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Catalytic asymmetric nucleophilic fluorination
using BF3·Et2O as fluorine source and activating
reagent
Weiwei Zhu1, Xiang Zhen2, Jingyuan Wu1, Yaping Cheng1, Junkai An2, Xingyu Ma1, Jikun Liu2, Yuji Qin1,

Hao Zhu2, Jijun Xue2 & Xianxing Jiang 1✉

Fluorination using chiral catalytic methods could result in a direct access to asymmetric

fluorine chemistry. However, challenges in catalytic asymmetric fluorinations, especially the

longstanding stereochemical challenges existed in BF3·Et2O-based fluorinations, have not yet

been addressed. Here we report the catalytic asymmetric nucleophilic fluorination using

BF3·Et2O as the fluorine reagent in the presence of chiral iodine catalyst. Various chiral

fluorinated oxazine products were obtained with good to excellent enantioselectivities (up to

>99% ee) and diastereoselectivities (up to >20:1 dr). Control experiments (the desired

fluoro-oxazines could not be obtained when Py·HF or Et3N·3HF were employed as the fluorine

source) indicated that BF3·Et2O acted not only as a fluorine reagent but also as the activating

reagent for activation of iodosylbenzene.
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Being called as “a small atom with a big ego”, fluorine acts as
a significant and increasingly important role in the fields of
organic chemistry, pharmaceuticals, agrochemicals and

material chemistry1–4. The fluorinated molecules often display
higher thermal and metabolic stabilities, lower polarity, and
weaker intermolecular interactions due to the strong C−F bond
and unique properties of F atom5. Therefore, these unique
properties of fluorine-contained compounds make the develop-
ment of efficient strategies, especially of catalytic asymmetric
reaction for fluorination of molecules as one of the hottest areas
in organic synthesis2,3. Nevertheless, the asymmetric fluorine
organic chemistry still represents a considerable challenge to
date6. In the wake of the emergence of the first electrophilic
enantioselective fluorination of enolates using chiral N-fluoro
camphorsultam reagent reported by the group of Lang7, sig-
nificant progress for enantioselective fluorination studies
have been presented4,8,9 because of contributing to the
development of catalytic asymmetric methodologies for electro-
philic fluorine reagents (F+ reagents), such as N-fluor-
obenzenesulfonimide (NFSI)10–12, N-fluoropyridinium salts3, and
Selectfluor (Fig. 1a)13–18. These reagents exhibited efficient
transfer of fluorine atom under the asymmetric fluorination,
however, their industrial applications were significantly restricted
by the poor atom economy in fluorination, expensive synthesis
and other inherent characteristics of electrophilic reagent. Alter-
natively, nucleophilic fluorine reagents (F− reagents) have been
attracting considerable interest recently since the relative stability
and low-cost. Considerable advances have recently been achieved
in this field involving catalytic asymmetric fluorination of keto
esters19,20 and alkenes21–25 employing pyridine·HF as a fluorine
reagent, catalytic asymmetric fluorination of allylic tri-
chloroacetimidates using a combination of Et3N·HF with Iridium
complex26, asymmetric ring-opening fluorinations of meso-
epoxides (aziranes) using PhCOF, HF-reagents or AgF as the
fluorine source in metal-catalyzed system27–29, and other asym-
metric transformations in the presence of metal fluorides (KF,
CsF or AgF)30–32 (Fig. 1b). Despite these elegant works, several
practical disadvantages still discouraged their further large-scale

utilization in the area: the high toxicity and biohazard for HF-
bases, and metal fluorides poor solubility in organic solvents
coupled with limited strategies to control reactivity.

Ideally, one low-toxic, stable and commercially cheap available
nucleophilic fluorine reagent would drastically promote enan-
tioselective fluorine synthetic innovation and industrial develop-
ment. As a versatile Lewis acid, commercially available BF3·Et2O
is easy to prepare and is widely being used in various organic
transformations. As early as 1960, it was discovered that as a
nucleophilic fluorine reagent could be applied in the fluorination
of ring opening of mesoepoxides33. The development of BF3·Et2O
mediated reactions in half a century reveals that the BF3·Et2O can
also be applied to fluorinations of alkenes34–36, alkynes37,
arenes38,39 and other fluorine organic chemistry40–43. Although
these efficient achiral methodologies have been well-established,
to date, the longstanding stereochemical challenges of the
BF3·Et2O-based fluorination have not yet been addressed, prob-
ably impeded by several hurdles: intense competition for the role
of BF3 between a nucleophilic fluorine reagent and a Lewis acid,
the difficulty in achieving stereocontrol of fluorine atom, the
competition from the uncatalyzed background reaction and other
side reactions. Undoubtedly, the advent of enantioselective
approach is long overdue that would be welcome.

