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Molecular determinants of response to PD-L1
blockade across tumor types
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Immune checkpoint inhibitors targeting the PD-1/PD-L1 axis lead to durable clinical

responses in subsets of cancer patients across multiple indications, including non-small cell

lung cancer (NSCLC), urothelial carcinoma (UC) and renal cell carcinoma (RCC). Herein, we

complement PD-L1 immunohistochemistry (IHC) and tumor mutation burden (TMB) with

RNA-seq in 366 patients to identify unifying and indication-specific molecular profiles that

can predict response to checkpoint blockade across these tumor types. Multiple machine

learning approaches failed to identify a baseline transcriptional signature highly predictive of

response across these indications. Signatures described previously for immune checkpoint

inhibitors also failed to validate. At the pathway level, significant heterogeneity is observed

between indications, in particular within the PD-L1+ tumors. mUC and NSCLC are molecularly

aligned, with cell cycle and DNA damage repair genes associated with response in PD-L1-

tumors. At the gene level, the CDK4/6 inhibitor CDKN2A is identified as a significant tran-

scriptional correlate of response, highlighting the association of non-immune pathways to the

outcome of checkpoint blockade. This cross-indication analysis reveals molecular hetero-

geneity between mUC, NSCLC and RCC tumors, suggesting that indication-specific molecular

approaches should be prioritized to formulate treatment strategies.
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The development of cancer treatments, such as che-
motherapy or hormone therapy, has traditionally focused
on specific tumor types. More recently, immune check-

point inhibitors (CPIs) that target the cytotoxic T-lymphocyte-
associated protein 4 (CTLA4) and the program cell death protein
1 (PD-1) or its ligand PD-L1 have shown durable clinical
responses across various cancer types, including melanoma, non-
small cell lung cancer (NSCLC), locally advanced or metastatic
urothelial carcinoma (mUC), and renal cell carcinoma (RCC)1,2.
Nevertheless, only a small subset of patients responds durably to
CPIs. To maximize patient benefit and minimize toxicity, new
biomarkers are needed to identify responders to CPI mono-
therapy and to inform combination approaches for non-
responders. However, a single biomarker effective across tumor
types remains elusive.

In some tumor types, increased PD-L1 expression on both
tumor cells (TC) and tumor-infiltrating immune cells (IC) enri-
ches for patients that may respond3. In addition, tumor mutation
burden, which varies across indications4, has been proposed as
an independent biomarker of response to CPI. Presumably,
increased mutation rate leads to increased neoantigen load, thus
enabling antitumor activity by neoantigen-specific CD8+ T cells5.
A T cell gene expression signature in immune-rich tumors
has also been recently associated with better outcome following
PD-1 blockade6. Furthermore, combining TMB with PD-L1
expression7 or CD8+ T cell signatures within the tumor micro-
environment (TME) enriches for responders to checkpoint
blockade. Finally, the approval of pembrolizumab in patients with
high levels of microsatellite instability, which results from
impaired DNA mismatch repair, demonstrated the existence of a
pan-tumor biomarker in a very small subset of patients. However,
most patients with PD-L1+ and/or TMBhigh tumors do not
respond to treatment, and some responders harbor both PD-L1−

and TMBlow tumors. These findings highlight the need for more
reliable biomarkers to predict response and primary resistance
to CPI.

In this study, we complement PD-L1 expression and TMB with
transcriptional profiling by RNA-seq in 366 patients to identify
molecular programs associated with response to CPI in three
tumor types that are responsive to the anti-PD-L1 monoclonal
antibody atezolizumab.

Results
Patient clinical profiles. We analyzed archived tissue from three
atezolizumab monotherapy studies, including 208 patients with
locally advanced or mUC (IMvigor210 (ref. 8), NCT02108652),
81 patients with locally advanced or metastatic NSCLC
(POPLAR9, NCT01903993), and 77 patients with untreated
advanced/metastatic RCC (IMmotion150 (ref. 10), NCT01984242;
Supplementary Fig. 1a). Patient characteristics are described in
Supplementary Data 1. Objective response rate (ORR) was
assessed by the Response Evaluation Criteria In Solid Tumors
(RECIST) v1.1. Patient outcome was characterized as response
(complete response: CR/Partial response: PR) or nonresponse
(stable disease: SD/progressive disease: PD). No significant dif-
ference in ORR distribution was observed among the three
indications. ORR was 21.6% (45/208), 13.6% (11/81), and 19.5%
(15/77) in mUC, NSCLC, and RCC respectively (Supplementary
Fig. 1b and Supplementary Data 1).

PD-L1 IHC and tumor mutation burden. We first assessed the
distribution of the previously described biomarkers PD-L1 and TMB
across indications. A total of 366 pretreatment tumors were assessed
for PD-L1 expression on TC and IC by immunohistochemistry
(IHC). Tumors were consistently defined as PD-L1+ if ≥ 1% of IC or

TC stained positively for PD-L1, enabling cross-trial comparison.
74.0% (154/208) of mUC, 70.4% (57/81) of NSCLC, and 62.3%
(48/77) of RCC tumors were PD-L1+ (Supplementary Fig. 1c and
Supplementary Data 1). Across indications, responders exhibited
increased proportions of PD-L1+ tumors (p= 0.0031; Fig. 1a). This
inclusive PD-L1 scoring scheme yielded high sensitivity (83.1%), but
low specificity (32.2%) to detect responders (mUC: 84.4%/28.8%;
NSCLC: 90.1%/32.9%; RCC: 73.3%/40.3%), supporting the need for
complementary biomarkers to increase accuracy.

TMB, which quantifies somatic mutations in a tumor,
was assessed by whole-exome sequencing (WES) in 246 samples
(144 mUC, 50 NSCLC, and 52 RCC). Significant differences in
TMB were detected among indications, with tumors from mUC
(median 17.7 mut./mb) and NSCLC (median 15.5 mut./mb)
exhibiting significantly higher TMB than RCC tumors (median
10.9 mut./mb), consistent with observations from The Cancer
Genome Atlas (TCGA)4 (Supplementary Fig. 1d). TMB was
significantly higher in responders in mUC (p= 3.55e−05) and a
trend was observed in NSCLC (p= 0.15). In this cohort, no
significant difference in TMB was observed between response
groups in RCC (p= 0.37)10 (Fig. 1b). Samples were further
classified as TMBhigh or TMBlow based on the median (16.3 mut./
mb). At this cutoff, the overall sensitivity and specificity of TMB
to detect responders were 70.6% and 55.4% (mUC: 79.4%/47.3%;
NSCLC: 66.7%/56.1%; RCC: 37.5%/75.0%), with highest sensitiv-
ity achieved in mUC.

