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Imparting multi-functionality to covalent organic
framework nanoparticles by the dual-ligand
assistant encapsulation strategy
Liang Chen1,2,4, Wenxing Wang1,4, Jia Tian 3, Fanxing Bu1, Tiancong Zhao1, Minchao Liu1, Runfeng Lin1,

Fan Zhang 1, Myongsoo Lee 1, Dongyuan Zhao 1 & Xiaomin Li 1✉

The potential applications of covalent organic frameworks (COFs) can be further developed

by encapsulating functional nanoparticles within the frameworks. However, the synthesis of

monodispersed core@shell structured COF nanocomposites without agglomeration remains

a significant challenge. Herein, we present a versatile dual-ligand assistant strategy for

interfacial growth of COFs on the functional nanoparticles with abundant physicochemical

properties. Regardless of the composition, geometry or surface properties of the core, the

obtained core@shell structured nanocomposites with controllable shell-thickness are very

uniform without agglomeration. The derived bowl-shape, yolk@shell, core@satellites@shell

nanostructures can also be fabricated delicately. As a promising type of photosensitizer for

photodynamic therapy (PDT), the porphyrin-based COFs were grown onto upconversion

nanoparticles (UCNPs). With the assistance of the near-infrared (NIR) to visible optical

property of UCNPs core and the intrinsic porosity of COF shell, the core@shell nano-

composites can be applied as a nanoplatform for NIR-activated PDT with deep tissue

penetration and chemotherapeutic drug delivery.
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As an emerging class of porous crystalline materials,
covalent organic frameworks (COFs) are featured with
high and regular porosity, low crystal density, and

excellent structural stability1,2, which make them promising
candidates for various applications in catalysis3, gas storage and
separation4,5, sensors6, and biomedicine7–10. The controllable
fabrication of COFs in terms of their components, structure, and
morphology is of utmost significance to achieve well-designed
COFs with desirable properties for different applications. By
serving as a unique host matrix for various functional species,
COFs offer the opportunity to develop new types of hybrid
materials with collective or enhanced properties in comparison
to the pure COF counterparts, such as the unique catalytic,
optical, and electrical properties11.

The incorporation of inorganic functional entities in COFs is
one of the most important strategies to construct the COFs
nanocomposites, which attracts much attention due to the
diverse physicochemical properties of those functional
entities12. Generally, there are two routes to prepare the func-
tional COF nanocomposites. The first one is the post-loading
strategy in the pre-synthesized COFs. The functional entities are
limited to ultrasmall metal or metal oxide nanoparticles13–18.
The encapsulation of pre-synthesized functional nanoparticles
during the formation of COFs is another commonly used
strategy to obtain functional COF nanocomposites19, i.e., the
core@shell structure, in which functional cores can be encap-
sulated into COFs to endow it with abundant optical, electrical,
or magnetic properties20.

Although there are many reports on core@shell structured
COF nanocomposites and their applications, this emerging area
still confronts significant challenges. First, the variety of func-
tional core in the core@shell structured COF nanocomposites is
still limited21,22. Given that the surface properties of the
functional cores are vastly different, the previously reported
methods always involve the pre-grafting of COF monomers and
subsequent harsh solvothermal reaction for the shell growth,
which makes it difficult to control the nucleation and growth
kinetics of COF shell on their surface23,24. Thus, in order to
enrich the feature set and applications of COFs, it is highly
desired to develop a general method for the synthesis of
the core@shell structured COF nanocomposites. Second, the
controllable synthesis of COF-based nanomaterials with uni-
form morphology, which is beneficial to finely regulating
the structure-performance relationship25, is an urgent yet
quite challenging goal. In addition, the agglomeration of COF
crystallites is a commonly observed complication due to
the “unavoidable” crosslinked network among the COF
nanoparticles26. Therefore, to maximally optimize the perfor-
mance of the COF nanocomposites, it is also important to
ensure that the nanocomposites are solution-processable and
monodisperse without agglomeration27.

