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Multi-omics profiling of primary small cell
carcinoma of the esophagus reveals RB1 disruption
and additional molecular subtypes
Renda Li 1, Zhenlin Yang 1, Fei Shao1,2, Hong Cheng1, Yaru Wen3, Sijin Sun1, Wei Guo 1, Zitong Li1,

Fan Zhang1, Liyan Xue3, Nan Bi4, Jie Wang5, Yingli Sun6, Yin Li1, Fengwei Tan1, Qi Xue1,7, Shugeng Gao1,7,

Susheng Shi3,8✉, Yibo Gao 1,7,8✉ & Jie He1,7,8✉

Primary small cell carcinoma of the esophagus (PSCCE) is a lethal neuroendocrine carcinoma.

Previous studies proposed a genetic similarity between PSCCE and esophageal squamous cell

carcinoma (ESCC) but provided little evidence for differences in clinical course and neu-

roendocrine differentiation. We perform whole-exome sequencing, RNA sequencing and

immunohistochemistry profiling on 46 PSCCE cases. Integrated analyses enable the dis-

covery of multiple mechanisms of RB1 disruption in 98% (45/46) of cases. The tran-

scriptomic landscape of PSCCE closely resembles small cell lung cancer (SCLC) but differs

from ESCC or esophageal adenocarcinoma (EAC). Distinct gene expression patterns regu-

lated by ASCL1 and NEUROD1 define two molecular subtypes, PSCCE-A and PSCCE-N, which

are highly similar to SCLC subtypes. A T cell excluded phenotype is widely observed in

PSCCE. In conclusion, PSCCE has genomic alterations, transcriptome features and molecular

subtyping highly similar to SCLC but distinct from ESCC or EAC. These observations are

relevant to oncogenesis mechanisms and therapeutic vulnerability.
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Primary small-cell carcinoma of the esophagus (PSCCE) is
one of the deadliest neuroendocrine malignancies, featuring
rapid progression, high metastasis propensity, and dismal

prognosis. The 5-year survival rates of limited-stage patients were
~10%1–3 and were practically zero for extensive-stage patients4,5.
The prevalence of PSCCE has been increasing in the recent
decade5, estimated to account for 0.5–2.8% of all esophageal
malignancies6–8. However, no consensus on standardized treat-
ment for PSCCE has been reached at present, and all current
strategies showed limited capacity to improve prognosis.

Diagnosis of PSCCE requires appropriate morphology and
positive immunohistochemistry (IHC) staining of neuroendo-
crine markers including CD56, Synaptophysin, and Chroma-
granin A9. PSCCE has long been observed to have different
morphology10, disease course2,3,8 and IHC staining9 from eso-
phageal squamous cell carcinoma (ESCC) or esophageal adeno-
carcinoma (EAC), two predominant histologies of esophageal
cancer. Indeed, most management strategies for PSCCE were
extrapolated from those designed for small cell lung cancer
(SCLC) based on their similar histology.

To date, there was no comprehensive multi-omics study of
PSCCE. One previous whole-exome sequencing (WES) study of
55 PSCCE revealed disruption of putative tumor-suppressors
including TP53 (80%), RB1 (27%), and NOTCH1 (24%), claiming
that PSCCE genetically resembled ESCC11. However, the reported
mutation rate of RB1 was significantly lower than that reported in
SCLC (93%)12. Knowledge of transcriptomic features, molecular
subtyping, and therapeutic targets is still lacking.

Integrated genomics and transcriptomics studies of SCLC
converged on four distinct molecular subtypes each with unique
susceptibilities to different targeted therapies13–15, which was
informative to future researches and clinical trials. These studies
of SCLC inspired several studies on promising therapeutic targets,
including the inhibition of Aurora kinase14,16 and targeting
metabolism addition of specific SCLC subtype17.

To provide a more comprehensive understanding of the biol-
ogy of PSCCE, we perform genomic, transcriptomic, and immune
profiling of 46 PSCCE screened from 7539 consecutive esopha-
geal cancer patients treated in a single institute. By integrating
multi-omics studies, we discover an array of molecular features
distinguishing PSCCE from ESCC or EAC, several of which may
translate into therapeutic targets. We identify the nearly universal
disruption of RB1 by multiple mechanisms, confirming the fun-
damental role for RB1 in PSCCE. We identify two molecular
subtypes of PSCCE, each with unique genomic and tran-
scriptomic features. The tumor microenvironment (TME) of
PSCCE is featured by insufficient T-cell infiltration, which might
be induced by some intrinsic expression programs. These findings
deepen our understanding of PSCCE and may translate into
clinical impact.

Results
Patients and study overview. We retrospectively screened 7539
consecutive esophageal cancer patients treated in the Department
of Thoracic Surgery from 2006 to 2017 and identified 65 PSCCE
cases (0.9%). After intensive quality evaluation, 46 cases with
complete medical records and sufficient specimens for sequencing
were included in our study (Supplementary Data 1).

We performed WES on 46 pairs of tumor and matched normal
sample, including 13 pairs of fresh-frozen (FF) samples and 33
pairs of formalin-fixed, paraffin-embedded (FFPE) samples. The
average coverages for FF samples were 333 ´ and 172 ´ for
tumors and normal samples, respectively. The average coverages
for FFPE samples were 314 ´ and 166 ´ for tumors and normal
samples, respectively. Sequencing coverages were comparable

between FF samples and FFPE samples (tumors, P= 0.647;
normal samples, P= 0.454, all by the Wilcoxon rank-sum test).

We performed RNA Exome Access sequencing (RNA-seq) on
FFPE samples of 38 tumors and 23 matched normal esophageal
samples, achieving an average read depth of 86.7 million reads
per sample.

Mutational burden and signatures. We identified 4918 somatic
mutations by WES, including 1200 synonymous single-nucleotide
variants (SNVs), 3511 nonsynonymous SNVs and 207 indels
(Supplementary Data 2), with an average of 81 nonsynonymous
mutations per tumor (range: 16–190), corresponding to an
average nonsynonymous mutation rate of 2.31 mutations per
megabase (Mb).

We observed that FFPE samples demonstrated significantly
higher mutational burden than FF samples (overall mutation rate:
3.36/Mb and 2.28/Mb for FFPE and FF samples, respectively, P=
0.00628, Wilcoxon rank-sum test; nonsynonymous mutation rate:
2.54/Mb and 1.72/Mb for FFPE and FF samples, respectively, P=
0.0044, Wilcoxon rank-sum test). The proportion of low allele
frequency (AF) mutations (AF < 0.05) in FFPE samples (887/
3881, 23%) was significantly higher than that in FF samples (164/
1037, 16%, P= 1.14 × 10−6, Chi-square test), consistent with
previous reports that FFPE samples were enriched for low-AF
nucleotide transitions induced by fixation18. The proportions of
nonsynonymous mutations in all mutation were comparable
between FFPE (75.6%, 2933/3881) and FF samples (75.7%, 785/
1037, P= 0.9656, Chi-square test).

The nonsynonymous mutation rate in this study was
significantly higher than that reported by Wang et al.11 (2.12/
Mb, P= 0.0225, Wilcoxon rank-sum test), owing to the higher
sequencing depth. The nonsynonymous mutation rate of PSCCE
was significantly lower than those of ESCC19–21 (3.15/Mb, P=
0.00021), EAC21 (5.16/Mb, P= 1.11 ´ 10�7) and SCLC12 (8.62/
Mb, P < 2.2 ´ 10�16, all by the Wilcoxon rank-sum test), ranking
medially among cancers sequenced by The Cancer Genome Atlas
(TCGA, Supplementary Fig. 1a) project.