When investigating PD-L1 and TMB in combination, the union
of PD-L1+ and TMBhigh tumors included 207 of 246 total assayed
tumors (84.1%), 51 of which were from responders (Fig. 1c). Of
these, 31 (60.8%) were PD-L1+ and TMBhigh, 10 (19.6%%) were
PD-L1+ only, and 5 (9.8%) were TMBhigh only. Five additional
tumors (9.8%) from responders were both PD-L1− and TMBlow.
Using PD-L1 expression and TMB jointly identified a majority of
responders, improving detection sensitivity. However, PD-L1+

and/or TMBhigh tumors also included 161/195 (82.6%) non-
responders, highlighting poor detection specificity at these cutoffs.
False positives and negatives were seen across all tumor groups.
This suggested multifactorial tumor-specific mechanisms of
response and prompted us to identify complementary biomarkers
to detect responders across tumor types more accurately.

Transcriptional landscape of pretreatment tumors. To com-
plement PD-L1 expression and TMB, pretreatment bulk tumor
transcriptomes were profiled by RNA-seq. Principal component
analysis (PCA) revealed that samples primarily cluster by tumor
type (Fig. 1d). Overlap was observed between mUC and NSCLC
tumors, while RCC tumors clustered discretely, likely due to a
combination of tissue-specific effects and distinct mechanisms of
tumorigenesis. This clustering pattern was confirmed in two
independent datasets from TCGA and PCD4989g, a phase I
basket trial of atezolizumab monotherapy11 (Supplementary
Fig. 2a). These observations were supported by principal variance
component analysis (PVCA), where cancer type explained 35% of
the global variance observed in the data (Supplementary Fig. 2b).
Response to treatment (ORR) only explained ~1% of the tran-
scriptional variance across the dataset, suggesting subtle and
possibly tumor-intrinsic response patterns (Fig. 1e and Supple-
mentary Fig. 2b).

To interpret biological pathways enriched within the three
cancer types, we conducted weighted gene co-expression network
analysis (WGCNA)12,13 across all samples, identifying 61
modules of co-expressed genes. These were annotated according
to pathway enrichment analysis from the Reactome14 and
Ingenuity Pathway Analysis (IPA)15 databases, and guilt-by-
association based on hierarchical clustering of module-to-module
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correlation patterns (Supplementary Fig. 3). We applied these
modules to characterize the three cancer transcriptomes (Supple-
mentary Fig. 4). In addition, we conducted bulk RNA
deconvolution using xCell16 (Supplementary Fig. 5). When
aggregated by indication, RCC tumors were enriched for T/NK
cell cytotoxicity, type II IFN signaling/antigen presentation,
angiogenesis, and myeloid inflammation, while NSCLC tumors
were enriched in B/plasma cell and type I IFN signatures. mUC
tumors were enriched for proliferation and DNA damage repair
(DDR) signatures, possibly reflecting high TMB levels observed in
this indication. Within indications, some level of heterogeneity
could be observed for most of these signatures. xCell deconvolu-
tion further highlighted increased memory B cells, plasma cells,
and dendritic cells in NSCLC, and increased memory CD8 T cells,
NKT, and macrophages in RCC. Deconvolution also revealed
increase in transcriptional programs enriched in epithelial cells
in mUC and NSCLC, while RCC tumors were enriched in

fibroblasts and endothelial programs, representing increased
stroma and vasculature (Supplementary Fig. 5a, b).

Overall, while these tumor types exhibit similar response rates
to PD-L1 blockade, their unique transcriptional profiles point
toward distinct TMEs that are likely to influence the mechanisms
of response to checkpoint inhibition.

Performance of transcriptional predictors of response to PD-
L1 blockade. We then applied machine learning to identify a
unifying transcriptional signature that could predict response to
atezolizumab and complement PD-L1 expression and TMB.
Training was conducted in the 366 phase II trial samples. Tran-
scriptomes from 206 independent samples from mUC (n= 94),
NSCLC (n= 54), and RCC (n= 58) patients treated with atezo-
lizumab from PCD4989g were used for validation. The least
absolute shrinkage and selection operator (LASSO17) method
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Fig. 1 PD-L1, TMB, and global RNA-seq profiles in mUC, NSCLC, and RCC cohorts. a Bar chart representing the distribution of PD-L1 expression on TC
and IC by indication and response group. PD-L1 distribution between response groups within and across indications was statistically tested using the two-
sided Pearson’s chi-squared test. b Boxplot representing TMB by indication and response group. TMB differences within each indication were tested using
the non-corrected two-sided Wilcoxon rank-sum test. The center of the boxplot represents the median. The lower and upper hinges correspond to the first
and third quartiles. The upper whisker extends from the hinge to the largest value no further than 1.5 × IQR (interquartile range) from the hinge. The lower
whisker extends from the hinge to the smallest value at most 1.5 × IQR of the hinge. c Venn diagram representing the overlap between responders, PD-L1+

patients and TMBhigh patients. d Two-dimensional scatter plot representing sample distribution according to the first two components obtained from
principal component analysis (PCA) of the complete RNA-seq-evaluable dataset (n= 366) based on the 16,581 genes used for analysis. Dots are colored
by indication and ellipses capture all samples within one standard deviation of the mean per normal probability statistics (68%). e Same as d, colored by
response group.
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combined with fivefold cross-validation (Fig. 2a) yielded a
weighted 58-gene signature (Supplementary Data 2) that could
segregate responders from nonresponders in the training set
(Fig. 2b, left panel). In the chemotherapy (docetaxel) arm from
POPLAR (NSCLC) and the tyrosine kinase inhibitor (sunitinib)
arm from IMmotion150 (RCC), no significant difference in sig-
nature levels was observed between responders and non-
responders, suggesting a predictive value for this signature for
response to atezolizumab (Fig. 2b, right panel).

