
ARTICLE

Deep learning connects DNA traces to
transcription to reveal predictive features beyond
enhancer–promoter contact
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Chromatin architecture plays an important role in gene regulation. Recent advances in super-

resolution microscopy have made it possible to measure chromatin 3D structure and tran-

scription in thousands of single cells. However, leveraging these complex data sets with a

computationally unbiased method has been challenging. Here, we present a deep learning-

based approach to better understand to what degree chromatin structure relates to tran-

scriptional state of individual cells. Furthermore, we explore methods to “unpack the black

box” to determine in an unbiased manner which structural features of chromatin regulation

are most important for gene expression state. We apply this approach to an Optical

Reconstruction of Chromatin Architecture dataset of the Bithorax gene cluster in Drosophila

and show it outperforms previous contact-focused methods in predicting expression state

from 3D structure. We find the structural information is distributed across the domain,

overlapping and extending beyond domains identified by prior genetic analyses. Individual

enhancer-promoter interactions are a minor contributor to predictions of activity.
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Understanding the connections between genome structure
and transcriptional regulation in animal cells is of central
importance to numerous biological processes. Many genes

are controlled by regulatory sequences, such as enhancers, posi-
tioned thousands to millions of base pairs distal from their
transcription start sites (TSS). It is widely thought that 3D gen-
ome folding allows proteins bound to distal positions to influence
polymerase activity at the TSS1–4. However, the relative impor-
tance of enhancer–promoter proximity and other structural
properties of the genome for transcriptional regulation are just
beginning to be understood.

In the last decade, bulk approaches leveraging the power of
high-throughput sequencing greatly expanded our understanding
of 3D chromatin biology. Chromosome conformation capture
(3C, Hi-C) and related methods have revealed a rich, non-
random organization to animal genomes, which tend to cluster
chromatin into compartments of similar epigenetic states and
segregate adjacent domains into regions of increased intradomain
contact, called topologically associated domains (TADs)5–8. These
structural features have been shown to correlate with key aspects
of transcriptional regulation. For example, TADs are more likely
than a similarly-sized random partitioning of the genome to
contain (1) co-regulated genes and (2) a gene and its distal cis-
regulatory enhancers. In some cases, perturbations that
merge TADs or replicate TAD boundaries result in ectopic gene
activation or gene silencing5–8. However, bulk approaches
measure limited aspects of structure, such as contact interactions,
and observe only population level averaged structural features
and averaged expression states rather than the features of
individual cells.

In contrast, imaging approaches can directly measure the dis-
tances between elements, such as the position of a distal enhancer
and its target promoter, in single cells9–18. Genetically encodable
fluorescent markers have been used to estimate the distance
between regulatory elements in live cells19–26 and recent work has
combined this approach with imaging nascent transcription22,23.
Although such single-distance measurements provide limited
structural information, super-resolution imaging of chromatin
structure in cells27–32 directly visualizes nanoscale structural
features, allowing quantification of properties such as compac-
tion, elongation, or the tendency to split into distinguishable
globules.

Recently, new approaches for high-resolution chromosome
tracing have provided a view of the 3D path of the chromatin
polymer, with resolution up to several kilobases across the entire
cis-regulatory domain of multiple genes32–36. Optical Recon-
struction of Chromatin Architecture (ORCA)33 Hi-M34 and
MINA36 access this polymer information by consecutively ima-
ging adjacent steps along the chromosome, a few kilobases at a
time. Each step is visualized through hybridization of fluores-
cently labeled oligos, which are removed in the next step to
provide sub-diffraction-limited resolution between steps33,34.
RNA labeling provided parallel measurement of mature33,34 or
nascent transcripts from these cells33. As both the detailed
polymer structure and transcriptional state are known in the
same cells, these data provide a unique opportunity for an
unbiased analysis of how higher-order structural features of
chromatin relate to nascent transcriptional activity. Examples of
features that can be examined using this unique data set include
enhancer–promoter interactions, multi-way contact hubs, silencer
interactions, and compaction, among others.

However, we currently lack the tools to leverage this data in an
unbiased manner. Existing approaches used hypothesis-driven
analyses, such as speculating enhancer–promoter contact acti-
vates transcription33. Such hypotheses require the selection of
arbitrary thresholds (e.g., distance for contact), and have

uncovered relatively weak correlations between structure and
function33. The weakness of these correlations may result from
either a limited dependence of gene expression on chromatin
structure or the inability of the simple enhancer–promoter con-
tact model to take into account the complexities of endogenous
regulation, such as a requirement for multiple enhancers to act
simultaneously on a gene to activate expression. Therefore, in
order to (1) address more thoroughly to what degree chromatin
structure relates to the transcriptional state of individual cells and
(2) determine in an unbiased manner, which structural features of
chromatin regulation are most important, we developed a deep
learning-based approach, which is threshold free, and can
account for a wide variety of complex structure-expression
relationships.