We observed a high frequency of C>T substitutions, compris-
ing 51.1% (2407/4711) of all SNVs (including 1200 synonymous
SNVs and 3511 nonsynonymous SNVs), especially in the NpCpG
trinucleotide context (Fig. 1a). C>T substitution was the most
common SNVs in both FF and FFPE samples; however, the
proportion of C>T substitutions was higher in FFPE samples
(53.1%) than in FF samples (43.1%), consistent with previous
reports of C>T substitution enrichment in FFPE samples resulted
from deamination during fixation22. The overall mutational
spectrum was highly similar to that reported by Wang et al.11

(cosine similarity: 0.97, Supplementary Fig. 1b), while similar to
EAC21 (0.89) and ESCC21 (0.85) to a lesser extent and quite
different from SCLC12 (0.62).

In the integrated analysis of mutational signatures of PSCCE
(n= 101, combined with 55 cases reported by Wang et al.11,
hereinafter referred to as the “combined cohort”), SCLC (n= 110,
ref. 12), EAC (n= 88, TCGA), and ESCC (n= 96, TCGA), we
identified five principal mutational signatures, E1–E5 (Fig. 1b),
which were highly similar to Catalogue Of Somatic Mutations In
Cancer (COSMIC) signatures 1, 13, 4, 16, and 17, respectively.
We did not discover any de novo signature unique to small-cell
carcinomas. The proportions of signatures varied among cancer
types (Fig. 1c), reflecting the effects of both exposure and intrinsic
tumorigenesis mechanism. Endogenous 5-methylcytosine deami-
nation-associated Signature E1 was the predominant mutational
signature in PSCCE. Signature E4 was recently reported to be
associated with alcohol drinking23. Consistent with this observa-
tion, Signature E4 contribution was significantly higher in regular
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drinkers of PSCCE patients (median 25.6%) compared to never or
occasional drinkers (median 13.0%, P= 0.039, Wilcoxon rank-
sum test).

Somatic copy-number variations (SCNVs). We performed data
cleaning and applied stringent thresholds to identify solid somatic

copy-number variations (SCNVs) from the noisy background of
FFPE WES data (Source Data 1).

GISTIC2.0 algorithm24 identified significant deletions (Fig. 1d
and Supplementary Data 3) of 13q14 (harboring RB1) and 3p12-14
(harboring FHIT and ROBO1), both of which were also recurrently
deleted in SCLC12. We also observed amplifications of canonical
cancer genes, including CCNE1 on 19q12 and MYC on 8q24.
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Fig. 1 Genomic alterations detected by WES in PSCCE. a Mutational spectrum of PSCCE. Substitutions are plotted in different colors with their context
arranged in the denoted order. b Five mutational signatures, denoted as E1–E5, were identified in the integrated analysis of PSCCE, ESCC, EAC, and SCLC.
COSMIC signatures showing high similarity, its etiology and cosine similarity score are shown. c The proportions of signature E1–E5 in each sample of
PSCCE, ESCC, EAC, and SCLC tumors. The predominant signature in each cancer is shown. d Recurrent somatic copy-number variations in PSCCE.
Amplifications and deletions are plotted in red and blue, respectively. e Landscape of somatic alterations in PSCCE. Somatic alterations of each gene (row)
in each tumor (column) are plotted as a heatmap according to the color legend below. Samples are arranged by the number of mutations (top panel).
Clinical parameters of each patient are shown below. Alteration frequencies are shown in the right panel. The proportion of single-nucleotide substitutions
in each sample is shown in the bottom panel.
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We validated the copy numbers of 102 loci in 34 samples
(including 12 FF and 22 FFPE; MYC, TERT, and SOX4 loci for
each sample, Supplementary Data 4) by quantitative polymerase
chain reaction (PCR). Thirty five of 36 (97%) loci in FF samples
and 61 of 66 (92%) loci in FFPE samples showed consistent
results between WES and quantitative PCR.

Several genes in cell-cycle pathway and receptor tyrosine kinase
pathway showed remarkably different frequency of SCNV
between PSCCE and esophageal cancers. CCND1 amplification
was observed in 33–54% of ESCCs19,21 and in only 4% of PSCCEs
(P= 1.06 ´ 10�7, Fisher’s exact test). CDKN2A deletion was
reported in up to 66% of ESCCs19,21 but was only observed in
4% of PSCCEs (P= 2.46 ´ 10�6, Fisher’s exact test). ERBB2 was
amplified in 17–27% of EACs21,25 but in none of PSCCEs (P=
7.36 ´ 10�5, Fisher’s exact test).

Recurrently mutated genes and pathways. The MutsigCV
algorithm26 identified three significantly mutated genes (SMGs,
P < 0.05 and q < 0.1, Fig. 1e, Supplementary Data 5): TP53, RB1,
and NOTCH1. Two genes were identified with significant muta-
tion clusters (P < 0.05 and q < 0.1, Supplementary Data 5): TP53
and NOTCH1. In the combined cohort of 101 PSCCE patients, no
more SMGs were identified, while two more genes were identified
with significant mutation clusters: EP300 and FBXW7 (Supple-
mentary Fig. 1c).

Sequencing of FFPE samples was reported to have comparable
performance in detecting driver mutations and actionable events
to sequencing of FF samples18. We performed Sanger sequencing
of somatic mutations in TP53 (n= 54), RB1 (n= 19), and
NOTCH1 (n= 15, Supplementary Data 6). Twenty-four of 24 loci
(100%) in FF samples and 55 of 64 loci (86%) in FFPE samples
were successfully amplified by PCR. All loci that were amplified
were validated by Sanger sequencing. We further validated seven
of nine loci that suffered PCR amplification failure by confirming
expression of somatic mutations in RNA-seq reads (Supplemen-
tary Fig. 2).

In total, 54 somatic mutations (43 nonsynonymous SNVs,
2 synonymous SNVs and 9 indels) of TP53 were observed,
affecting 85% (39/46) of all tumors, similar to the previous report
by Wang et al.11 (44/55, P= 0.608, Fisher’s exact test). Thirty-
four percent (18/52) of the nonsynonymous mutations of TP53
were nonsense, frame-shifting indels or splice site mutations
truncating the protein.

We identified 22 genes with established roles in cancers (the
Cancer Gene Census, ref. 27) among 97 genes that were
nonsynonymously mutated in at least three tumors. We observed
frequent mutations in histone modifier genes. Histone acetyl-
transferase EP300 and CREBBP were mutated in 9% (4/46) and
7% (3/46) of cases, respectively. Two out of four EP300 mutations
and all four CREBBP mutations affected the histone acetyltrans-
ferase domain. COMPASS-like complex components KMT2D
and KDM6A, which play important roles in modifying histone
methylation, were mutated in 4 and 3 tumors, respectively.
Mutations of EP300, CREBBP, KMT2D, and KDM6A were largely
mutually exclusive, affecting 26% (12/46) of all PSCCEs (Fig. 1e).
FAT atypical cadherin family, including FAT1, FAT3, and FAT4,
which are considered tumor-suppressive in numerous cancers28,
were mutated in a total of ten cases.

Nearly universal disruption of RB1 by multiple mechanisms.
We identified 19 somatic mutations of RB1 affecting 16 (34.8%)
cases (Fig. 2a). The mutation frequency of RB1 was comparable to
that reported by Wang et al.11 (15/55, 27.3%, P= 0.5166, Fisher’s
exact test). Seventy-nine percent (15/19) of RB1 mutations were

truncating, including 9 nonsense, 3 frame-shifting indels, and
3 splice site mutations.