To assess the capacity of this signature to predict responders to
atezolizumab monotherapy, we derived receiver operating
characteristic (ROC) curves in both training and test sets. We
also included ROC curves for PD-L1, TMB, and transcriptional
signatures from several previously published studies6,18–21. In the
training set, our signature demonstrated high accuracy (red curve,
AUC= 0.99) in the 246 samples evaluated for both RNA-seq and
TMB (Fig. 2c). Both TMB (black curve, AUC= 0.69) and PD-L1
(blue curve, AUC= 0.60) exhibited lower AUC. No synergy was
observed between RNA-seq, PD-L1, and TMB, suggesting that
RNA-seq alone can recapitulate the biologies underlying PD-L1
expression and TMB. In addition, we tested signatures derived
from five previous studies, which were globally enriched for genes
involved in IFN-γ and cytotoxic T cell signaling. These signatures
exhibited poor predictive performance in our training set, with a

maximum AUC of 0.60. We then applied our signature in an
independent set of mUC, NSCLC, and RCC tumors treated with
atezolizumab (Fig. 2d) in the context of PCD4989g, a phase I
basket clinical trial. In this cohort, all signatures tested
demonstrated low capacity to predict ORR, including our 58-
gene signature, with AUCs <0.65. We benchmarked several other
machine learning algorithms on our training and test sets,
including random forest, support vector machine, RIDGE,
quadratic discriminant analysis, and gradient boosting (Supple-
mentary Fig. 6), which all yielded similar results. These findings
suggest that while machine learning methods can identify highly
accurate signatures using cross-validation in single datasets,
validation in independent datasets remains challenging and
potentially confounded by low sample size, heterogeneity of
response mechanisms between indications, as well as clinical
differences between cohorts.

Transcriptional correlates of PD-L1 expression and TMB. We
next probed into the biological pathways associated with response
to atezolizumab both across and within indications. To do so, we
developed a model including response, tumor type, PD-L1
expression, and TMB. We first identified genes associated with
PD-L1 expression. A total of 1325 genes were overexpressed and
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Fig. 2 Machine learning to identify a transcriptional signature of response to PD-L1 blockade. a Flowchart depicting the approach to identify the
signature. b Left panel, bar chart representing the signature score by indication and response group within the RNA-seq and TMB-evaluable population in
the atezolizumab arms of the training set. n= 144 mUC, n= 50 NSCLC, and n= 52 RCC biologically independent samples were examined. Right panel, bar
chart representing the signature score in the control arms of POPLAR (NSCLC, docetaxel arm) and IMmotion150 (RCC, sunitinib arm) clinical trials. n= 75
NSCLC and n= 85 RCC biologically independent samples were examined. The center of the boxplots represents the median. The lower and upper hinges
correspond to the first and third quartiles. The upper whisker extends from the hinge to the largest value no further than 1.5 × IQR (interquartile range)
from the hinge. The lower whisker extends from the hinge to the smallest value at most 1.5 × IQR of the hinge. P values were calculated using the non-
corrected two-sided Wilcoxon rank-sum test. c ROC curves for the 58-gene signature, PD-L1, TMB, and external signatures in the RNA-seq/TMB-
evaluable population. AUC values are displayed in parenthesis. d Same as c for the independent phase I PCD4989g test set.
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463 genes were underexpressed (FDR-adjusted p value < 0.1,
absolute log2 fold change ≥ 0.25) in PD-L1+ vs. PD-L1− tumors
(Supplementary Data 3). Overexpressed genes were enriched for
immune signatures, including IFN-γ-induced chemokines
(CXCL9, CXCL10, CXCL11, and CXCL13), checkpoints (CTLA4
and IDO1), as well as genes encoding for cytotoxicity (GZMA,
GZMB, GZMH, GZMK, and PRF1) and B/plasma cell biology
(CD79A, JCHAIN, IGLL5, MZB1, TNFRSF13B, and BLK). We
further analyzed biological pathway enrichment among genes
correlated with PD-L1 expression in all tumors combined (Sup-
plementary Fig. 7, upper panel) or by indication (Supplementary
Fig. 7, lower panel) using Q-Gen22, a generalization of quanti-
tative set analysis for gene expression (QuSAGE)23 that integrates
fixed and random effects from generalized linear models. PD-L1+

tumors showed an increase in type I/II IFN signaling and lym-
phoid signatures across tumor groups, as described previously
within single tumor types, while PD-L1− tumors showed
increased in metabolic pathways and zinc finger proteins. How-
ever, indication-specific associations of other pathways, such as
myeloid inflammation (RCC), cell cycle/proliferation (mUC), and
metabolism (RCC) were also observed, suggesting that regulation
of PD-L1 expression in the TME is complex and indication-
dependent.

Similarly, we compared the transcriptomes of TMBhigh and
TMBlow tumors. A total of 165 genes were overexpressed and 121
genes underexpressed (FDR-adjusted p value < 0.1, absolute log2
fold change ≥ 0.25) in TMBhigh tumors, demonstrating weaker
association between TMB and transcription than PD-L1 (Sup-
plementary Data 4), as confirmed by PVCA (Supplementary
Fig. 2). The most significantly overexpressed gene in TMBhigh

tumors was E2F1 (p= 0.0098), which encodes a transcription
factor essential for cell cycle, DDR, and tumor suppression
regulation24. Q-Gen analysis across tumor types revealed limited
enrichment and consistency across tumor types of signatures
according to TMB status, suggesting multiple biological processes
that could potentially lead to high TMB (Supplementary Fig. 8).

These data demonstrate that, of the biomarkers measured, PD-
L1 expression contributes the most to the transcriptional variance
observed by RNA-seq in bulk tumors, and that genes associated
with PD-L1 levels represent a surrogate signature of the immune
infiltrate across tumor types. Transcriptional correlates of PD-L1
and TMB are mostly distinct, supporting nonoverlapping
characteristics between these two biomarkers.

Transcriptional correlates of response to PD-L1 blockade.
Next, we explored associations between gene expression and
response to atezolizumab. Because of the limited effect of TMB on
bulk tumor transcriptomes, TMB was removed from the model to
maximize sample size and power. Integrating PD-L1 expression
and indication as covariates, only 32 genes were overexpressed
and 59 genes were underexpressed (FDR-adjusted p value < 0.1,
absolute log2 fold change ≥ 0.25) in responders, revealing few
transcriptional correlates of ORR across indications at the gene
level (Supplementary Data 5).

Module enrichment analysis was initially performed on all
samples across indications. (Fig. 3a, upper panel) or within each
indication (Fig. 3a, heatmap). While no single module was
significantly associated with response, positively or negatively, across
indications, mUC and NSCLC tumors displayed more similarities
than RCC tumors, consistent with their higher transcriptional
similarity overall (Fig. 1d and Supplementary Fig. 2a). In the
combined analysis (Fig. 3a, upper panel), responsive tumors were
enriched in ATP biosynthesis and oxidative phosphorylation. Cell
cycle/DDR was also enriched in mUC and NSCLC tumors, possibly
reflecting the association between increased TMB and response to

PD-L1 blockade. Conversely, modules related to tumor biology
(WNT and PI3K-Akt) and stromal biology (TGF-β, collagens, and
extracellular matrix) were enriched in nonresponders, as we
previously reported in mUC18. Nonresponsive RCC tumors were
also enriched for metabolic and myeloid inflammation signals,
which appeared distinct from mUC and NSCLC10.