In terms of the operational and environmental advantages
associated with organocatalysis, we speculated that a metal-free
mild reaction system with a chiral iodine catalyst (CIC) might
meet the aforementioned challenges21,44,45. Its activated oxidants
forms could form the iodine (III) catalyst with a typical structure
type of trigonal bipyramidal geometry, thus this type of robust
organocatalyst has been commonly used for asymmetric
nucleophilic addition reactions44,45. The unique stereoscopic
configuration of iodine (III) and well-defined steric hindrance of
the iodine (III) catalyst bearing chiral ligand can be readily
applied, leading to complete stereo-control in fluorination of
olefins using BF3·Et2O as a nucleophilic reagent. Rapid cyclization
and its simultaneous BF3·Et2O nucleophilic fluorination are viable
with a CIC to suppress the pure intramolecular cycloaddition and
other side reactions.
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Herein, we introduce a catalytic asymmetric fluorination
strategy that involves BF3·Et2O as nucleophilic fluorine source
with chiral iodine catalysts. Various F-contained products were
obtained with good to excellent diastereoselectivities (>20:1 dr)
and enantioselectivities (up to >99% ee) (Fig. 1c).

Results and discussion
Catalyst optimization. After several initial trials (Supplementary
Table 1), we set out to optimize the model catalytic asymmetric
aminofluorination of N-cinnamylbenzamide (1a) in the presence
of 15 mol% of ligand loading using BF3·Et2O as the fluorine
reagent in DCE at −25 °C with m-CPBA as an oxidate (Fig. 2).
The significant difference in stereoselectivity was observed under
these reaction conditions, whereas good yields were afforded with
the addition of structure diverse chiral iodine catalyst CICs. These
results suggested that the substituents of the catalysts have a
strong influence on the stereochemistry of the reaction. In gen-
eral, compared to spiro-CICs, the linear CICs could give the
higher stereoselectivity. The CIC1 was proved to be the best
catalyst, providing the desired chiral fluorinated oxazine 1b with
excellent diastereoselectivity (>20:1 dr) and enantioselectivity
(86% ee) in 70% yield.

Asymmetric aminofluorination of N-cinnamylbenzamides
using BF3·Et2O. Results of experiments under the optimized
conditions that probe the scope of the reaction are summarized in
Fig. 3. Substrate scope of the reaction was investigated with a
variety of substituted N-cinnamylbenzamides under the optimal
reaction conditions. As shown in Fig. 3a, variation of the elec-
tronic properties of substituents at either Ar1 or Ar2 of N-cin-
namylbenzamides with different steric parameters were tolerated,
affording the desired products with good to excellent diaster-
eoselectivities (2:1–>20:1 dr) and enantioselectivities (80–>99%
ee) in good yields (45–75%). Gratifyingly, the fluorinated oxazine
products bearing Ar2 with high steric hindrance were still
obtained in good yields and excellent stereoselectivities (85–>99%
ee, 15b–24b). The naphthyl-substituted N-cinnamylbenzamides
could also be tolerated, and gave the corresponding fluorinated
products (26b, 27b and 31b) in excellent diastereoselectivities (up
to >20:1dr) and enantioselectivities (86–87% ee) with good yields.
Furthermore, as expected, the catalytic system also proved to be
efficient for the N-cinnamylbenzamides with heterocycles or

“complex substituents” on Ar2 ring (Fig. 3b, 35b–42b), again
leading to good yields (45–72%) in high to excellent diastereos-
electivities (10:1–>20:1dr) and enantioselectivities (80-99% ee). It
is worth noting that the catalytic asymmetric aminofluorination
of complex natural product structures could also be achieved
efficiently in high to excellent diastereoselectivities and
enantioselectivities.

Additionally, the gram-scale experiment was conducted to
evaluate the applicability of our asymmetric fluorination method
by using 4a (Fig. 3c), the desired product was obtained with
excellent diastereoselectivity (>20:1 dr) and enantioselectivity
(92% ee). The result suggested that our protocol was promising in
future industrial applications. It was interesting that compared to
the PTC catalyzed process46, different fluorinated products could
be obtained from the same substrates using current process
(indicating a different catalytic progress). The relative and
absolute configurations of the products were determined by X-
ray crystal structure analysis of 4b (see the Supplementary
Information).