SCNV analysis discovered that 14 (30.4%) tumors harbored
homozygous deletions affecting RB1, including 13 homozygous
deletions affecting only part of but not the whole RB1 locus
(Supplementary Data 7, hereinafter referred to as “RB1 exon
deletions”), and one homozygous deletion of whole RB1 locus in
PSCCE_79T. RB1 exon deletions affected a median of 11 exons
(range: 1–25) and had a median length of 52.5 kilobase (kb, range:
0.2–2828 kb). RB1 exon deletions left the unaffected exons intact
and were mutually exclusive to somatic mutations (P= 0.00117,
hypergeometric test). According to the SCNV results, we
designed series of PCR primers to locate breakpoints of RB1
exon deletions, consolidating the bioinformatics SCNV findings
(Fig. 2b and Supplementary Data 7). RB1 exon deletions occurred
at a distinguishably high frequency (28.3%) in PSCCE, remark-
ably higher than that of 110 whole-genome sequenced SCLC12

(8.2%, P= 0.002, Fisher’s exact test) and 508 whole-genome
sequenced ESCCs29 (0.79%, P= 2.43 ´ 10�13, Fisher’s exact test).
RB1 exon deletions were not thoroughly described in the previous
WES profiling of PSCCE11.

We further integrated RNA-seq and IHC profiling to discover
additional RB1-disrupting events. We found that 28 of 38 RNA-
sequenced tumors harbored splicing abnormalities of RB1 mRNA,
including exon skipping (n= 21), gene fusion (n= 2), formation of
new splice site (n= 1), and disrupted expression of 3′-terminal exons
(n= 4, Supplementary Data 8). RNA-seq recapitulated splicing
abnormalities of RB1 mRNA that are the deduced consequences of
exon deletions and splicing site mutations (Fig. 2b, c and
Supplementary Fig. 3a, b). Eight tumors with splicing abnormality
in RNA-seq were otherwise RB1 “wild type” in WES (Supplementary
Fig. 3c), suggesting alterations undetectable by WES.

Five tumors (11%) stained positive for RB1 protein (Rb) by
IHC (Supplementary Data 8). However, deleterious abnormalities
were observed in 4 of them. In PSCCE_10T and PSCCE_13T, in-
frame exon deletions excluded exons encoding >400 amino acids
(Fig. 2c) but retained C-terminal epitope for IHC antibody
recognition. In PSCCE_10T, two alleles of RB1 suffered different
deletions: one allele suffered exons 1–17 deletion (encoding 499
amino acids) and formed in-frame fusion with the upstream
ITM2B; the other allele suffered frame-shifting deletion of exons
3–18 (Fig. 2c). Strong Rb staining was observed in cytoplasm but
not nucleus of PSCCE_10T. Two tumors, namely PSCCE_32T
and PSCCE_56T, were wild type by WES and stained positive for
Rb. However, RNA-seq revealed in-frame exon skipping of RB1
mRNA in PSCCE_32T (exons 3–17 skipping, encoding 477
amino acids) and PSCCE_56T (exons 14–17 skipping, encoding
121 amino acids, Supplementary Fig. 3d), which severely
disrupted Rb function. Notably, Rb was completely lost in four
cases with no abnormalities observed by WES or RNA-seq
(Fig. 2a and Supplementary Fig. 3e), indicating mechanisms
disrupting RB1 mRNA translation or protein stability.

By integrating WES, RNA-seq, and IHC results, we discovered
disruption of RB1 in 45 (98%) cases. Only one tumor,
PSCCE_33T, stained positive for Rb and showed no abnormality
in WES; we had no RNA to test in-frame exon skipping in
PSCCE_33T. Integrative analysis identified substantially more
RB1 disruption events than did the single WES performed by us
or by Wang et al.11. RB1 disruption frequency was remarkably
higher than ESCC21 (10%, 9.8-fold, P < 2.2 ´ 10�16, Fisher’s exact
test), EAC21 (3.4%, 28.8-fold, P < 2.2 ´ 10�16, Fisher’s exact test)
and was comparable to SCLC12 (93%).

PSCCE has a transcriptome highly similar to SCLC. We next
turned to the transcriptomic landscape of PSCCE (Source Data 2).
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Fig. 2 RB1 disruption by multiple mechanisms. a Schematic summary of RB1 disruption events observed in each sample (column) by different methods
(row). The rightmost sample is PSCCE_33T, the only tumor positive for Rb, yet not evaluated by RNA-seq. b (From top to bottom) Schematic plot of exon
deletions, Sanger sequencing validation of exon deletion breakpoints, sashimi plot of subsequent splicing abnormalities in RB1 mRNA and Rb IHC of three
representative tumors. Schematic summary of disrupting mechanism is shown on the right. Black rectangles represent RB1 exons and gray dashed line
represent deleted genomic regions. Green, red, blue, and black peaks in Sanger sequencing chromatograms represent bases A, T, C, and G, respectively.
Genomic coordinates are in hg19 assembly. Curves in sashimi plot represent reads spanning exon junction with numbers of reads denoted. Abnormal exon
junctions are plotted in red. Rb IHC of matched normal sample is provided as control. Scale bar: 50 μm. c Schematic plot and Sanger sequencing validation
of exon deletions (left), sashimi plot and validation of abnormal mRNA exon junctions (middle) and Rb IHC staining (right) of PSCCE_10T. Two alleles of
RB1 are plotted separately to show different ranges of exon deletions. Exons of ITM2B are plotted in green. Sanger sequencing chromatograms and sashimi
plots are plotted in the same way described above. Scale bar: 50 μm.
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We compared the gene expressions of 38 tumors against 23
matched normal esophageal samples to identify differentially
expressed genes (DEGs, Source Data 3). DEG analysis revealed
significant upregulation of genes involved in DNA replication, cell
cycle, and neuroendocrine differentiation (Fig. 3a and Supple-
mentary Fig. 4a) and downregulation of genes related to cell
adhesion in PSCCE. By enrichment analysis, we discovered several
pathways that were largely distinguishable between PSCCE and
esophageal cancers (Fig. 3b). Neuroactive ligand-receptor inter-
action pathways were specifically upregulated in PSCCE, which
was consistent with its neuroendocrine differentiation. Upregu-
lated DEGs of EAC and ESCC were significantly enriched for

immune response pathways. In contrast, these pathways were
attenuated in PSCCE.

Given the prominent neuroendocrine differentiation of PSCCE
and its divergence from EAC and ESCC, we sought to describe
relationship with its counterpart in the lung, SCLC. We collected
transcriptomic profiles of SCLC12, ESCC21, EAC21, lung
squamous cell carcinoma (LUSC)30, and LUAD31 (Supplemen-
tary Fig. 4b and Supplementary Data 9). Iterations of unsuper-
vised clustering yielded three principal groups that showed
distinct gene expression patterns (“Group NE,” “Group Squa-
mous,” and “Group Adeno,” Fig. 3c). Consensus clustering
demonstrated that the transcriptome landscape of PSCCE was
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Fig. 3 The transcriptome landscape of PSCCE. a Volcano plot of differentially regulated genes (DEGs). Up- and downregulated DEGs are plotted in red and
cyan, respectively. Key genes are plotted in purple with symbols annotated. Source data are provided as a Source Data file. b Pathways that were largely
discordant between PSCCE, EAC, and ESCC. c Heatmap of gene expressions of three principle clustering groups. Key signature genes associated with
clustering are marked on the right side. d Expression of neuroendocrine differentiation marker genes and lineage transcription factors across three groups.
PSCCE and SCLC samples are plotted separately to show that there was no hijacking of either cancer by the other. The upper bound, centerline, and lower
bound of boxplot represent the 75 percentile, the median and the 25 percentile of data; the upper and lower whiskers extend to the largest and smallest
value within 1.5 times of interquartile range (IQR) from corresponding bound. Data beyond the whiskers are plotted as outlier dots. ***P < 0.001, by the
Wilcoxon rank-sum test. e GSEA revealed that E2F target genes were specifically expressed in Group NE. f GSEA revealed that RB1-loss associated genes
were specifically expressed in Group NE.
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highly similar to SCLC: all PSCCEs and all but one SCLCs
clustered together into Group NE.