Subsequent analyses were conducted separately in PD-L1+ and
PD-L1− tumors, revealing significant differences in transcrip-
tional correlates of responses according to PD-L1 status. Within
the 259 PD-L1+ tumors, no single module was significantly
associated with ORR across individual indications. In PD-L1+

mUC tumors, only apoptosis signals associated with response.
PD-L1+ NSCLC were dominated by translation pathways. In PD-
L1+ RCC tumors, myeloid inflammation, WNT signaling and
collagen formation negatively associated with ORR (Fig. 3b,
upper panel). Interestingly, more uniform transcriptional signals
were observed across indications in the 107 PD-L1− tumors. Cell
cycle/DDR positively associated with response across PD-L1−

tumors (Fig. 3b, lower panel). While this suggests the contribu-
tion of high TMB to response in this setting, the correlation
between the DDR signature and TMB was modest (Pearson
R= 0.14, Supplementary Data 6).

Finally, we analyzed ORR associations with cell populations
deconvoluted with xCell (Supplementary Fig. 9). No cell
population demonstrated a consistent association with ORR
across indications. Pro B cell, pDC, and basophils were increased
in responders in mUC, while DC, monocytes, and NKT cells were
increased in responders in NSCLC. Only central memory CD8+

T cells were increased in responders in RCC.
These analyses provide insight into the complexity of

mechanisms of response to PD-L1 blockade, highlighting
heterogeneity in pathways associated with response to atezolizu-
mab across tumor types, especially within PD-L1+ tumors.
Transcriptional features associated with response appear multi-
factorial and are in part determined by the histological features of
the tumor and possibly by the various cell populations that
express PD-L1.

Increased CDKN2A activity in responders to PD-L1 blockade.
Among the genes associated with response to PD-L1 blockade,
CDKN2A was most upregulated (log2-FC= 0.89, p= 0.05;
Fig. 4a). CDKN2A encodes for p16(INK4A), an endogenous
inhibitor of the cyclin-dependent kinases CDK4 and CDK6,
which prevents G1/S phase transition and induces cell
senescence25. CDKN2A undergoes copy-number loss in many
tumor types. To assess the prevalence of CDKN2A deletions in
mUC, NSCLC, and RCC, we queried the Foundation Medicine
clinical database, including 140,288 patient tumor samples, for
the prevalence of patients with partial (one copy, CN1) or com-
plete (zero copy, CN0) CDKN2A deletion. Several indications
exhibited frequent CDKN2A loss (Fig. 4b), including bladder
(39%), RCC (36%), and NSCL cancers (34%).

We then assessed the association between CDKN2A copy-
number alterations and response to PD-L1 blockade in our
cohorts, focusing on tumors profiled both by WES and RNA-seq.
Using Sequenza26, we determined copy-number alterations in
CDKN2A across samples evaluated by WES. Decreased response to
atezolizumab in tumors with CDKN2A loss was observed in mUC
and RCC, yet this association did not reach statistical significance,
possibly due to low sample size (Fig. 4c). Because CDKN2A and
CD274 (encoding PD-L1) are both encoded on the p arm of
chromosome 9 (chr9p), we also examined the co-occurrence of
CDKN2A and CD274 deletions in the FMI database. This analysis
demonstrated that CD274 deep deletions are exceedingly rare in
this large database, with only 0.04% (62/140,288) of samples
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harboring a CD274 homozygous deletion. While CDKN2A
deletions commonly co-occur with deletion of CDKN2B (89% of
CDKN2A events), only a small fraction of CDKN2A deletions are
accompanied by deletion in CD274 (0.2%). We also identified
shallow deletions in the chr9p arm in WES data from the three
trials, and tested the effect of these deletions on CD274 and
CDKN2A expression and correlation (Supplementary Fig. 10).
Shallow chr9p deletions were observed in 14.9%, 19.5%, and 19.8%
of POPLAR, IMvigor210, and IMmotion150 tumors, respectively,
highlighting a similar chr9p deletion rate across indications. We
did not find robust associations between chr9p deletion status
and CD274 or CDKN2A expression, which may be due to
the contribution of non-tumoral cell populations to the bulk

transcriptional expression of these genes. Finally, we analyzed
associations between the transcriptional levels of CDKN2A and its
two targets CDK4 and CDK6 with overall survival (OS) for mUC
and NSCLC, and progression-free survival (PFS) in RCC (Fig. 4d).
Increased CDKN2A associated with improved OS in mUC
(HR= 0.61, p < 0.01) and NSCLC (HR= 0.54, p= 0.03), and
trended to improved PFS in RCC (HR 0.78, p= 0.34). Conversely,
increased CDK6 significantly associated with decreased OS in mUC
(HR: 1.87, p < 0.01) and showed a trend toward lower OS in
NSCLC (HR= 1.40, p= 0.23), and lower PFS in RCC (HR= 1.2,
p= 0.5). No differences were observed for CDK4.

Several CDK4/6 inhibitors (CDK4/6i), which are pharmacolo-
gical equivalents of p16(INK4A), are currently used in the clinic

a

b

mUC
NSCLC
RCC
module

AT
P 

bio
sy

nt
he

sis
 II

Ox
. P

ho
s. 

/ A
m

ino
 a

cid
 b

ios
yn

th
es

is

Zi
nc

 fin
ge

r p
ro

te
ins

 II
Ce

ll c
yc

le 
I

RN
A 

de
gr

ad
at

ion

Tr
an

sla
tio

n 
/ F

GF
R 

sig
na

lin
g

Ce
ll c

yc
le 

/ D
DR

Ap
op

to
sis

 / 
Hy

po
xia

AT
P 

bio
sy

nt
he

sis

Tr
an

sla
tio

n 
/ P

ro
te

in 
ub

iqu
itin

at
ion

Tr
an

sla
tio

n 
/ R

ibo
so

m
al 

pr
ot

ein
s

Fa
tty

 a
cid

 m
et

ab
oli

sm

Ch
ole

ste
ro

l b
ios

yn
th

es
is

M
ye

loi
d 

inf
lam

m
at

ion
 / 

M
HC

 cl
as

s I
I

EC
M

 / 
Co

lla
ge

n
An

gio
ge

ne
sis

Ce
ll−

ce
ll a

dh
es

ion
 / 

Pr
ot

oc
ad

he
rin

s

Gl
yc

os
yla

tio
n 

/ R
et

ino
ic 

ac
id

W
NT

 si
gn

ali
ng

 / 
Ce

ll−
ce

ll c
om

m
.

