phase deformed plastically and the H phase still maintained
elastically in stage II, the α phase yielded at about 0.15 GPa, which is
consistent with the behavior of pure α-Fe, indicating that the H
phase has little effect on its yielding behavior (see Supplementary
Fig. 10); eventually, co-deformed plastically in stage III.

Figure 4c demonstrates that the interplanar space of (004)H can
be continuously compressed by increasing engineering strain up

to −4.4%, corresponding to the elastic deformation of the H
phase at stage II along with a gradually yielding of the α phase.
We extracted the interaction between the soft α and the brittle H
phases by illustrating the full width at half maximum (FWHM) of
the reflections (Fig. 4d): the slightly broadening of (110)L and
(110)T in the α phase corresponds to dislocations generation
during yielding (L and T represent LD and TD, respectively);
however, the prominently broadening of (004)L in the H phase
during elastic deformation corresponds to the accumulation of
large local strain gradient along with the nucleation of shear
bands. It should be emphasized that although both phases yielded
and plastically deformed in stage III, the Th2Ni17-type H phase
with large unit cell (V= 514.09 ± 0.03 Å3) and low symmetry
(P63/mmc) lacks enough independent slip systems for plastic
deformation. In fact, the plasticity of the H phase in Stage III is
driven by the shear band mechanism21,31–35 (see Supplementary
Fig. 11). This is verified by the asymmetric appearance of the
{001}H reflections along with LD in this stage (arrows in Fig. 4a
and Supplementary Fig. 12)—there exist widespread lattice strains
caused by shear bands. That is, the lamellar morphology from the
eutectic reaction enhances the alloys’ mechanical performance via
dual-phase synergetic interaction20,23,31,36–39.

Phase interface also plays an important role in the enhanced
mechanical behaviors and thermal cycling stability40–42. High-
resolution TEM reveals a ~1 nm thick disordered transition layer
at the interfaces as shown in Figs. 5a and 5b, two typical inter-
facial morphologies. The orientation relationship at these inter-
faces are ∠([110]α, [001]H)= 34.7° and [112]α//[001]H (Figs. 5c
and 5d), respectively, implying that there exist some extent of
semi-coherent lattice matching between the two phases. The
transition layers connect H and α phases via chemical bonding,
minimalizing interfacial energy and giving rise to strong interface
linkage and stable thermal cycling performance43,44. The thermal
cycling test shows that the dual-phase ZTE alloys remain in

a b

dc

LD

TDND

Fig. 3 Thermal expansion and mechanical properties. a Linear thermal expansion determined by advanced thermo-dilatometer for S-3 to S-9 and iron
along with LD. b The in-plane (TD-ND) linear thermal expansion of S-3 to S-9 and iron. c Lattice thermal expansions of α along the a axis, H along the c
axis, and S-4 along with LD. d Compressive stress-strain curves of the S-4 with the insets of S-4 ingot during loading.
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perfect integrity after hundreds of rapid switching between 77 K
and 335 K (see Supplementary Fig. 13). Besides, the high elastic
strain energy of the brittle H phase can be effectively transferred
to the soft α phase upon loading, and be relieved via dislocation
multiplication in the soft and plastic α phase. This improves the
alloy’s thermal cycling performance and mechanical stability.
Figure 5f demonstrates a typical shear band in the H phase (along
loading direction) after −5% deformation, where the lattice
constant c near the shear band at region A (8.46 Å) is smaller
than that away from it at region B (8.57 Å). The heterogeneous
lattice strain in the H phase (see Figs. 5e–3g) caused by interface
interaction accounts for the asymmetric change of the {001}H
reflections obtained by in situ neutron diffraction (Fig. 4a).