We identified signature genes highly and specifically expressed
in each group against other groups (Supplementary Data 10).
Group NE signature genes included several neuroendocrine
markers including NCAM1, SYP, and CHGA (Fig. 3d). These
genes had vanishingly low expressions in other groups. Genes
associated with squamous cell and gland differentiation were
among signature genes specifically expressed in Group Squamous
and Group Adeno, respectively (Supplementary Fig. 4c).

We next turned to transcription regulation networks of
signature genes. Several neuroendocrine lineage transcription
factors including ASCL1, NEUROD1, and INSM1 were among
Group NE signature genes (Fig. 3d). Group NE signature genes
were also significantly enriched for targets of the E2F family
(Supplementary Fig, 4d). Gene set enrichment analysis (GSEA)
revealed significant enrichment of E2F targets in Group NE
(Fig. 3e), consistent with relief of E2F suppression by RB1 loss
observed in both PSCCE and SCLC. Group Squamous signature
genes were regulated by TP63, consistent with its squamous cell
differentiation.

The three groups also showed differential activation of
oncogenic signaling pathways. The RB1 depletion-associated
signature32 (“RB-loss signature”) was specifically enriched in
Group NE tumors, consistent with universal RB1 disruption in
both PSCCE and SCLC (Fig. 3f). EGFR signaling pathway was
preferentially activated in Group Squamous and Group Adeno
(Supplementary Fig. 4e), consistent with observations of EGFR
signaling activation by activating mutations or overexpression of
EGFR in lung and esophageal cancers31,33.

Taken together, the distinguishable expression pattern, regula-
tion network, and oncogenic pathway activation encapsulated
that PSCCE was different from EAC and ESCC but highly similar
to SCLC. PSCCE should not be viewed as a neuroendocrine
variant of ESCC but as a distinct entity.

Gene expression pattern reveals two subtypes of PSCCE. We
further looked into the transcriptome of PSCCE alone to decipher
the heterogeneity within PSCCE, which would be masked when
compared with strongly divergent cancers.

Unsupervised consensus clustering of 38 PSCCE tumors
yielded two molecular subtypes with distinct gene expression
patterns (Fig. 4a and Supplementary Data 11). The first subtype
comprised nine tumors stably clustered together. The other 29
tumors showed unstable clustering but seldom clustered with the
first subtype and were hence considered collectively. We found
lineage transcription factors NEUROD1 and ASCL1 within
signature genes (Supplementary Data 12) of each group; they
were also among the most differentially expressed genes across
the two subtypes (Fig. 4b). According to these observations, we
named the 9 NEUROD1high tumors as subtype PSCCE-N, and the
other 29 ASCL1high tumors as subtype PSCCE-A. GSEA revealed
that target genes of NEUROD1 and ASCL113 were preferentially
expressed in PSCCE-N and PSCCE-A tumors, respectively
(Fig. 4c), confirming the regulatory roles of ASCL1 and
NEUROD1. The inverse expression pattern of ASCL1 and
NEUROD1 in two subtypes was validated by IHC (Fig. 4d).
Several neuroendocrine marker genes including GRP, DDC, and
SSTR2 also showed remarkable differences between two subtypes
(Fig. 4b).

We screened for genomic alterations associated with this
subtyping and found that PSCCE-N subtype was associated with
amplification of multiple segments on chromosome 8q, including
region harboring cancer gene MYC (Supplementary Fig. 5a). The
fraction of patients with MYC amplification was significantly

higher in PSCCE-N (56%, 5/9) than in PSCCE-A (17%, 5/29, P=
0.036, Fisher’s exact test). However, the expression levels of MYC
and MYCL mRNA showed no significant difference between two
subtypes (Supplementary Fig. 5b). The PSCCE-N subtype had a
significantly higher MYCN level than PSCCE-A (P= 0.0012,
Wilcoxon rank-sum test, Supplementary Fig. 5b).

We also observed that PSCCE-N patients had significantly
worse prognoses when compared with PSCCE-A patients (hazard
ratio (HR): 2.44, 95% confident interval (CI): 1.04–5.69, P=
0.0394, log-rank test, Fig. 4e). Other clinical features, including
gender, age at diagnosis, T stage, N stage, and TNM stage
presented no significant difference between two subtypes
(Supplementary Data 13).

A synthesis of recent studies of SCLC converged on four
molecular subtypes—SCLC-A, SCLC-N, SCLC-P, and SCLC-Y, as
featured by the differential expression of lineage transcription
factors ASCL1, NEUROD1, POU2F3, and YAP1, respectively15.
We found that PSCCE subtypes highly resembled the SCLC-A
and SCLC-N subtypes. Gene sets associated with SCLC-A and
SCLC-N tumors13 were specifically expressed in PSCCE-A and
PSCCE-N tumors, respectively (Supplementary Fig. 5c). The
SCLC-N subtype was reported to associate with MYC
amplification14,34 and to rapidly metastasize and relapse in
human and murine model14,34, consistent with our findings that
PSCCE-N subtype was associated with MYC amplification and
poorer prognoses.

POU2F3 and YAP1 levels in the 38 RNA-sequenced PSCCEs
were relatively low compared to ASCL1 and NEUROD1 and did
not appear to be a selective master regulator (Supplementary
Fig. 6). Given the prominent ASCL1- or NEUROD1-associated
expression patterns observed, the evidence obtained in the
present study was insufficient to confirm a POU2F3- or YAP1-
dominated subtype of PSCCE.

Notch pathway inactivation in PSCCE. Notch signaling was
considered tumor-suppressive in SCLC12. In PSCCE, we also
observed low activity of Notch signaling, as characterized by
significant downregulation of Notch receptors and effector, and
upregulation of Notch antagonists (Fig. 5a).

The inhibition of Notch signaling was observed on multiple
levels. (a) NOTCH1 was mutated in 26% (12/46) of cases. Sixty-
four percent (9/14) of NOTCH1 nonsynonymous mutations were
frame-shifting deletions and nonsense mutations truncating the
protein far N-terminal to its transactivation domain, and were
thus considered inactivation. Missense mutations of NOTCH1
showed significant local clustering in extracellular epidermal
growth factor-like repeats important for ligand binding (Fig. 5b).
Consistent with its tumor-suppressive role, mutations in
NOTCH1-4 were significantly associated with a poorer prognosis
in the combined cohort (HR 1.67, 95% CI 1.01–2.69, P= 0.046,
Fig. 5c). (b) The relatively mutation-sparse NOTCH2 and
NOTCH3 genes were identified as downregulated DEGs when
compared to matched normal samples (Fig. 5d, detailed P, q, and
log2FC value in Source Data 3). (c) Transcriptomic profiling also
revealed inhibitory ligands of Notch pathway DLK1 and DLL3 as
upregulated DEGs (Fig. 5d and Source Data 3). (d) HES6, a
member of basic helix-loop-helix transcription factor, which
binds and inhibits the major Notch pathway effector HES135, was
overexpressed in PSCCE (Source Data 3).