M
ye

loi
d 

inf
lam

m
at

ion

EC
M

 / 
PI

3K
−A

kt 
/ W

NT
 / 

TG
Fb

Ke
ra

tin
s /

 C
oll

ag
en

 fo
rm

at
ion

FG
FR

2 
/  

PI
3K

/A
KT

 si
gn

ali
ng

EC
M

 / 
TG

Fb
 / 

Pl
at

ele
ts 

/ F
GF

TN
F 

/ I
L−

6 
/ T

LR
 si

gn
ali

ng

Pathway
activity

−0.4
−0.2
0
0.2
0.4

FDR p-value < 0.05
Nominal p-value < 0.05

mUC
NSCLC
RCC

mUC
NSCLC
RCC
module

AT
P 

bio
sy

nt
he

sis
 II

Ox
. P

ho
s. 

/ A
m

ino
 a

cid
 b

ios
yn

th
es

is

Zi
nc

 fin
ge

r p
ro

te
ins

 II
Ce

ll c
yc

le 
I

RN
A 

de
gr

ad
at

ion

Tr
an

sla
tio

n 
/ F

GF
R 

sig
na

lin
g

Ce
ll c

yc
le 

/ D
DR

Ap
op

to
sis

 / 
Hy

po
xia

AT
P 

bio
sy

nt
he

sis

Tr
an

sla
tio

n 
/ P

ro
te

in 
ub

iqu
itin

at
ion

Tr
an

sla
tio

n 
/ R

ibo
so

m
al 

pr
ot

ein
s

Fa
tty

 a
cid

 m
et

ab
oli

sm

Ch
ole

ste
ro

l b
ios

yn
th

es
is

M
ye

loi
d 

inf
lam

m
at

ion
 / 

M
HC

 cl
as

s I
I

EC
M

 / 
Co

lla
ge

n
An

gio
ge

ne
sis

Ce
ll−

ce
ll a

dh
es

ion
 / 

Pr
ot

oc
ad

he
rin

s

Gl
yc

os
yla

tio
n 

/ R
et

ino
ic 

ac
id

W
NT

 si
gn

ali
ng

 / 
Ce

ll−
ce

ll c
om

m
.

M
ye

loi
d 

inf
lam

m
at

ion

EC
M

 / 
PI

3K
−A

kt 
/ W

NT
 / 

TG
Fb

Ke
ra

tin
s /

 C
oll

ag
en

 fo
rm

at
ion

FG
FR

2 
/  

PI
3K

/A
KT

 si
gn

ali
ng

EC
M

 / 
TG

Fb
 / 

Pl
at

ele
ts 

/ F
GF

TN
F 

/ I
L−

6 
/ T

LR
 si

gn
ali

ng

PD-L1+
tumors

PD-L1-
tumors

Pathway
activity

−0.4
−0.2
0
0.2
0.4

FDR p-value < 0.05
Nominal p-value < 0.05

CR/PR

SD/PDPa
th

w
ay

 A
ct

iv
ity

−0.4

−0.2

0.0

0.2

0.4

−0
.0

1
−0

.0
5

−0
.1 1 0.
1

0.
05

0.
01

Fig. 3 Transcriptional correlates of response to PD-L1 blockade across indications. a In all tumors combined. Upper panel, Forest plot representing the
pathway activity of WGCNA modules significantly enriched by Q-Gen analysis between responders and nonresponders across the combined cohorts or on
an individual cohort basis. The pathway-level model contrasts responders and nonresponders, including indication as a covariate in the cross-indication
analysis. The 20 modules detected as significant (p < 0.05) in any of the four models conducted are included in the display. Modules are ordered from left
to right according to pathway activity across indications. Error bars represent the 95% confidence interval. Lower panel, heatmap representing per-
indication pathway activity for modules selected from the combined cross-indication and per-indication analyses. Module enrichment significance is
highlighted as a red dot (FDR-corrected p < 0.05) or a black dot (nominal p < 0.05). n= 208 mUC, n= 81 NSCLC, and n= 77 RCC biologically independent
samples were examined. b Same as a for PD-L1+ (upper heatmap) and PD-L1− (lower heatmap) tumors separately.
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to treat hormone receptor-positive breast cancer27. Altogether,
these observations, along with several recent preclinical studies
combining CDK4/6i with CPI28–32, suggest that biomarker-
selectable subsets of patients from mUC, NSCLC, and RCC may
also benefit from combination therapy targeting both PD-(L)1
and CDK4/6 axes simultaneously.

Discussion
Biomarker discovery in the context of clinical checkpoint inhi-
bition is in its infancy. PD-L1 expression and TMB are currently
the only actionable biomarkers in some indications. Previous
studies have focused on small cohorts in single indications or
large cohorts with limited clinical outcome information. Herein,
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we performed a unified molecular analysis within prospective
studies in >800 tumors, including 572 patients on atezolizumab
monotherapy, to analyze common and specific molecular pro-
grams in three tumor types responsive to PD-L1 blockade. We
characterized a heterogeneous transcriptional landscape of early
response to therapy, defined by ORR, across tumor types, which
could not be systematically recapitulated by a single baseline
transcriptional signature through advanced machine learning.
These tumor-specific observations are being mirrored in the
clinic, where treatments are showing tumor-specific efficacy and
distinct associations with biomarkers10,33,34. It is possible that the
relatively low size of the training set, as well as the clinical dif-
ferences between training (phase II trials) and test (phase I basket
trial) sets impact our findings. Nevertheless, we identified the
CDK4/6 inhibition axis as a potential correlate of response in
mUC and RCC tumors treated with atezolizumab, suggesting that
subsets of tumors may share mechanisms of response and resis-
tance to cancer immunotherapy.