Here, we report a general dual-ligand assistant strategy for the
synthesis of the uniform inorganic nanoparticles functionalized
COF nanocomposites. With this versatile strategy, the COFs can
be endowed with abundant and unique optical, electrical, mag-
netic properties. The uniform core@shell, hollow, bowl-shape,
yolk@shell, and core@satellites@shell nanostructures can be
delicately fabricated and the shell thickness can be well tuned
from ~10 to ~50 nm. Moreover, the composition of COF shell can
also be varied by using different types of monomers. With the
obtained inorganic nanoparticles functionalized COF nano-
composites, some predicaments for the applications of pure COFs
can be overcome. For example, the porphyrin-based COFs have
shown great potential as photosensitizers for photodynamic
therapy (PDT), but it only can be activated by visible light with
insufficient tissue penetration depth. This predicament is

conquered by integrating upconversion nanoparticles (UCNPs)
with the porphyrin-based COFs. With the merit of the near-
infrared (NIR) to visible optical property of UCNPs core and the
intrinsic porosity of COF shell, the synthesized core@shell
nanocomposites is utilized as a multifunctional platform for
synergistic NIR-activated PDT and chemotherapy, which can
realize superior antitumor efficiency.

Results
Dual-ligand assistant strategy for core-shell structured COFs.
The uniform inorganic nanoparticles functionalized core@shell
structured COF nanocomposites can be obtained via dual-ligand
assistant strategy. The synthetic process can be divided into three
parts (Fig. 1a): (1) the sequential adhesion of polyethyleneimine
(PEI) and polyvinylpyrrolidone (PVP) ligands onto the surface of
the initial nanoparticles, (2) the controllable assembly of the
monomers of COF shell on the nanoparticles, and (3) the further
growth and thermal crystallization of the amorphous shell.

As a model core, the dense SiO2 nanospheres with a size of 120
nm were firstly modified with dual ligands of PEI and PVP
sequentially (Supplementary Fig. 1). Two organic linkers, 1,3,5-
tris(4-aminophenyl)benzene (TAPB) and 2,5-dimethoxyter-
ephthalaldehyde (DMTP), were used as the monomers to form
the COF shell. The uniform core@shell structured SiO2@COF
nanocomposites were synthesized by the proposed strategy.
Transmission electron microcopy (TEM) image clearly shows
that the COF shell are uniformly coated on the dual ligands co-
modified SiO2 nanospheres (Fig. 1b and Supplementary Fig. 2).
The shell thickness is about ~39 nm, which can be well tuned
from ~10 to ~50 nm (Supplementary Fig. 3). The high-resolution
TEM (HRTEM) image reveals the highly crystalline nature with
an interplanar spacing of ~2.8 nm, which corresponding to (100)
planes of the TAPB-DMTP-COF (Fig. 1c, d)28. The selected area
electron diffraction pattern shows a distinct ring and the
calculated d-spacing matchs well with the result of HRTEM
(Fig. 1e). Thus, it can be concluded that the 2D plane of the COF
layers is parallel to the SiO2 surface, and the fringes with an
interplanar spacing of ~2.8 nm can be assigned to the periodic
pores perpendicular to the 2D plane of the COF layers and the
SiO2 surface (Supplementary Fig. 4)3,29. Unlike the commonly
observed agglomeration complication30,31, the obtained core@-
shell structured COF nanocomposites are very uniform without
any aggregation, which can be demonstrated by the large area
scanning electron microcopy (SEM) image (Fig. 1f) and the
dynamic light scattering with a low polydispersity of 0.01
(Supplementary Fig. 5).