Asymmetric aminofluorination of N-(2-(prop-1-en-2-yl)phe-
nyl)benzamides. To further understanding of the scope of this
catalytic system, substrates 43a–54a were employed to undergo
the fluorination process. To our delight, various substituted N-(2-
(prop-1-en-2-yl)phenyl)benzamides including either electron-
donating substituents or steric hindrance substituents at differ-
ent positions on the Ar4 ring, as well as 3,5-ditrifluoromethyl
substituents could be tolerated, affording the corresponding
fluorinated products (43b–54b) with high enantioselectivities
(80–85% ee) and isolated yields (80–88% yield) (Fig. 4). These
substrate scope expanding experiments showed the hypothesis to
introduce the combination of BF3·Et2O and CIC into direct,
catalytic asymmetric fluorinations can be achieved. This method
expanded the structures of the fluorinated products and provided
a benign access to asymmetric nucleophilic fluorinations.

Mechanism studies. On the basis of the experimental results
described above, we have proposed a possible mechanism to
explain the stereochemistry of the catalytic asymmetric nucleophilic
fluorinations (Fig. 5). To gain a better understanding of the process
of this catalytic fluorination system, we also conducted control
experiments (Fig. 5a) and density functional theory (DFT) calcu-
lations (Fig. 6). It is worth noting that we could not obtain the
desired fluorinated products when we used or Py·HF or Et3N·3HF
instead of BF3·Et2O (Fig. 5a, equation 1). When PhIF247 was
applied as the hypervalent iodine reagent and fluorine source, we
didn’t obtain the 1b as well (Fig. 5a, equation 1). Thus, these results
indicate that BF3·Et2O acted not only as the nucleophilic fluorine
source, but also as the activating reagents for activation of iodo-
sylbenzene (Int1). which is distinct from previously catalytic
nucleophilic fluorination process reported by Jacobsen’s group21.
Based on previous work29,35,48,49, control experiments and DFT
calculations, the plausible catalytic cycle was shown in Fig. 5b, and
associated free energy profile was shown in Fig. 6.

At first, the aryl iodine catalyst is oxidized by m-CPBA to form
Ar−I=O (Int1), and Int1 is found to be 2.8 kcal/mol lower in
energy than ArI. (Fig. 6). Then Int2 is formed through the
activation of Ar−I=O by BF3·Et2O44, the energy of this
intermediate is calculated to be 23.8 kcal/mol lower than Int1
(Fig. 6). The electrophilic addition of iodine (III) to the double
bond of la forms Int334, during which the energy barrier is found
to be 3.6 kcal/mol. Then with the assistance of BF3, Int3 releases
anionic [BF4]- to form Int3+. The nucleophilic attack of [BF4]−

(generated in previous step) on Int3+ at C1 position afford the
TS143, the energy barrier of this step is 13.1 kcal/mol. There were
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intramolecular n−σ* interactions between the electron-deficient
iodine (III) center and the carbonyl groups50,51. For the impacts
of steric hindrance, the nucleophilic attack of F− on the Si face
was favored (Fig. 5b), and this is in consistence with the
experimental results and DFT calculations (Fig. 6b). As seen from
the energy profile, the enantioselectivity is determined by the
addition of F- with [BF4]- as fluorine source to the cationic Int3+

(Fig. 6a). The energy of TS1 versus ent-TS1, the transition state to
the minor product, is compared. Surprisingly the two TSs exhibit
huge energy difference of 14.9 kcal/mol (Fig. 6b). A closer
observation on the geometry shows that ent-TS1 is much later,
and bears a significantly longer I-O distance. In both TSs, the
hypervalent I(III) atom is stabilized by interaction with the amide
oxygen atom in the alkene. It could be proposed that the relative
direction of alkene and catalyst in ent-TS1 disabled the feasible I-
O interaction that provides essential stabilization to the iodane,
leading to both a later transition state and much higher energy.
The formation of Int4 is achieved through the interaction
between TS1 and BF3, and Int4 is found to be 23.7 kcal/mol lower
in energy than TS1. Then Int4 releases anionic [BF2OBF3]− to
form Int4+, and Int4+ is found to be 5.5 kcal/mol lower in
energy than Int4. Dearomatization of Ar1 ring of Int4+ by
intramolecularly nucleophilic attack of the Ar1 on Si face at C2
position (Fig. 5b) furnish the cyclopropyl compound TS2