While PD-L1 expression and high TMB were associated with
increased ORR, as recently described by Cristescu et al. in the
context of PD-1 inhibition with pembrolizumab19, these bio-
markers exhibited low specificity and therefore limited accuracy
to identify responders to atezolizumab. In addition, when com-
bining these biomarkers, 10% of responders were both PD-L1−

and TMBlow, suggesting the existence of independent mechan-
isms of response to PD-L1 blockade. Ayers et al. recently
described a 19-gene IFN-γ signature measured by a targeted
assay, which associated with clinical response to pembrolizumab
across nine tumors6. The restricted expression of PD-1 on T cells
and subsets of B cells supports this IFN-γ signature as an effective
biomarker, especially in inflamed tumors. This signature, along
with our tGE8 signature and others recently described19–21, failed
to accurately identify responders to PD-L1 blockade in both our
training and test cohorts. In these analyses, we have calculated
median signature expression scores, as genes from these sig-
natures tend to be co-expressed, but it is possible that fine-tuning
score calculation, by weighting specific genes for example, may
improve their performance. These findings may also be caveated
by the sample size and makeup of our training and test sets,
which may account for differences observed across. Further
machine learning efforts are warranted in larger cohorts of
patients treated with CPIs.

Our unbiased transcriptomic approach, combining machine
learning and linear modeling, brings additional insights into the
biological pathways associated with response to PD-L1 blockade,
both in the context of PD-L1+ and PD-L1− tumors. Our data
highlight the association of senescence control, ATP biosynthesis,
translation, zinc finger protein activity, and myeloid inflamma-
tion with response to atezolizumab. They also revealed overlap
between mUC and NSCLC tumors, and segregation of RCC
tumors. Using a dimension-reducing approach, we identified
modules of co-expressed genes that capture many components of
the TME. While IFN-γ and antigen presentation were associated

with response and myeloid inflammatory signatures were asso-
ciated with lack thereof, no module was strongly associated with
outcome across tumor types. Further module analysis in PD-L1+

tumors failed to show universal signatures of response, suggesting
significant heterogeneity in mechanism of response. In PD-L1−

tumors, cell cycle and DDR appeared as the single unifying
mechanism of response across tumors, which may reflect
increased TMB and neoantigen burden, albeit poor correlation
was observed between these signatures and TMB. The identifi-
cation of consistent subsets of PD-L1 negative tumors that
respond to therapy highlight the importance of multiple bio-
marker analysis to improve accuracy. Overall, our data suggest
that no single transcriptional program associates with early
response to atezolizumab across tumor types and PD-L1
expression phenotypes. The investigation of predictive tran-
scriptional signatures for other end points, such as OS are war-
ranted in larger datasets.

When analyzing correlates of response at the gene level,
CDKN2A, a tumor suppressor gene that inhibits CDK4/6 activity
and is frequently deleted across cancers, was the strongest cor-
relate of response to atezolizumab. Several studies have demon-
strated synergy between CDK4/6 and PD-(L)1 inhibitors in
preclinical models28–30. The potential mechanisms of synergy
include (i) increase in type III IFN following ERV reactivation
and increase in MHC I presentation in TC28; (ii) increase in PD-
L1 expression following CDK4 blockade31; and (iii) decrease in
regulatory T cell proliferation. We observed an inverse associa-
tion between CDKN2A and CDK6 transcription and a trend
toward lower response in tumors that exhibited copy-number loss
in CDKN2A. Because non-tumors cells present in the TME can
contribute to CDKN2A mRNA, it remains challenging to inter-
pret bulk transcriptional data, and single-cell RNA-seq profiling
will be needed to dissect population-specific transcription of this
gene. A recent study leveraging single-cell RNA-seq in tumors
from melanoma patients treated with anti-PD-1 identified the
CDK4/6 axis as a tumor-intrinsic resistance mechanism32.
Another study35 identified co-occurrence of CDKN2A and JAK2
chromosomal loss, leading to reduced IFN-γ activity, thereby
proposing an explanation for reduced response to checkpoint
inhibition. We queried Foundation Medicine’s database of
>140,000 solid tumors to examine co-occurrence of JAK2, and
CDKN2A/B alterations in adult solid tumors. Of the 20,014 sam-
ples with a CDKN2A/B deletion, only 73 had a co-occurring JAK2
deletion (0.4%), revealing a low nominal rate of co-occurrence of
JAK2 alterations and CDKN2A deletions in this database. Inter-
estingly, a recent study has identified benefit from checkpoint
blockade in a small cohort of melanoma patients with germline
CDKN2A mutations36, suggesting a different effect from germline
and somatic mutations. This should be confirmed in larger ran-
domized settings and expanded to other indications.

This cross-indication analysis, combining existing biomarkers
with RNA-seq in 572 patients treated with atezolizumab across
three indications, revealed significant molecular heterogeneity

Fig. 4 CDK4/6 inhibition associates with increased response to PD-L1 blockade. a Volcano plot representing the genes differentially expressed between
responders and nonresponders. The gene-level linear model contrasts responders (CR/PR) and nonresponders (SD/PD), including indication and PD-L1
expression as covariates. Genes significantly upregulated or downregulated after Benjamini–Hochberg correction (p < 0.1) and absolute log2 fold change≥
0.5 are colored in red and blue, respectively. b Horizontal bar chart representing the percent of patients exhibiting partial (CN1) or complete copy-number
deletion (CN0) of the CDKN2A locus across the Foundation Medicine database (n= 97,811 after QC) for selected indications. The ratio and percentage of
patients with CDKN2A loss within each ontology is represented on the right of each bar. c Response rate by CDKN2A deletion status. Bar charts represent
the proportion of responders to nonresponders by CDKN2A deletion status (no DEL: copy-number≥ 2; DEL: copy-number < 2). P values were calculated
using the two-sided Pearson’s chi-squared test. d Overall survival (OS) for mUC and NSCLC cohorts and progression-free survival (PFS) for the RCC
cohort, split by transcriptional expression of CDKN2A (top) or CDK6 (bottom). Transcription level is defined as high (≥median, red) or low (<median, blue)
within each indication.
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between mUC, NSCLC, and RCC tumors. Machine learning did
not identify a unifying transcriptional signature predictive of
ORR. Multiple factors appear to determine response to check-
point blockade, which are in part tumor type-dependent, high-
lighting the difficulty of biomarker development in this field.
While universal biomarkers of response to PD-(L)1 blockade may
exist, it will be essential to consider indication-specific molecular
contexts to formulate the next generation of combination
therapies.