The downregulation of Notch receptors and overexpression of
Notch antagonists were also observed in tumors with wild-type
Notch receptors (Fig. 5d), indicating a constitutive suppression of
Notch signaling. Consequently, pro-neural TFs ASCL1 and
NEUROD1, whose expression was inhibited by Notch signaling
pathway36, were significantly upregulated.
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PSCCE features a T-cell excluded tumor microenvironment. In
DEG pathway enrichment analysis, we observed downregulation
of immune response pathways in PSCCE. To further describe
TME in PSCCE, we used computational methods to evaluate
abundance of infiltrating immune cells.

We first applied single-sample GSEA (ssGSEA) projection of
immune cell signatures collected from the literatures (n= 19,
Supplementary Data 14), including signatures of T cells, B cells,
macrophages and granulocytes, on gene expression profiles of
PSCCE, SCLC, LUAD, LUSC, EAC, and ESCC (see “Method” and
Source Data 4). We found that PSCCE had significantly lower
T cells and CD8 T cells scores than EAC and ESCC (Fig. 6a). Both
organ-of-origin and histology had significant impacts on the
immune milieu: esophageal cancers generally had significantly
fewer infiltrating T cells than lung cancers, consistent with

previous reports37; and small-cell carcinomas had significantly
lower T cell and CD8 T-cell abundance compared to tumors with
other histologies arising from same organ (Fig. 6a and
Supplementary Fig. 7a, two-way ANOVA test). Enumeration of
immune infiltrates using a deconvolution method (CIBERSORT,
ref. 38) showed similar trend: EAC and ESCC had lower
abundance of infiltrating T cells and CD8 T cells than LUAD
and LUSC, while PSCCE had significantly even lower abundances
than ESCC and EAC (both P < 0.001, Wilcoxon rank-sum test,
Fig. 6b). We also quantified T-cell abundance using recent single-
cell RNA-seq (scRNA-seq) derived cell type signature39. The
Overall Expression (OE) scores for both T cells and CD8
cytotoxic T cells were significantly lower in PSCCE and SCLC
than in corresponding non-neuroendocrine malignancies
(Fig. 6c).
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Most solid tumors could be categorized into three immune
phenotypes: inflamed, excluded, and desert40,41. Consistent with
the computational analysis, IHC staining of CD8A revealed that
85% (23/27, Supplementary Data 15) of PSCCEs were CD8 T-cell
“excluded”, in which CD8 T cells failed to infiltrate into tumor
parenchyma and aggregated in the surrounding stroma instead
(Fig. 6d and Supplementary Fig. 7b). A recent study showed that
the exclusion of T cell was induced by certain programs expressed
by malignant cells39. Intriguingly, DEGs of PSCCE were
significantly overrepresented in exclusion programs—of 146
repressed genes associated with CD8 cytotoxic T-cell exclusion,
52 were downregulated DEGs in PSCCE (P < 1.0 ´ 10�5, Monte
Carlo stimulation of hypergeometric test). PSCCE and SCLC also
had significantly higher OE scores of exclusion programs for both
CD8 cytotoxic T cells and T cells (Fig. 6e).

Discussion
In this study, we performed genomic, transcriptomic, and
immune profiling on a rare but highly aggressive neuroendocrine
malignancy arising from the alimentary tract–PSCCE. By inte-
grating multi-omics data, we revealed the following findings: (1)
PSCCE harbors a high frequency (98%) of RB1 disruption
mediated by multiple mechanisms; (2) the transcriptome of
PSCCE highly resembles that of SCLC, but not that of ESCC or

EAC; (3) PSCCE has two distinct subtypes regulated by lineage
TFs ASCL1 and NEUROD1; and (4) insufficient T-cell infiltration
is widely observed in PSCCE.

RB1 was disrupted in up to 93% of all SCLC12,42. The previous
WES profiling of PSCCE reported a RB1 mutation frequency of
27%11. Here, we demonstrated that with an integrated analysis of
WES, RNA-seq, and IHC, we could identify RB1 disruption in
98% of PSCCEs with high fidelity. We also discovered that exon
deletions—small deletions affecting as few as one exon—were a
major and unique RB1-disrupting mechanism in PSCCE. It
should be noted that none of WES, RNA-seq, or IHC alone
succeeded to detect all RB1 disruption events in PSCCE. Given
that only two-thirds of RB1 disruption events in the present study
were detectable by the canonical WES, we proposed a potential
underestimate of RB1 disruption in previous WES studies of
cancers. Nearly universal disruption of RB1, together with paucity
of CCND1 amplification or CDKN2A deletion, comprised geno-
mic features distinguishing PSCCE from ESCC or EAC.

In the present study, unsupervised clustering of gene expres-
sion patterns revealed a molecular-based taxonomy of cancers
different from the present organ-of-origin classification. We
discovered that PSCCE had a transcriptome much more akin to
SCLC. This shared transcriptomic landscape of PSCCE and SCLC
was consistent to the neuroendocrine differentiation and loss of
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RB1 in both entities. On the other hand, transcriptome of PSCCE
was quite different from ESCC or EAC.

Recent research of SCLC categorized it into four molecular
subtypes15. Whether these subtypes also exist in other neu-
roendocrine cancers is relevant to oncogenesis mechanisms and

therapy vulnerabilities. Two subtypes of PSCCE, namely PSCCE-
A and PSCCE-N, highly resembled the SCLC-A and SCLC-N
subtypes of SCLC, in the aspects of transcriptomic features,
regulatory factors, associated genomic alterations, and impact on
patients’ prognoses13,15. It is quite striking that molecular
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subtyping persisted in cancers arising from different organs and
from patients with different ethnic backgrounds. Given the highly
similar genetic and transcriptomic features of PSCCE and SCLC,
it appeared intuitive that subtyping would also be shared. How-
ever, the molecular fundaments of ASCL1- and NEUROD1-
regulated subtypes in both cancers remain largely unknown. It
was once supposed that SCLC-N lesions might have a different
cell-of-origin from SCLC-A lesions, due to the absence of Neu-
rod1+ cells in mouse lungs13. Recently, a murine model of SCLC
combining Trp53 and Rb1 knockout with Myc overexpression
revealed that SCLC-N tumors could arise from SCLC-A precursor
lesions14, suggesting lineage plasticity fueled by Myc. Consistent
with this idea, PSCCE-N tumors were also associated with MYC
amplification.

Although we observed shared ASCL1- and NEUROD1-regu-
lated subtypes, we did not confirm any POU2F3- or YAP1-
regulated subtypes in PSCCE. One possible cause is our limited
sample size. SCLC-P and SCLC-Y subtypes are relatively rare in
SCLC15. If the proportions of subtypes were similar in PSCCE, a
PSCCE-P or PSCCE-Y subtype could simply be missed due to
rarity. Further studies are required to elucidate whether other
molecular subtypes exist in PSCCE.