The Brunauer–Emmett–Teller surface area of the bare SiO2

and core@shell structured SiO2@COF are determined to be 39
and 435 m2/g (Fig. 1g), respectively, which indicates the highly
porosity of the COF shell. The periodic crystalline frameworks of
the COF shell can be further demonstrated by X-ray diffraction
(XRD) pattern (Fig. 1h). The strong diffraction peaks at 2.72,
4.81, 5.63, 7.39 and 9.65° can be clearly observed after the thermal
treatment in the acetic acid condition, matching well with (100),
(110), (200), (210), and (220) planes of TAPB-DMTP-COF,
respectively32. It should be noticed that the shell is amorphous
within the first 4 h reaction under room temperature, and the
diffraction peaks emerge after only 2 h thermal treatment at 80 °C
(Supplementary Fig. 6). The thermal crystallization process is
crucial for the transformation of amorphous imine polymer shell
into highly crystalline COF shell (Supplementary Figs. 7, 8). The
small angle X-ray scattering (SAXS) also indicates the porous
structure of prepared SiO2@COF after thermal crystallization
(Supplementary Fig. 9). In addition, the imine-linked COF was
also characterized by Fourier transform infrared (FTIR) spectra
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and 13C NMR spectrum. After coated COF onto SiO2, the typical
C=N stretching vibration at 1618 cm−1 appears in the FTIR
spectrum of SiO2@COF, suggesting the formation of imine
linkages in the framework of the COF shell (Supplementary
Fig. 10). As shown in the solid-state 13C NMR, the peaks at 104,
111, 117, 123, 137, 150, and 203 ppm are assigned to the aromatic
carbon signals from the COF shell (Supplementary Fig. 11). In
particular, the peaks at around 150 ppm can be attributed to
the carbon from the Schiff base bonds33. The peak at 171 ppm
can be attributed to the carbonyl signal of PVP34. Apart from
that, the optical property of COF-based materials has attracted
increasing attention recently. For instance, Deng’s group has
reported a pioneer work of exploiting the photodynamic effect of
pure COF by optimizing the molecular structure of the building
blocks35. Thus, the band gap of SiO2@COF was also estimated

here based on the UV–vis reflectance spectra to investigate the
optical property of SiO2@COF (Supplementary Fig. 12). Similar
with the literature reports36,37, the SiO2@COF nanocomposites
exhibit smaller band gaps compared with the corresponding
molecular building blocks, demonstrating the cooperation
between chromophores across the entire COF crystals.

General applicability of the dual-ligand assistant strategy for
functional integration. Next, the broad applicability of this dual
ligands assistant strategy is demonstrated by coating the COF
shell onto functional cores with different morphologies and
properties, which is crucial for enriching the feature sets and
applications of COFs. As an example, the dendritic mesoporous
silica nanoparticles (mSiO2) can be uniformly encapsulated
in COF shell to form the hierarchical porous structured
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Fig. 1 Synthesis and characterization of core-shell SiO2@COF. a Schematic illustration of the preparation of monodisperse COF-coated SiO2

nanoparticles. b, c TEM images of the obtained SiO2@COF nanocomposites. d HRTEM image of the COF shell from the area of red square in (c). e The
corresponding selected area electron diffraction image taken from the COF shell. f SEM image of SiO2@COF nanocomposites. Inset is the colloid dispersion
of as-prepared SiO2@COF after 1 month storage. g Nitrogen-sorption isotherms and (h) XRD patterns of the bare SiO2 and SiO2@COF nanocomposites.
Scale bars are 200 nm in (b), 50 nm in (c), 5 nm in (d), and 1 μm in (f). A representative image of three replicates from each group is shown.
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mSiO2@COF nanocomposites (Fig. 2a). By using dense silica
coated NaYF4:Yb/Er@NaGdF4 nanocrystals as the initial func-
tional core, the monodisperse core@multi-shell structured
NaYF4:Yb/Er@NaGdF4@SiO2@COF nanocomposites with
unique upconversion luminescence are also successfully fabri-
cated (Fig. 2b). As silica can be readily coated onto various
hydrophobic nanocrystals, it is expected that the dual ligands
assistant strategy is also applicable for integrating other func-
tional nanoparticles with COF. Furthermore, the silica can act
as a sacrificial template to generate pure COF nanomaterials
with unique nanostructures. For example, the SiO2@COF can
be transformed from a core@shell structure to the hollow
structured COF nanoparticles after selectively etching the SiO2