Methods
Study design, patient cohorts, PD-L1 testing, and response assessment. A
total of 366 patients from three phase II clinical trials of atezolizumab were selected
for analysis. These included 208 patients from a single-arm phase II clinical trial of
atezolizumab in second-line mUC (IMvigor210, cohort 2 (ref. 8), NCT02108652),
81 patients from a randomized phase II clinical trial of atezolizumab vs. docetaxel
in second-line NSCLC (POPLAR9, NCT01903993), and 77 patients from a ran-
domized phase II clinical trial of atezolizumab vs. atezolizumab+ bevacizumab vs.
sunitinib in front-line RCC (IMmotion150 (ref. 10), NCT01984242). We complied
with all relevant ethical regulations for work with human participants, and
informed consent was obtained from all patients. The protocol was approved by the
institutional review boards or independent ethics committees at each participating
center. PD-L1 expression was tested by IHC as described below. Response was
assessed by RECIST v1.1. Patients who did not reach an evaluable RECIST score as
defined by CR/PR/SD/PD were excluded from the study. For validation, 94 patients
with mUC, 54 patients with NSCLC, and 58 patients with RCC were selected from
the phase I basket trial of atezolizumab PCD4989g11 (NCT01375842).

PD-L1 immunohistochemistry and categorization. Prescreening biopsies were
collected from archived paraffin-embedded tissue (FFPE). Patients were required to
have tissue sent to the central laboratory before study entry. Samples were pro-
cessed at the time of screening. FFPE tumor tissue was stained prospectively for
PD-L1 by IHC using a proprietary diagnostic anti-human PD-L1 monoclonal
antibody (SP142, Ventana, cat no: 740–4859, diluted at 7 µg/mL). Samples were
scored for PD-L1 expression separately on TC and tumor-infiltrating IC. For TC,
specimens were scored as PD-L1 TC0, TC1, TC2, or TC3 if <1%, ≥1% but <5%,
≥5% but <50%, or ≥50% of TC were PD-L1 positive, respectively. For IC, speci-
mens were scored as PD-L1 IC0, IC1, IC2, or IC3 if specimens were scored as <1%,
≥1% but <5%, ≥5% but <10%, or ≥10% of IC were PD-L1 positive, respectively.
PD-L1 scores in patients with multiple specimens from different time points or
samples were based on the highest score. For analytical purposes, samples were
categorized as PD-L1+ if any level of PD-L1 expression (1, 2, or 3) was detected on
either IC or TC.

Nucleic acid sample preparation. The pathologic diagnosis of each case was
confirmed by hematoxylin and eosin (H&E) stained slides and nucleic acid
extraction was conducted for all samples that contained a minimum of 20% TC.
H&E images were marked for macro-dissection by a pathologist. RNA (High Pure
FFPET RNA Isolation Kit, Roche) and DNA (QIAamp DNA FFPE Tissue Kit,
QIAgen) were then extracted from the macro-dissected sections. Whole-
transcriptome profiles were generated using TruSeq RNA Access technology
(Illumina®).

Comprehensive genomic profiling (CGP) by FoundationOne. CGP was carried
out in a Clinical Laboratory Improvement Amendments-certified, College of
American Pathologists-accredited laboratory (Foundation Medicine Inc., Cam-
bridge, MA, USA) on all-comers during the course of routine clinical care.
Approval was obtained from the Western Institutional Review Board (Protocol No.
20152817). Hybrid capture was carried out for all coding exons from up to 395
cancer-related genes plus select introns from up to 31 genes frequently rearranged
in cancer. We assessed all classes of genomic alterations, including short variant,
copy number, and rearrangement alterations. Briefly, DNA was extracted from
FFPE specimens, of which at least 50 ng underwent whole-genome shotgun library
construction and hybridization-based capture. Using the Illumina platform,
hybrid-capture-selected libraries were sequenced to high uniform depth (>500×).
Substitutions were called using a Bayesian approach. Insertions/deletions were
called by de novo local assembly with a de Bruijn approach. Deep deletions
(CN= 0) were called from copy-number profiles generated through the statistical
fitting of normalized coverage from exons and genome-wide SNPs. Rearrange-
ments were detected through the analysis of chimeric read pairs37. Shallow copy-
number loss (CN= 1) was called using similar methodology to arm-level calling38.
Normalized coverage data for exonic, intronic, and SNP targets accounting for
stromal admixture were plotted on a logarithmic scale and minor allele SNP fre-
quencies were concordantly plotted. Custom circular binary segmentation further
clustered targets and minor allele SNPs to define upper and lower bounds of
genomic segments. Signal-to-noise ratios for each segment were used to determine
whether it was gained or lost. The sum of those segment sizes determined the

fraction of each segment gained or lost. CDKN2A was considered lost if >50% of
the NM_058197 locus was significantly decreased in log ratio. Analysis was limited
to samples with a QC passed copy-number profile (n= 97,811). CNA prevalence
was aggregated by indication.

Whole-exome sequencing and tumor mutation burden quantification.
Sequencing data were processed to obtain high quality reads and alignments were
performed using GSNAP to human reference genome GRCh38, using HTSeqGenie
(version 4.0.1). Duplicate reads were marked using PICARD. GSNAP arguments
for RNA-seq alignments: -M 2 -n 10 -B 2 -i 1 -N 1 -w 200000 -E 1–pairmax-
rna=200000–clip-overlap; GSNAP arguments for exome alignments: -M 2 -n 10 -B
2 -i 1–pairmax-dna=1000–terminal-threshold=1000–gmap-mode=none–clip-
overlap. Somatic mutations were called using Lofreq <version 2.1.2> and Strelka
<version 1.0.14>. To assess contamination levels and possible mismatch between
tumor and whole blood control samples, bam files were used to generate pileup
summaries with GATK (v4.0.8.1) tools GetPileupSummaries (gatk GetPi-
leupSummaries -I in.bam -V snp.vcf.gz -L snp.vcf.gz -O out.pileups.table) and
CalculateContamination (gatk CalculateContamination -I out.pileups.table -O out.
contamination.txt). For tumor samples, the tool was run with the matched normal
option (CalculateContamination -I tumor.pileups.table -matched normal.pileups.
table -O tumor.contamination.txt). The snp.vcf.gz used is a VCF of common
germline variants, which can be acquired using the GATK best-practices resource
bundle (https://software.broadinstitute.org/gatk/download/bundle) to download
germline variants from gnomad, and subsetting to biallelic SNP sites with >1%
allele frequencies. The impact of somatic mutations on proteins was determined
using variant effect predictor. Mutations in Entrez genes with these effects were
retained: truncation (frameshifts and stop gains), deleterious.missense (non-
synonymous and predicted deleterious by Condel), inframe.indel, or missense
(non-synonymous but predicted by Condel to be neutral). Expressed mutations
were identified using the criteria that at least two RNA-seq reads containing the
mutation align at the mutant locus.