This dual-phase synergistic interaction mediated by interface
was further demonstrated by ex-situ microstructure studies.
After −12% deformation, the localized shear micro-cracks in
the brittle H phase are inhibited by the soft α phase due to its
lamellar structure (see Supplementary Fig. 11). Hence, the α
dendrites act as obstacles hindering the excessive deformation
of the H phase by pinning the highly localized shear micro-
cracks. Meanwhile, substantial dislocations generate in the
plastic α phase after deformation to −12% strain (see Supple-
mentary Fig. 14), which eliminates the stress concentration of
the hard H phase and makes it plastic and robust. With further
strain increase, the micro-cracks divide into sub-micro-cracks
along phase boundaries and lead to shear failure by the adjacent
micro-crack penetration (see Supplementary Fig. 15). These
results illustrate that the dual-phase alloy undergoes large
deformation by absorbing a large amount of work from frac-
turing, which improves the overall toughness and brings plas-
ticity to the dual-phase alloy.

For comparison, in Fig. 6a we summarized ultimate strain
versus compressive strength and ZTE temperature range (ΔT) for

the ZTE alloy S-4, and other typical ZTE or near ZTE metallic
materials5,7,8,11,12,15,18,45–49. ZTE intermetallic compounds are of
low strength and high brittleness though they possess desired
ZTE performance. For traditional La(Fe,Si)13-based composites,
their strengths are high but have little plasticity and their ZTE is
mostly limited in a narrow temperature range. Er-Fe-V-Mo dual-
phase alloy has high strength and wide near ZTE temperature
range, but has no plasticity. In contrast, the present dual-phase
ZTE alloy S-4 shows a favorable strength-plasticity combination
and a considerable wide ZTE temperature range (ΔT= 235 K)
and is much stronger than the widely used Invar alloy at com-
parable strains. Most importantly, this ZTE alloy S-4 is easy to
machine and can be fabricated to various structures, such as
precision gears against thermal shock and sealing ring enduring
temperature fluctuation, etc., with stable thermal cycling perfor-
mance (see Fig. 6b and Supplementary Fig. 5). We also emphasize
that the present Fe-based ZTE alloy contains only 4 at.% rare-
earth Ho, making it cost-effective with great application poten-
tials (see Supplementary Fig. 16).

In summary, we used the eutectic reaction method to overcome
the contradiction between ZTE and plasticity in metallic mate-
rials. By this method, we successfully designed and fabricated a
Fe-based ZTE dual-phase alloy, Ho0.04Fe0.96, with a combination
of low-cost, stable thermal cycling performance, and moderate
strength-plasticity. The lamellar dual-phase microstructure with
the semi-coherent interface not only regulates the thermal
expansion behavior but also greatly enhances the mechanical
properties and improves the thermal stability of the Fe-based ZTE
alloy. The comprehensive performance of the present dual-phase
alloy may effectively avoid the “Buckets Effect” caused by the
imbalance of material properties, endowing it a broad application
prospect. We expect that more high-performance ZTE alloys
could be developed by using the eutectic reaction strategy.

Fig. 4 Real-time in-situ neutron diffraction studies of S-4 alloy. a, b In-situ neutron diffraction profiles at the strain of 0%, −3%, −5%, and unloading
stage collected in the LD (a) and TD (b), respectively, correspond to I, II, and III stages. c, d Lattice strains (c) and normalized peak FWHMs (d) in LD and
TD versus applied compressive strain, respectively.
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Methods
Synthesis methods. The samples of HoxFe1−x (x= 0.03, x= 0.04, x= 0.05,
x= 0.07, x= 0.09, labeled as S-3, S-4, S-5, S-7, S-9) were prepared the constituent
elements, Ho and Fe (>99.9% purity) by a vacuum arc melting furnace under high
purity argon atmosphere. The samples were turned over and melted four times to
ensure homogeneity. Then, the sample was followed by annealing at 1373 K in an
argon atmosphere for about 24 h and quenched in water.

SXRD measurements. The ambient temperature (λ= 0.23991 Å) and in-situ
SXRD measurements (λ= 0.45 Å) of the samples were performed at the SPring-8,

Japan. The phase structures and fractions were obtained by Rietveld refinements
with FULLPROF software.