under the alkaline condition (Supplementary Fig. 13). Inter-
estingly, when the thickness of COF shell is too thin to resist the
capillary pressure38, the hollow structure is collapsed to form
bowl-shaped COF nanoparticles after the removal of SiO2 core
(Fig. 2d). In addition, yolk@shell structured UCNP@COF
with a functional core in a large void space is also synthesized
(Fig. 2e and Supplementary Fig. 14). The yolk-shell structured
COF nanocomposites are expected to exhibit many advantages,

such as the high loading capacity, controllable releasing
kinetics for cargos, unique spatial confinement effect for cata-
lysis etc39.

Apart from silica-based surface, the functional entities with
other surface properties can also be integrated with COFs by this
dual ligands assistant strategy. In previous works, complicated
modification steps are required to introduce functional groups
onto the surface of cores for the growth of COFs40,41. Here, the
commonly used PEI and PVP ligands can be readily modified
onto various nanomaterials to regulate the heterogeneous
nucleation and growth of COF shell. As expected, the uniform
COF shell can be coated onto Fe3O4 nanospheres, Fe2O3

ellipsoids, CuS nanoplates as well as gold nanoshells (Fig. 2c,
Supplementary Fig. 15 and Fig. 16). The obtained COF-based
nanocomposites also exhibit excellent magnetic or photothermal
performance (Fig. 2g, h), suggesting the great potential of this
strategy on imparting different functionalities to COF nanoma-
terials. In addition to the single functional component, the dual-
functional core@satellites structured Zr-MOF@DCNPs (MOF=
metal organic frameworks, DCNPs= downconversion nanopar-
ticles NaGdF4:Nd@NaGdF4) is also successfully coated with
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Fig. 2 General applicability of the dual-ligand assistant strategy for synthesizing functional COF nanocomposites. TEM images of COF-coated (a)
mesoporous SiO2 (mSiO2), (b) Upconverting nanoparticles@SiO2 (UCNPs@SiO2), and (c) Fe2O3 ellipsoids. d TEM image of COF nanobowls obtained from
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g Hysteresis loops of the Fe3O4 and Fe3O4@COF nanocomposites. Inset represents the photos of Fe3O4@COF aqueous dispersion before and after
separated by external magnetic field. h UV–vis spectra of CuS nanoplates and CuS@COF aqueous dispersions. Inset indicates the thermal images of
CuS@COF dispersion after irradiated by 808 nm NIR laser (0.5W/cm2) for different time. i Downconversion luminescent spectra of Zr-MOF@DCNPs and
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uniform COF shell (Fig. 2f). Elemental mapping of the Zr-
MOF@DCNPs@COF nanocomposites shows that all the expected
elements, including Zr from the MOF, Gd and Y from the
DCNPs, O from ligand of MOF and C from MOF and COF, can
be detected and match well with the core@satellites@shell
nanostructure (Supplementary Fig. 17). Owing to the down-
conversion luminescence of Nd-doped DCNPs, the NIR II
emission of Zr-MOF@DCNPs@COF can also be detected under
the excitation of 808 nm laser (Fig. 2j). Those results illustrate
that the proposed dual ligands assistant strategy for the COFs
encapsulation is applicable on various nanoparticles regardless of
their composition, geometry, and surface property.