The similarities in terms of genomic alterations, transcriptomic
features, and molecular subtypes between PSCCE and SCLC lead
to another intriguing question: whether these two cancers have
the same cell-of-origin, or some shared genomic alterations (such
as loss of TP53 and RB1) restricted lineage to small- cell carci-
noma? Pulmonary neuroendocrine cells were reported to be the
major cell-of-origins of SCLC43. A recent study found that neu-
roendocrine stem cell (NEstem), which started uncontrolled pro-
liferation upon loss of TP53 and RB1, could be the cell-of-origin
of SCLC44. However, evidence supporting such cells in the eso-
phagus is lacking. Another emerging hypothesis is that certain
genomic alteration enhances lineage plasticity and promotes cells
to differentiate along a neuroendocrine trajectory. In support of
this idea, Trp53 and Rb1 dual knockout was indispensable in all
genetic-engineered murine models of SCLC14,43,45. Lung adeno-
carcinomas (LUAD) with loss of RB1 were more likely to trans-
form into SCLC after treatment46,47, supporting the role of RB1
loss in lineage switching. Our observations here emphasize role of
RB1 disruption in PSCCE. RB1 loss also shaped the shared
transcriptome landscape of PSCCE and SCLC. However, our
study could not disclose the underlying mechanisms. Further
research, including cell line and mouse model studies, is required.

Through the computational dissection of TME, we found that
PSCCE had a TME characterized by insufficient infiltration of
both T cells and CD8 cytotoxic T cells. IHC of PSCCE tumors
revealed that a large fraction of PSCCE presented a CD8 T-cell
“excluded” phenotype. CD8 T-cell “excluded” was also the pre-
dominant immune phenotype of SCLC, and was associated with
failure of immune checkpoint blockage48. Multiple lines of

evidence indicated that the small-cell carcinoma histology was
associated with insufficient T-cell infiltration. Gene expression
programs associated with T-cell exclusion39 significantly over-
lapped with DEGs of PSCCE and were highly expressed in
PSCCE, indicating that a modulated transcriptional network in
small-cell carcinoma might be responsible. Further research are
required to provide more comprehensive description of various
immune populations in PSCCE.

Our integrated study also provided therapeutic insights into
PSCCE. Systemic chemotherapy regimens extrapolated from
SCLC proved beneficial to PSCCE patients1,49. By providing
rationales through molecular similarities, our observation sup-
ported the extrapolation of systemic treatment. The identification
of subtypes of PSCCE, which were highly similar to SCLC-A and
SCLC-N subtypes of SCLC, encouraged the extrapolation of
future targeted therapy designed and trialed for certain SCLC
subtypes into corresponding PSCCE subtype. The differences
between PSCCE-A and PSCCE-N tumors also warranted mole-
cular characterization when designing researches. Our profiling
also introduced insight for future preclinical research for PSCCE.
Highly and specifically expressed genes might be therapeutic
targets, including E2F family50 and DLL351. Notch pathway
reactivation may suppress essential neuroendocrine programs of
PSCCE, leading to tumor regression52. The induction of T-cell
inflamed TME by antibody-guided chemokines53, or oncolytic
viruses armed with recruiting chemokines54 might improve
response rate of immune therapy.

Methods
Study design and inclusion criteria. This study was approved by the Ethics
Committee of National Cancer Center/Cancer Hospital, Chinese Academy of
Medical Sciences and Peking Union Medical College (2018103113071202). The
study was conducted in accordance with local laws and the guidelines of
Declaration of Helsinki. PSCCE patients were screened from patients who received
radical esophagectomy for esophageal cancer in the Department of Thoracic
Surgery, Cancer Hospital, Chinese Academy of Medical Sciences from 2006 to
2017. All patients provided written informed consent. Both FF and FFPE speci-
mens of PSCCE tumors and matched esophageal tissue were obtained from
institutional biobank. Pathological diagnoses were independently confirmed by two
certificated pathologists (S. Shi and L.X.). Tumors with positive IHC staining for at
least one of CD56, Synaptophysin, or Chromagranin A were included. Tumors
were also assessed to have ≥60% tumor cell purity and without extensive necrosis.
Matched non-cancerous esophageal samples were provided as normal controls in
sequencing studies

DNA and RNA extraction. DNA from FF specimens was extracted using Allprep
DNA/RNA/miRNA Universal Kit (QIAGEN) following the manufacturer’s pro-
tocol. DNA and RNA from FFPE specimens were extracted using Allprep DNA/
RNA FFPE Kit (QIAGEN) by WuXi NextCODE (Shanghai). The amount of DNA
was determined by Qubit2.0 (Thermo Fisher) and integrity of DNA was deter-
mined by agarose electrophoresis. The amount of extracted RNA from FFPE
sample was determined by NanoDrop (Thermo Fisher). Quality of RNA from
FFPE sample was assessed by Agilent 2100 Bioanalyzer (Agilent) to have a DV200

(percentage of RNA fragments >200 nucleotides fragment distribution
value) ≥30%.

Fig. 6 PSCCE presented a T-cell excluded phenotype. a ssGSEA scores of T cells and CD8 T cells related signatures in each cancer type. The impacts of
“organ-of-origin” and “histology” on scores were determined using two-way ANOVA tests. Degree of freedom: organ-of-origin: 1; histology: 1. F values of
each variate are shown in brackets behind P values. Source data are provided as a Source Data file. b T cell and CD8 T-cell abundance estimated by
CIBERSORT are plotted against marker genes (CD3E and CD8A) expression level. PSCCEs are plotted in blue and other cancers in gray. The medians of
each cancer type are plotted separately and annotated on the plot. c Overall Expression (OE) scores of T cells and CD8 cytotoxic T cells in each cancer.
The impacts of “organ-of-origin” and “histology” on OE score were determined using the same method mentioned above. d Representative CD8A IHC
staining of PSCCE. Left: overview of the fields distribution in whole section. Right top: fields of tumor parenchyma; right lower: fields of invasive margin
(dashed line) between the parenchyma (P) and surrounding stroma (S). Scale bar: 100 μm. e OE scores of exclusion program for CD8 cytotoxic T cells and
T cells in each cancer. In all panels, the upper bound, centerline, and lower bound of boxplot represent the 75 percentile, the median and the 25 percentile
of data; the upper and lower whiskers extend to the largest and smallest value within 1.5 times of IQR from corresponding bound. Data beyond the whiskers
are plotted as outlier dots. *P < 0.05, **P < 0.01, ***P < 0.001, ns not significant, by the Wilcoxon rank-sum test.
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Whole-exome sequencing (WES). WES library was prepared using the SureSelect
Human All Exon Kit (Agilent, V5) following the manufacturer’s protocol. Libraries
were sequenced on Illumina NovaSeq platform, with the aim to obtain sequencing
depth of 200 ´ and 100 ´ for tumor and normal tissue, respectively.

Somatic mutation calling. Sequenced reads were trimmed by Trimmomatic55

(0.36) and mapped to reference genome hg19 by Burrows–Wheeler Aligner56

(0.7.12-r1044). PCR duplicates were marked by Picard (https://broadinstitute.
github.io/picard/, 2.9.0) and excluded from further analysis. Somatic mutations
were detected using MuTect257 (3.5) with assistance from Genetron Health
(Beijing). After integration of results and cross-validation of mutation calls, we
further filtered mutation calls with following filters: (1) coverage at mutation site in
tumor ≥10; (2) number of variant reads in tumor ≥3; (3) number of variant reads in
matched normal sample ≤2; (4) maximal frequency in population (Exome
Aggregation Consortium and 1000 Genome) <0.01; (5) mutations registered in
snp142 database were removed unless it was also recorded in the COSMIC data-
base (v70); (6) variant AF should be significantly higher in tumor than in matched
normal tissue (examined by the Fisher’s exact test with P < 0.05 and
Benjamini–Hochberg corrected q < 0.1); (7) distribution of forward and backward
reads in variant and reference reads covering mutation site should show no sig-
nificant difference (“strand bias,” examined by the Fisher’s exact test with P >
0.0001).