Copy-number alteration profiling by WES. WES reads for all tumor/normal pairs
were mapped to the hg38 genome reference using a NGS data analysis pipeline
comprised of standard GATK tools for read preprocessing and GSNAP for
alignments39. Allele-specific copy-number alterations and tumor purity estimates
were determined from the resulting BAM files, using Sequenza26 version 2.2.0.9000
with default parameters in R version 3.4.2. Copy-number alterations were cate-
gorized for each segment as “AMP”, “ampLOH”, “cnLOH”, “DELLOH”, “HOM-
DEL”, and “NORMAL”, which were defined as follows: NORMAL, total copy
number of 2, 1 A allele, 1 B allele; HOMDEL, total copy number of 0, DELLOH,
total copy number of 1 with either A or B allele having copy number of 0; cnLOH,
total copy number of 2 with either A or B allele having copy number of 0;
AMPLOH, total copy number >2 with either A or B allele having copy number of
0; AMP, total copy number >2 with both A or B alleles having copy number of at
least 1. Copy-number deletions for CDKN2A and other specific genes were called
by first identifying a single segment per sample spanning the gene of interest, and
then taking only those with “DELLOH” or “HOMDEL” designations. If no single
segment could be identified spanning the gene of interest, the sample was excluded
from the analysis.

RNA-seq data processing and normalization. Whole-transcriptome profiles were
generated for 817 patients, as previously described18. FASTQ files from the three
phase II trials and the phase I basket trial PCD4989g were processed using Gen-
entech’s internal stranded pipeline. Raw counts were then normalized using
transcript-per-million and log2-transformed.

Principal component analysis and principal variance component analysis. PCA
was conducted on the 16,581 genes detected within the dataset using the prcomp()
function. PCA analysis was also conducted on mUC, NSCLC, and RCC cohorts
from TCGA and the phase I basket trial of atezolizumab PCD4989g. PVCA is a
hybrid method that combined PCA and VCA to quantify the contribution of
known variables to the global variance observed in the transcriptional data. PVCA
analysis was conducted using the pvca package (v1.18.0. Bioconductor). The
threshold was set to 0.5. The mixed linear model was fit on the following factors:
indication, PD-L1 expression, TMB, and ORR.

Prognostic signature identification and validation. An ensemble model with
LASSO17-based learner was used. Ensemble models are known to be more robust
and less affected by initial seeds. This regression analysis method concurrently
performs variable selection and regularization to improve accuracy. To build the
base learners, 1000 LASSO models were built using different seeds. In each model,
hyper-parameter selection was conducted by fivefold cross-validation. The final
ensemble model was built by taking average of the coefficient of the 1000 LASSO
models. In more details, in each LASSO model, each gene is assigned a coefficient
(if a gene is not selected by this model, the coefficient will be 0). A gene’s coefficient
in the final ensemble model is then obtained by taking average of its coefficient in
each individual LASSO model. The R package glmnet (v2.0-13) was used40.
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Differential gene expression association with PD-L1 IHC, TMB, and ORR. To
identify genes associated with PD-L1 expression, TMB, or ORR, we developed a
generalized linear model using the limma R package (v3.46.0, Bioconductor), which
included these three variables, as well as cancer type as covariates (~ORR+ PD-
L1+ TMB+ indication). Each variable was categorized: ORR: responders (CR/PR)
vs. nonresponders (SD/PD); PD-L1: positive vs. negative; TMB: high vs. low;
Indication: mUC/NSCLC/RCC). Because this model could only be applied to the
subset of all samples with TMB measurements (n= 246) and the limited effect of
TMB on transcriptional variance, we developed a second model that did not
include TMB as a covariate and could include all 366 samples to maximize power.

Gene set extraction and annotation. To extract sets of genes co-expressed within
the dataset, we applied WGCNA, using the available R package (v1.64-1)12,13. A
total of 13,863 genes that exhibited a log2 fold change ≥ 1 in at least ten samples
were selected and used as input for module extraction. The WGCNA blockwise-
Modules() function was run with the following parameters: minModuleSize= 15,
power= 5, mergeCutHeight= 0.15, and minKMEtoStay= 0.3. A soft thresholding
power of 5 was selected based on the scale independence chart, as described in the
WGCNA tutorials. 62 modules were identified. The “gray” module (unassigned
genes) was not considered in downstream analyses. The remaining 61 modules
were annotated using a combination of human expertise and pathway enrichment
analysis leveraging the Reactome, KEGG, and IPA15 databases. Reactome pathway
enrichment analysis was conducted using the ReactomePA (v1.22.0)41 package
(Bioconductor). Module annotation was further guided using a guilt-by-association
approach. Mean z-scores for the 61 modules were derived for the 366 patients, as
described below. A 61 × 61 Pearson correlation matrix was then obtained using the
R cor() function and hierarchically clustered (Euclidian distance), using the
ComplexHeatmap42 package (v2.6.2, Bioconductor; Supplementary Fig. 3).

Module z-score computation. Module scores were quantified per sample as the
mean of the z-score of the genes composing the module across the dataset.

Gene set enrichment analysis with Q-Gen. Module enrichment in pairwise
comparisons for PD-L1+ vs. PD-L1− tumors, TMBhigh vs.TMBlow tumors, or
responders vs. nonresponders was conducted using the ggen() function from the
QuSAGE package (v2.12.0, Bioconductor)22,23. Q-Gen is a generalization of
QuSAGE23 that integrates fixed and random effects from generalized linear models.

Statistics and reproducibility. Unless otherwise stated, all two-group compar-
isons for continuous variables use the two-sided Wilcoxon rank-sum test (R
function wilcox.test). For categorical variables, the two-sided Pearson’s chi-squared
test with continuity correction is used. Unless otherwise stated, FDR-corrected
p values are reported. Measurements were taken from distinct samples. Indication
and PD-L1 expression were added as covariates in linear models.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw RNA-seq and whole-exome sequencing data, along with clinical data, are
available under restricted access in the European Genome-Phenome Archive under
accession number EGAS00001004343. The remaining data are available within the
article, Supplementary Information, the accompanying data.rdata file on EGA (including
the CDKN2A loss data), or available from the authors upon request.

Code availability
Code to reproduce the figures is provided as an.rmd template at http://research-pub.gene.
com/cross_indication_2021.
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