Next, 1,3,5-triformylbenzene (TFB) and 1,4-phenylenediamine
(PDA), two typical monomers for synthesizing LZU-142, are
selected to verify the applicability of this dual ligands assistant
strategy for coating different types of COF shell. The result shows
that the SiO2 nanospheres are uniformly coated by LZU-1 (Fig. 3a,
c). The XRD result of the obtained SiO2@LZU-1 shows that the
typical diffraction at 4.7° corresponding to (100) plane of LZU-1
can be detected (Supplementary Fig. 18), indicating the crystallinity
of COF. By using the 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-
porphine (TAPP) and 2,5-dihydroxylterephthalaldehyde as the
monomers, the monodispersed core@shell nanocomposites
with porphyrin-based COF shell are also successfully synthesized
(Fig. 3b, d), and the crystallinity of porphyrin-based COF is also
confirmed (Supplementary Fig. 19). It is worth mentioning that the
XRD pattern of the SiO2@porphyrin-COF is quite different from
the COF-366 (even under the same synthesis conditions). It is
speculated that crystalline of porphyrin COF on the spherical
nanoparticles with a certain curvature could induce the weakened
π− π stacking between successive layers compared with bulk
layered COFs, leading to their mismatch stacking. This mismatch
stacking may further result in the changing of the cell parameters.
This “curved surface induced abnormal crystallization” is very
interesting, and we are still working on this part.

Functional COF-based nanocomposites (UC-COF) for com-
bined therapy. The porphyrin-based COFs have shown great
potential as nano-photosensitizers for PDT43. The use of such
COFs in PDT, however, is limited by the poor tissue penetration
depth of visible light. This predicament can be overcome by inte-
grating UCNPs with the porphyrin-based COFs (Fig. 4a). As a
proof of concept, a multifunctional nanoplatform with UCNPs@-
SiO2 as core and porphyrin COF as shell is synthesized for tumor
therapy. Because of the hydrophobic surface of the obtained
UCNPs, a dense SiO2 layer was coated on the UCNP to form the
hydrophilic core@shell UCNP@SiO2 nanoparticles, which greatly
facilitates the further modification of dual ligands and the con-
trolled growth of COF shell. The obtained UCNPs@SiO2@COF
nanocomposites (denoted as UC-COF) show uniform morphology
with porphyrin-based COF shell (Fig. 4b). The UC-COF can be
stabilized with PVP due to the interaction between PVP and imine
units in the COF framework, endowing the synthesized UC-COF
with good colloidal stability for biomedical applications (Supple-
mentary Fig. 20). The upconversion luminescence of inner UCNPs
functional core maintains very well after the encapsulation with the
COF shell. Upon irradiated by 980-nm NIR laser, the UCNPs core
can convert the NIR light to the visible light at ~ 545 and 655 nm
(Supplementary Fig. 21), which can be absorbed by porphyrin-
based COF shell and further induce the generation of reactive
oxygen species (ROS) for PDT. Compared with the traditional
visible light-triggered PDT, this UC-COF-based NIR-triggered
PDT shows much deeper tissue penetration, which is more
favorable for tumor treatment in deep tissue (Supplementary
Fig. 22). The 1,3-diphenylisobenzofuran (DPBF) probe was used to
detect the NIR-activated ROS generation. A significant reduction
in the maximum absorption of DPBF can be observed under the
irradiation of NIR laser (Supplementary Fig. 23), suggesting the
high efficiency of NIR-activated PDT. The intracellular ROS gen-
eration in murine breast cancer cells (4T1 cells) was inspected by
using 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) probe.
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Similar with the control group, the green fluorescence from the
oxidized DCFH is very weak in cells treated with NIR laser or UC-
COF alone (Fig. 3c). In sharp contrast, bright green fluorescence
can be observed in the cells exposed to UC-COF under the NIR
irradiation (Fig. 4c and Supplementary Fig. 24), which indicates
that the intracellular ROS level is rapidly elevated due to the NIR-
activated ROS generation.

Benefiting from the specific transmembrane mechanism of
nanomaterials, the UC-COF can be easily internalized by
4T1 cells. Confocal laser scanning microscope (CLSM) images
exhibit that the cell nuclei are surrounded by the red fluorescence
from porphyrin of UC-COF (Supplementary Fig. 25), indicating
the highly efficient endocytosis of the nanocomposites. The bare
UC-COF exhibits negligible cytotoxicity against 4T1 cells and
human umbilical vein endothelial cells (HUVECs), even at a high
concentration of 200 μg/mL (Supplementary Fig. 26). The result
of hemolytic assay also demonstrates that the negligible hemolytic
effect of synthesized UC-COF (Supplementary Fig. 27), suggest-
ing the excellent biocompatibility of UC-COF.