EPMA measurements. The phase contrast and microstructure analysis were
measured by electro-probe microanalyzer backscattering electron (EPMA-BSE)
spectrum (SHIMADZU 1720) equipped with wave-length dispersive spectrometer
analysis (WDS) to quantitative determine the phase composition.

SEM and EBSD measurements. The surface of fracture and the microstructure
orientation of the samples were measured by scanning electron microscope (SEM,

Fig. 6 Summary of mechanical and thermal expansion performance. a A review of critical parameters for the typical (near) zero thermal expansion
metallic materials: ultimate strain, strength, and temperature window. Note: Invar is a completely plastic material, for comparison, we used the
compressive strength at 15.6% strains here. b Pictures of gear (up) and sealing (down) ring fabricated by the present ZTE alloy (S-4).
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Fig. 5 TEM studies of S-4 alloy. a, b High-resolution transmission electron microscopy (HRTEM) image at the phase interface, oriented to the [001]α zone
axis (a) and [110]α zone axis (b), respectively. c, d Selected area electron diffraction (SAED) at the phase interface correspond to Fig. 5a and b,
respectively. e The microstructure of the S-4 alloy at the strain of −5% along the loading direction, the white dashed line indicates the phase boundary
(PB). f The HRTEM image at the shear band area of the H phase, insert is the SAED at the H phase, oriented to the [010] zone axis. The local shear band is
formed after large compressive deformation. g Intensity profile along with LD in A and B zones marked in Fig. 5f.
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Zeiss Geminisem 500), electron backscattering diffraction (EBSD, TESCAN MIRA
3 LMH SEM, and Symmetry EBSD).

TEM measurements. The microstructure of the as-cast sample was characterized
by the high-resolution transmission electron microscopy (HRTEM) and was
measured by an aberration-corrected FEI Titan G260–300 kV S/TEM. All pictures
were handled with Gatan Digital Micrograph software.

Linear thermal expansion of the alloy. The linear thermal expansion curves
(ΔL/l0) were measured by an advanced thermo-dilatometer (NETZSCH DIL402)
with a heating rate of 5 K/min.

Mechanical properties. The sample was fabricated into Φ 6 × 8mm cylinder by
electrical discharging. At least 5 samples were tested for each composition. The room-
temperature mechanical properties were measured using a CMT4105 universal elec-
tronic compressive testing machine with an initial strain rate of 7.0 × 10−4 s−1.

In situ neutron diffraction measurements. The real-time in-situ neutron dif-
fraction experiments were carried out at VULCAN beamline in Oak Ridge
National Laboratory29,50 (ORNL), USA. All the lattice strain during the com-
pressive is determined by the single peak fitting method for the (h,k,l) reflections.
The lattice strain was calculated by following formula (Eq. 1):

Strain ¼ ðd1 � d0Þ=d0 ´ 100% ð1Þ
Here d1 and d0 represent the interplanar crystal spacing of the (hkl) crystal plane
after and before loading, respectively.

The lattice thermal expansion of the dual-phase alloy. The lattice thermal
expansion of dual-phase alloy was calculated as (Eq. 2) and (Eq. 3):

αS�4 ¼
Σα1 � Σα0

Σα0
=ðT1 � T0Þ ð2Þ

Σa ¼ mol:α% ´ aα þmol:H% ´ cH ð3Þ
where αS-4 is the corrected CTEs along with the LD for S-4; mol.α% and mol.H% are
molar fractions of α and H determined by the results of SXRD data. Due to the
high crystallographic texture of the S-4 with <001>//LD and the homogeneous
lamellar microstructure, we use the c axis of the H phase, a axis for the α phase, and
molar fractions to calculate the overall thermal expansion along with the LD.

Thermal cycling test. To determine the thermal cycling stability of the dual-phase
alloys caused by the mismatch of CTEs between the two phases, a thermal-cycling
test was conducted by an auto-mechanical arm. The sample was submerged in
liquid nitrogen (77 K) for 10 s and then quickly transferred to hot water (335 K)
and kept for another 10s, which is the whole cycle.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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