SMGs and genes with mutation cluster. SMGs were called by MutsigCV26 (1.4).
Genes with significantly clustered mutations were identified using a nonrandom
clustering method implanted in R package iPAC. A cluster ≤100 amino acids was
considered within one functional domain and was included. Further, as mutations
in genes that were not expressed conferred neutral impact in tumorigenesis, only
gene that was expressed in tumors (defined by having expression ≥10.0 transcript
per million (TPM) in ≥10% of 38 tumors with RNA-seq data) were considered as
candidate driver genes. In analysis of combined cohort of 101 PSCCE, we only
considered genes that were mutated in ≥5 cases (4.95% of combined cohort) in
order to further identify genes of relevance.

Validation of somatic mutations. PCR primers were designed online using Pri-
mer3Plus (https://primer3plus.com/) to amplify mutation loci in TP53, RB1, and
NOTCH1. As DNA fragmentation in FFPE samples greatly hampered amplification
of long amplicons, we limited amplicons for FFPE DNA < 500 bp. A PCR failure
was declared after three failed attempts. Sanger sequencing of PCR product was
performed on 3730xl DNA Analyzer (Applied Biosystems). For loci that suffered
PCR amplification failure, expression of somatic mutations in RNA-seq reads was
checked by Integrative Genomics Viewer58 (IGV, 2.6.2).

Mutational signature analysis. Mutational signatures were decomposited using a
nonnegative matrix fraction method implemented in R package
SomaticSignatures59. We included mutations from the present study and those
reported by Wang et al.11 into a “combined cohort” of PSCCE. SCLC mutations
were also included to discover potential signatures unique to small-cell carcinomas.
Optimal number of output signatures (K, candidate range from 2 to 20) was
determined by 1000 iterations at each K value. For each K, the cosine similarities
between resultant signatures and COSMIC signatures (version 2) were calculated.
Optimal K was determined when (i) explained variance did not increase remark-
ably by further increasing K, and (ii) the average of cosine similarities to the most
resembling COSMIC signatures reached maximum.

SCNV calling. SCNVs were called using CNVkit60 (0.9.5). FF samples and FFPE
samples were analyzed separately as two groups. Normal samples in each group
were pooled up to serve as reference used in corresponding group. Coverages of
each bin (each bin equals a capture region by WES) were compared against
reference to calculate log2 ratios. Bins with log2 ratio <−15.0 were discarded.
Segments were called from bins with same copy number. Segments were filtered for
copy-number variations (CNVs) in healthy population. CNVs in healthy popula-
tion were downloaded from Database of Genomic Variants61 (DGV, http://dgv.
tcag.ca/dgv/app/home, 2020-02-25 release). We built a common CNVs reference
set (DGV.refset), containing CNVs with frequency >1% in studies with sample size
≥1000 included by DGV. Segments with a log2 ratio > 0.2 were filtered for gains in
DGV.refset; segments with a log2 ratio <−0.2 were filtered for losses. Segments,
which had >50% reciprocal overlap with DGV.refset CNVs, were excluded.
Stringent thresholds were applied to call amplifications (log2 ratio > 0.807 which
equaled >3.5 copies) and deletions (log2 ratio <−2.0 which equaled <0.5 copies).
Significant SCNV peaks were called from DGV.refset filtered segments using
GISTIC2.024 module (version 6.15.28) on GenePattern public server (https://cloud.
genepattern.org/).

Validation of SCNVs. Copy number of MYC, TERT, and SOX4 in all samples was
determined using 7900HT real-time PCR system (Applied Biosystems). IFNG was
used as the reference. When SCNVs were observed in IFNG locus, an alternative
reference including AQP5, ACACA, and ACLY was used. SCNV results were

determined with same thresholds (amplifications: >3.5 copies; deletions: <0.5
copies) and were compared with SCNVs called from WES data.

Validation of RB1 exon deletion breakpoints. We designed series of PCR primers
according to RB1 exon deletions detected by SCNV analysis pipeline to gradually
approach and finally locate exact breakpoints of deletions. As long PCR amplicons
(>2000 bp) were required to efficiently amplify regions flanking breakpoints,
validation was performed only on FF samples. Downstream breakpoint of
PSCCE_15T was predicted to residue in large intergenic region and was not
validated due to technical difficulty. Sanger sequencing of PCR products was
performed by GENEWIZ (Suzhou) on 3730xl DNA Analyzer (Applied
Biosystems).

RNA sequencing (RNA-seq). Library was prepared using the TruSeq RNA Access
Library Prep Kit (Illumina), which was optimized to provide reproducible result of
RNA from FFPE samples. Paired-end 150-bp sequencing of the subsequent
libraries was sequenced on Illumina NovaSeq platform, with the aim to obtain ≥6-
Gb sequencing data.

RNA-seq data analysis. Sequencing reads were trimmed by Trimmomatic55

(0.36) and aligned to reference genome hg19 by STAR62 (2.4.2a). RSEM63 (v1.3.1)
was used to estimate abundance of annotated genes. Expression value in TPM was
supplemented in Source Data 2.

DEGs were identified using R package DESeq264, by comparing 38 tumors
against 23 matched normal esophageal samples sequenced together in the present
study. “apeglm” parameter of DESeq2 was activated to accurately estimate true
effect size. Genes with P < 0.01, q < 0.05, and log2FoldChange ≥ 1.0 by DESeq2
were defined as upregulated DEGs; genes with P < 0.01, q < 0.05, and
log2FoldChange ≤−1.0 were defined as downregulated DEGs.

Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment was
performed using R package clusterprofiler65. Enrichment with P < 0.01 and q value
< 0.05 was considered significant. Pathways that were significantly enriched for
upregulated DEGs but not for downregulated DEGs were considered upregulated;
similarly, pathways which were specifically enriched for downregulated DEGs were
considered downregulated.

GSEA66 was performed using “GSEA” module at GenePattern server (https://
cloud.genepattern.org/).

Identification of RB1 exon skipping events. Sashimi plot of RNA-seq bam files
was visualized and generated by IGV58 (2.6.2). Sashimi plots of driver genes in
PSCCE (TP53, RB1, and NOTCH1) were manually checked for reads spanning
abnormal exon junctions. Abnormal exon junctions with ≥10 supporting reads
were included in further analyses. Sashimi plots of 23 matched normal sample were
used as control.

Comparison with TCGA tumors and SCLC. RNA-seq reads count data of TCGA
esophageal cancers21 were downloaded from the National Cancer Institute
Genomic Data Commons data portal (https://portal.gdc.cancer.gov/projects/
TCGA-ESCA) for DEG analysis. Gene expression data of 81 SCLC samples
reported by George et al.12 were obtained from Supplementary Table 10 of ref. 12.
Batch-effect-normalized TOIL recomputed TPM gene expression data of TCGA
LUAD31, LUSCs30, and esophageal cancers21 were downloaded from UCSC Xena
data hubs (https://toil.xenahubs.net/download/tcga_RSEM_gene_tpm.gz).

Multiple cancers clustering. Thirty-eight EAC samples and 38 ESCC samples
from TCGA were selected randomly to match PSCCE in number. Similarly, 81
LUAD samples and 81 LUSC samples from TCGA were matched to 81 SCLC
samples reported by George et al.12 (list of samples used in analysis in Supple-
mentary Data 9).