Further combined with the intrinsic pores of COF shell, the
cisplatin is selected as a model drug for the synergistic
chemotherapy with the NIR-activated PDT. The element
mapping of cisplatin-loaded UC-COF (UC-COF-Pt) shows
the evenly distributed Pt element in the COF shell (Supple-
mentary Fig. 28). The loading capacity of cisplatin in this
unique UC-COF nanocarriers is about 47 μg/mg according to
the result of inductively coupled plasma atomic emission
spectrometry (ICP-AES). 4T1 cells were subjected to different
treatments to evaluate the cancer cell killing efficiency. After
the treatments, the group of UC-COF-Pt under NIR irradiation
shows the most efficient cell killing effect with a mortality of

~82.1% (Fig. 4d), which is much higher than the group of UC-
COF-Pt (~ 31.8%) without the NIR light treatment and the
mere PDT therapy of UC-COF (~53.5%). The live-dead
staining images also demonstrate that more living cells exist
in the single chemotherapy or PDT groups than that in the
group of combined therapy (Fig. 4e). Thus, the prepared UC-
COF nanocarriers can significantly improve the therapeutic
efficiency by rationally integrating the NIR-triggered PDT and
intracellular drug delivery.

Last, 4T1 tumor was subcutaneously xenografted on female
Balb/c mice to assess the in vivo therapeutic efficiency. The tumor-
bearing mice were randomly divided into five groups for different
treatments (Fig. 5a): Control, NIR laser alone, UC-COF-Pt,
UC-COF+NIR laser, and UC-COF-Pt+NIR laser. Remarkably,
rapid tumor growth is observed in the former two group, while the
tumor growth of mice treated with UC-COF-Pt is moderately
inhibited (Fig. 5b). With the presence of NIR laser and chemother-
apeutic drugs, the synergistic therapy exhibits the strongest inhibition
effect compared with other groups (Fig. 5c, d). The tendency is also
confirmed by the hematoxylin & eosin (H&E) and Tunel staining
analysis of tumor slices (Fig. 5e). Histological analysis further reveals
that vast areas of cavities and lots of overflowed cytoplasm can be
observed in the tumor tissues from the UC-COF-Pt+ laser group,
which clearly implies the apoptotic or necrotic of tumor cells.
Consistent with the above tendency, UC-COF-Pt+ laser exhibits the
highest antitumor efficiency due to the synergy of the NIR-
triggered PDT and chemotherapy. The body weight of treated mice
shows normal fluctuations, and no remarkable tissue damage or any
other side effect are observed on heart, liver, spleen, lung, kidney
(Supplementary Figs. 29, 30), confirming the good biocompatibility
of UC-COF and well-tolerance of implemented treatments.
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Discussion
In our synthesis, the as-prepared cores were first modified with
PEI and dispersed in the PVP solution, during which the PVP can
attach onto the surface of cores (Supplementary Fig. 31).
Thereafter, upon the addition of monomers of the COF shell, the
polymerization of the monomers initiates to generate oligomers
in solution under the catalysis of acetic acid. The homogeneous
nucleation for the formation of the pure COF nanoparticles and
heterogeneous nucleation on the surface of functional cores for
the formation of core@shell structure have a competitive rela-
tionship, which is closely related to the corresponding critical
nucleation concentration (Cx) (Fig. 6a). Generally, the critical
nucleation concentration for the homogeneous nucleation (C5) is
constant under the predetermined conditions44. In comparison,
the critical nucleation concentration of the heterogeneous
nucleation is greatly influenced by the surface properties of the
cores45, which can be adjusted by changing the surface ligands.
For instance, the weak interaction between COF oligomers and
SiO2 nanospheres with naked surface means the high critical
concentration of heterogeneous nucleation (C4) on the bare SiO2

surface (even close to or higher than C5), which led to the hard
heterogeneous nucleation on the bare SiO2 surface, and the

generation of phase-separated pure COF nanoparticles (Supple-
mentary Fig. 32).