(Fig. 5b)49, which was calculated to be +11.1 kcal/mol in energy
relative to Int4+. And then Int5 is formed with 1.7 kcal/mol of
energy barrier relative to TS2. The hypervalent iodine (III) Int5
underwent reductive elimination to afford Int6 with 6.8 kcal/mol
of energy barrier. TS3 was formed by the intramolecularly
nucleophilic attack of the amide oxygen on C2 position with 4.5
kcal/mol of energy barrier relative to Int6. Here the nucleophilic
attack of the amide oxygen takes place regioselectively at the
higher substituted carbon atom of the cyclopropane unit49. Ring
opening of the spirocyclopropyl ring TS3 takes place intramo-
lecularly via a cyclization with simultaneous ring expansion to the
six-membered cationic Int7 (Fig. 6)49. The calculated energy
barrier for this step is −38.9 kcal/mol relative to TS5. Control
experiment (Fig. 5a, equation 2) demonstrated the necessity of
Ar1 ring. Moreover, the aromatic ring (Ar2) is essential to
stabilize cationic Int7 (Fig. 5a, equation 3). With the assistance of
[BF2OBF3]- anion, Int7 can be deprotonated to generate final
product 1b (Fig. 6a). Besides, lengthening of carbon chain could
not result in a desired fluoro-product according to the control
experiment (Fig. 5a, equation 4). In a word, the formation of
fluorinated oxazines follows a fluorination/1, 2-aryl migration/
cyclization cascade49.

We have disclosed an efficient asymmetric fluorinations process
that has enabled the development of the first highly enantioselective
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fluorination reaction (up to 99% ee and >20:1 dr) using BF3·Et2O as
the fluorine source and dual-activating reagent. Moreover, the
substrate expanding experiments further demonstrated the wide
applicability of current method. This process provides not only a
direct access to fluoro‐oxazine/benzoxazepine skeletons, but also a
foundation for further development of new types of asymmetric
nucleophilic fluorinations in future applications. The studies of the
applicability of this asymmetric fluorination methodology using
other substrates are going on in our group.

Methods
General procedure for synthesis of 1b–42b. The substrate (0.2 mmol) and cat-
alyst (15 mol%) were mixed into the reaction tube, and then DCE (8.0 ml) was
added. The mixture was cooled to −25 °C, after stirring for 10 min at this tem-
perature, m-CPBA (1.2 equiv.) was added in one portion, followed by addition of
BF3·Et2O (10.0 equiv.) dropwise. The reaction was run at −25 °C for 48 h. The
reaction mixture was poured into saturated NaHCO3 (aq), the organic layer was
collected and washed with brine, dried over Na2SO4, and concentrated under
reduced pressure in the presence of basic Al2O3, Column chromatography (basic
Al2O3, 200–300 mesh, EtOAc-hexane (0.5% Et3N) elution: hexane/EtOAc (V/V)=
50:1 ~ 5:1) gave the corresponding fluorinated products.

General procedure for synthesis of 43b–54b. The substrate (0.2 mmol) and
catalyst (20 mol%) were mixed into the reaction tube, and then C6H5F (8.0 ml) was
added. The mixture was cooled to −42 °C, after stirring for 5 min at this tem-
perature, m-CPBA (1.2 equiv) was added in one portion, followed by addition of
BF3·Et2O (10.0 equiv) dropwise. The reaction was run at −42 °C for 20 h. The
reaction mixture was poured into saturated NaHCO3 (aq) sulotion, the organic
layer was collected and washed with brine, dried over Na2SO4, and concentrated
under reduced pressure in the presence of basic Al2O3, Column chromatography
(basic Al2O3, 200–300 mesh, EtOAc-Hexanes (0.5% Et3N) elution: hexanes/EtOAc
(V/V)= 100:1 ~ 25:1) gave the corresponding fluorinated products.

DFT calculations. All calculations were carried out with the Gaussian
09 software52. The B3LYP functional53 was adopted for all calculations in combi-
nation with the D3BJ dispersion correction54. For geometry optimization and fre-
quency calculations, the SDD ECP and basis set55 was used for I and 6-31 G(d) for
others56,57. The singlet point energy calculations were performed with a larger basis
set combination, in which the def2-TZVP basis set58 was used for I, and 6–311+G
(d,p)59,60 for others. The SMD implicit solvation model61 was used to account for
the solvation effect of DCE when performing single point energy calculations.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All relevant data are available from the corresponding author upon reasonable request.
All the data supporting the findings of this study are available within this article, and
supplementary information files. The authors declare that all data generated or analyzed
during this study are included in this Article (and its Supplementary Information). The
X-ray crystallographic coordinates for the structure of 4b are available free of charge
from the Cambridge Crystallographic Data Centre under deposition number CCDC
1960281.
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