Expression data of selected samples were combined and quantile-normalized to
minimize the batch effect. Genes with high expression (average expression in top
50%) were included and then log2-transformed. Median absolute deviations
(MAD) of genes were calculated. Top G genes with highest MAD were median-
centered and then supplied as input of consensus clustering using R package
ConsensusClusterPlus67. Candidate number of resultant groups N was set ranging
from 2 to 10; candidate number of input genes G was set 1000, 2000, 3000, 4000,
and 5000. For each N and G, 1000 times of fraction and clustering were iterated.
The output tracking plots, cluster matrices heatmaps, and CDF curve were
manually checked. N was finally determined as four as: (i) change in CDF sharply
decreased to nearly zero at 4; (ii) extremely small group (n ≤ 5) representing
outliers begin to emerge from N ≥ 4; (iii) the three major groups (Group NE,
Squamous, and Adeno) remained relatively stable when further tuning of N and G.
Due to its small size, Group 4 was not included for further analysis and not plotted
in Fig. 3c. Genes associated with the clustering most were identified using R
package ropls68 and top 800 genes were plotted in Fig. 3c.

After optimal clustering was determined, comparisons of G genes expression
among N groups were performed using the Tukey’s HSD test. Genes with
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log2Foldchange ≥ 2.0, P < 0.05, and Benjamini–Hochberg corrected q < 0.1 against
other groups were considered signature genes and listed in Supplementary Data 10.

Identification of subtypes in PSCCE. Genes with high expression (average
expression ≥5.0 TPM) were log2-transformed. MAD of genes were calculated. Top
G genes with highest MAD were median-centered and then supplied as input of
consensus clustering by R package ConsensusClusterPlus67. Candidate number of
clusters N ranged from 2 to 10 and candidate numbers of input genes G were 1000,
2000, 3000, 4000, and 5000. For each N and G, 1000 times of fraction and clus-
tering were iterated. The output track plot, cluster matrix heatmap, and CDF curve
were manually checked. One stable group of nine samples (PSCCE-N) was
repeatedly observed. The other 29 samples had unstable clustering but seldom
clustered with PSCCE-N samples, thus were studied collectively as PSCCE-A.
Genes associated with the clustering most were identified using R package ropls,
and top 800 genes were plotted in Fig. 4a.

To better discover signature genes for each subtype, we compared all genes with
an average expression ≥1.0 TPM between subtypes using the Tukey’s HSD test.
Genes with log2Foldchange ≥ 2.0, P < 0.05, and Benjamini–Hochberg corrected q <
0.1 against other groups were considered signature genes and listed in
Supplementary Data 12.

SCNVs that affected ≥3 of 38 RNA-sequenced tumors were tested for
significantly different distribution between two subtypes using the Fisher’s exact
test. Chromosomal location enrichment analysis of SCNVs with P < 0.05 was
performed on Enrichr (http://amp.pharm.mssm.edu/Enrichr/). Chromosomal
locations with P < 0.01 and q < 0.05 were considered significant.

Computational dissection of TME in PSCCE. Infiltrating immune cell signatures
were collected from literatures (Supplementary Data 14). Gene expression profiles
of PSCCE, SCLC, LUAD, LUSC, EAC, and ESCC samples in Supplementary Data 9
were combined and quantile-normalized. ssGSEA scoring of the signatures was
performed using R package GSVA. The deconvolution estimation of immune cells’
abundance was performed using CIBERSORT38 (https://cibersort.stanford.edu/).
For CIBERSORT, SCLC data were not included due to missing value in several
genes. scRNA-seq-derived cell type signatures, immune cell exclusion signatures,
and OE scoring source code were obtained from report by Jerby-Arnon et al39. Raw
scores of immune signatures are provided in Source Data 4. Median-centered and
standard-deviation-scaled scores were used to generate boxplots in Fig. 6 for better
visualization. Monte Carlo stimulation was carried out by repeating random draw
of L gene (repressed genes in CD8 cytotoxic T-cell exclusion signature) from 37536
gene (genes whose expression values were not all zero in 38 PSCCEs and 23
matched normal samples) for 100,000 times and recording M, the numbers of
certain 2249 genes (downregulated DEGs in PSCCE) in each draw. Then, P(M ≥
m) equals (times whenM ≥ m)/100,000. Stimulation was repeated three times with
different random seeds and the maximal P value was reported.

Immunohistochemistry (IHC). To guarantee consistency of IHC procedure,
staining of Rb, Ascl1, and Neurod1 was performed on tissue microarray sections of
PSCCE tumors and matched normal esophageal samples. Briefly, cylindrical tissue
cores of tumor and matched normal samples were extracted from paraffin blocks
and re-embedded into a microarray block. Microarray block was sectioned. Sec-
tions were deparaffinized in xylene, rehydrated in serial ethanol solution and
distilled water. Heat-mediated antigen retrieval was performed in pH9.0 Tris-
EDTA solution. Sections were blocked and incubated with primary antibody and
secondary antibody. Sections were developed with DAB and counterstained with
hematoxylin.

T-cell phenotype profiling by IHC. Whole slides of tumor section covering both
the bulk of tumor and surrounding normal tissue were stained for CD8A. Eva-
luation was carried out by certificated pathologists (S. Shi and L.X.). First, ten
random high power fields (HPF, 400 ´ ) of tumor parenchyma >300 μm from
outermost border of tumor were checked for CD8A-positive cells. Efforts were
taken to evenly distribute the HPFs inside tumor parenchyma. If ≥10 CD8A-
positive lymphocytes were observed to directly contact with tumor cell in ≥3 HPF
(for tumors with large volume or extensive connective-tissue septa, 20 fields were
checked and ≥6 HPF were then used as threshold) then immune phenotype of
examined tumor was considered “inflamed.” Otherwise, ten HPFs around the
invasive margin were checked. If ≥10 CD8A-positive lymphocytes were observed in
≥3 HPF along the invasive margin, then immune phenotype was considered
“excluded”; if ≥10 CD8A-positive lymphocytes were merely observed in <3 HPF,
the examined tumor were considered “desert.” Profiling results were listed in
Supplementary Data 15.

Antibodies and PCR primers. Antibodies and PCR primers used in this study
were listed in Supplementary Tables 1 and 2, respectively.

Statistics. The R program (3.6.1) was used for statistics. Differences between
groups were examined by the Fisher’s exact test or Wilcoxon rank-sum test where
appropriate. All tests were two-sided unless stated otherwise. Survivals of different

groups were compared using the log-rank test. HR and its 95% confidential interval
were estimated using Cox proportional hazard model. Significant level was set to
0.05 unless stated otherwise.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw WES and RNA-seq data generated by this study has been deposited in the European
Genome-Phenome Archive (EGA) under accession number EGAD00001007647, in the
Genome Sequence Archive for human (GSA-human) under the accession number of
HRA000488, and in the National Omics Data Encyclopedia (NODE) under the accession
numbers OEP001067 and OEP001068. Processed WES and RNA-seq data has been
deposited in European Genome-Phenome Archive (EGA) under accession number
EGAS00001004889. The TCGA data used in this study are available at the National
Cancer Institute Genomic Data Commons (GDC) data portal [https://portal.gdc.cancer.
gov/projects/TCGA-ESCA]. Gene expression data of TCGA lung adenocarcinomas31

(LUAD), lung squamous cell carcinomas30 (LUSC), and esophageal cancers21 used in
this study are available at the UCSC Xena data hubs [https://toil.xenahubs.net/download/
tcga_RSEM_gene_tpm.gz]. Source data are provided with this paper. The remaining data
are available in the Article and Supplementary Information.
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