When PEI is modified onto SiO2 surface, the aldehyde
monomers can be readily enriched onto the core surface through
Schiff base reaction (Fig. 6b), which dramatically lowers the cri-
tical concentration of heterogeneous nucleation (C1). In this
situation, the oligomers rapidly deposit and grow on the surface
of cores to form core@shell structure. However, too fast nuclea-
tion and growth rate inevitably give rise to the agglomeration of
particles during the coating process. Similarly, PVP can also
enrich the monomers onto the core surface on account of the
hydrogen bonds between the PVP and aniline monomers
(Fig. 6b), but this effect is much weaker than PEI. In the case of
PVP modified SiO2, the thickness of the COF shell is obviously
thinner than that on the PEI-modified SiO2 (Supplementary
Fig. 33). Although the COF shells can be coated onto SiO2

nanospheres, but this coating is the nonuniform coating. It can be
observed that the COF domains on the SiO2 nanospheres are
“islands”, which result in the irregular morphology of COF shell
and even partially naked surface of the core. On the other hand, it
is very difficult to tune the shell thickness by adjusting the PVP
concentration.
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Based on the above principles, the dual-ligand assistant strategy
is proposed for coating uniform COF shell onto functional cores.
By combining the dual ligands of PEI and PVP on the surface, the
critical heterogeneous nucleation concentration of COF oligomers
on the surface of cores (C2) can be finely regulated, thereby
avoiding the “too fast” or “too slow” nucleation and growth on
the PEI or PVP single ligand modified surface. The kinetics of
surface nucleation and growth is strongly associated with the ratio
of the dual ligands. An appropriate amount of PVP can optimize
the critical heterogeneous nucleation concentration to allow the
moderate heterogeneous growth of COF shell on the cores
without any phase-separation and agglomeration. When PVP are
co-modified on the surface, the over-speed growth on the PEI
single ligand modified surface can be greatly suppressed. The

decelerating growth speed of the COF shell can be attributed to
strong interaction between the PVP and the protonated imine
units (under acidic condition) in the COF framework, which
further results in the passivation of the COF shell46. The growth
speed of the COF shell can be well manipulated by tuning the
ratio between the PEI and PVP. The shell thickness also can
be adjusted from ~16 to ~45 nm by tuning the ratio between the
dual ligands (Fig. 6c and Supplementary Fig. 34).

In summary, we have demonstrated a versatile approach for
the growth of COF onto various nanoparticles, including SiO2,
metal oxides, semiconductor sulfides, and MOFs. The nucleation
and growth kinetics of COF shell can be well manipulated by the
dual ligands (PEI and PVP) on the surface of the functional
nanoparticles. The proposed dual-ligand assistant strategy for the
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construction of core@shell structured COF nanocomposites
shows very broad applicability in regardless of the morphology,
composition, or geometry of the cores as well as the types of
monomers. The diverse morphologies of COF-based nanoma-
terials, including bowl-shape, hollow, and core@satellites@shell
structure, have been successfully fabricated. More importantly,
many specific properties (magnetic or optical) can be readily
imparted into COF by the dual-ligand assisted strategy. Taking
the advantages of NIR-to-visible upconversion luminescence and
highly porous structure of COF, the prepared UC-COF can
provide a unique nanoplatform for NIR-activated PDT and
chemotherapy, realizing favorable antitumor efficiency. Overall, it
is expected that this universal strategy can facilitate the con-
struction of multicomponent COF-based nanostructures with
collective functionalities for various applications.

Methods
Synthesis of monodispersed core@shell structured SiO2@COF. In a typical
process, 10.0 mg of PEI-modified SiO2 was added into 20.0 mL of anhydrous
acetonitrile containing 40.0 mg of PVP. The dispersion was treated with ultrasonic
for more than 0.5 h. Then, 4.0 mg of DMTP and 4.8 mg of TAPB were added. After
5 min stirring, 200 μL of glacial acetic acid was further added. The reaction was
maintained at room temperature for 4 h. Afterward, 800 μL of acetic acid was
further added and the mixture was heated to 80 °C for another 12 h reaction.
The products were obtained and washed by centrifugation. The amount of PVP
(100, 200, 400, and 800 mg) and monomers (0.5, 1, 2, 4, 8, and 16 mg of DMTP)
were adjusted to obtain SiO2@COF with different shell thickness. Other functional
cores were also coated with COF shell according to the same procedures by
replacing the corresponding seeds.

Synthesis of UC-COF. Briefly, 15.0 mg of the PEI-modified NaYF4:Yb/
Er@NaGdF4@SiO2 nanoparticles were added into 10.0 mL of o-dichlorobenzene/n-
butyl alcohol (v/v= 1:1) with 100 mg of PVP dissolved, the dispersion was treated
with ultrasonic for more than 0.5 h. Then, 7.5 mg of TAPP and 4.1 mg of 2,5-
dihydroxy-1,4-benzenedicarboxaldehyde were added. After 5 min stirring, 0.10 mL
of glacial acetic acid was further added. The reaction is maintained at room
temperature for 4 h. Afterward, 0.30 mL of acetic acid was further added and the
mixture was heated to 120 °C under nitrogen atmosphere for another 24 h reaction.
Last, the products were obtained and washed by centrifugation.

Intracellular ROS detection. 4T1 cells and HUVECs were commercially provided
by the cell bank of Chinese academy of science (Shanghai, China). 4T1 cells were
seeded in a glass-bottom dish and incubated with UC-COF (50 and 100 μg/mL) for
3 h. Then the cells were washed with PBS and further cultured in fresh medium
containing DCFH-DA for 30 min. Afterward, the cells were exposed to 980 nm
laser for 15 min and washed for the CLSM observation. Moreover, the quantitative
analysis of the fluorescence signal from the cells can also be determined by flow
cytometry.

Evaluation of in vitro therapeutic efficacy. 4T1 cells were seeded on a 96-well
plate at a density of 104 cells/well. After that, the cells were incubated with free
UC-COF and UC-COF-Pt for 4 h. Subsequently, the materials were completely
removed and the cells were washed with PBS. The groups of UC-COF and UC-
COF-Pt were exposed to 980 nm laser (1W/cm2) for 15 min. Then, cells were
rinsed with PBS for several times and incubated for another 20 h. Finally, the cell
viability was evaluated by the standard CCK-8 assay. Moreover, the cells were also
stained with Calcein-AM/PI after different treatments and directly observed
by CLSM.

In vivo antitumor effect. All the animal experiments were approved by the
Shanghai Science and Technology Committee (SYXK2014-0029, Shanghai, China)
and performed in agreement with the guidelines of the Department of Laboratory
Animal Science, Fudan University. 4–6-week-old Female Balb/c mice were brought
from Slac Laboratory Animal Co. Ltd. (Shanghai, China). 4T1 cells suspended in
FBS (4 × 106 cells) were subcutaneously injected into the right back leg of mice.
When the size of tumors reached ~5 mm in diameter, the tumor-bearing mice were
randomly divided into five groups (n= 5 for each group): control group, NIR laser,
UC-COF-Pt, UC-COF+NIR laser, and UC-COF-Pt+NIR laser. For the treat-
ments, the corresponding samples were intravenously injected, and 980 nm laser
irradiation (1W/cm2, 15 min) was performed at 24 h post-injection (3 min irra-
diation with an interval of 1 min). The treatments were conducted at days 1, 3,
and 5. The tumor size and body weight of the experimental mice were monitored
every 2 days in subsequent 2 weeks. Additionally, the tumor tissues of each group
were excised after the treatments for H&E and Tunel staining.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All relevant data supporting the findings of this study are included within the article and
Supplementary Information files. Any other data are available from the authors upon
reasonable request. Source data are provided with this paper.
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