Here, we illustrate the utility of a deep learning approach by
analyzing a data set from the Bithorax Complex gene cluster (BX-
C) in Drosophila, in which 330 kilobases of sequence control the
expression of three Hox genes essential for developmental
patterning33,37. This data set contained over 50,000 cells, in each
of which the 3D structure of BX-C gene cluster was imaged with
ORCA and nascent RNA expression for each of the three hox
genes measured with fluorescent in situ hybridization targeting
ribonucleic acid molecules (RNA FISH). This approach uncov-
ered a significant array of structural features that augment the
weak predictions provided by enhancer–promoter proximity
alone. These features were distributed throughout the domain—
extending further from the genes than previous genetically
identified regulatory features. These features largely have redun-
dant predictive ability, suggesting redundant layers of control.
Distinct structural features were predictive of silent as well as
active states, suggesting important roles for higher-order folding
in gene repression.

Results
Neural networks predict transcription from genome structure.
In order to determine how well chromatin structure predicts gene
expression (Fig. 1a), it was important to first remove features that
reflected technical rather than biological differences in the chro-
matin structure data. For example, the (x,y,z) coordinates mea-
sured for the polymer (Fig. 1a, Supp. Data 1) are recorded relative
to the microscope stage axis. Viewing the same structure from
two different angles results in different (x,y,z) values, which do
not reflect a biological difference in structure. We addressed this
challenge by calculating the relative distances between all 52
positions along with the polymer, represented as a 52 × 52 matrix,
thereby preserving all structural features except the experimental
viewing angle (Fig. 1b). Missing data values were estimated by
linear interpolation between the adjacent (x,y,z) coordinates. All
distances were then normalized relative to the average inter-
position distances to accentuate differences. To facilitate deep
learning, we classified nascent RNA expression into ON or OFF
binary classes (Fig. 1a).

To predict the expression state from 3D conformation, we used
convolutional neural networks (CNN)38 (Fig. 1c), a deep learning
framework that has proven highly effective in image processing
and other spatially structured data problems38–40. 2D CNNs start
with an input data matrix (image), which is passed through a
series of filters (convolutions). The transformed data are then
passed through a data integration layer or a pooling layer. CNNs
are often built with pairs of convolutional (filter) layers and
pooling layers. The output of one or more rounds of convolu-
tional followed by pooling layers is then flattened by being
fed into a series of dense neural network layers, which output a
final prediction. The network is optimized to maximum
performance through iterative training rounds, where predictions
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are compared with the ground truth training labels, generating a
loss measurement between the performance of the CNN and the
maximal possible performance. Using this loss measurement,
weights of the network are optimized through a method known as
back propagation. This iterative process is repeated until the loss
stabilizes. Additional details of network training and parameter
selection are described in the Methods.

Deep learning methods can be susceptible to overfitting if
appropriate care is not taken during training. This results in high
predictive performance on the data used in network training but
low generalizability to novel data38–40. Overly large networks are
especially susceptible, as the network may have sufficient degrees
of freedom to uniquely map all the training data, rather than
finding a lower-dimensional predictive pattern in the data. To test

for overfitting a portion of the data, the validation set, is reserved
to evaluate training convergence and choose training parameters,
called hyperparameters. A third portion of the data, the test set is
reserved only for evaluating model performance at the end of
training. The overall performance of the trained model is
compared across multiple stratified partitions of the data in a
procedure known as K-fold cross-validation. This involves
splitting the data, minus the test set, into K-fold new training
and validation partitions, and re-training the model on each to
account for any unknown bias in the original data split.38–40 We
utilized stratified 10-fold cross-validation to validate our model
(Supplementary Data 2). We evaluated model performance using
a standard approach of plotting a receiver operating characteristic
curve (ROC curve). The area under the curve (AUC) value of

a

c
Convolutional Neural Network

ON/
OFF

Convolution ConvolutionPooling
Vectorize

PredictionPooling

b

50

600 distance (nm
) -2

0

2

Z-score

Transcription 
state

DNA 3D structure

ON, OFF, ON

OFF, ON, OFF

12.46 Mb 12.79 Mb
Genes

Enhancers
Ubx abd-A Abd-B

Probes

600

600

5000 nm

600
200

600

0 nm

ROC Curve

Random  = 0.50
Train  = 0.69

Test = 0.66

0.0 .2 .4 .6 .8 1.0
False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

.2

.4

.6

.8

1.0

d Comparison of 
Prediction Results

e

0.625

0.575

Training Noise 
Robustness

D
ev

 S
et

 A
U

C

Max Perturbation (nm)

CNN
Random
Forest

0 500 1000

0.675

f

U
bx

en
ha

nc
er

s
En

ha
nc

er
-

Pr
om

ot
er

C
on

ta
ct

ab
d-

A
en

ha
nc

er
s

Ab
d-

B
en

ha
nc

er
s U
bx

ab
d-

A
Ab

d-
B

U
bx

ab
d-

A
Ab

d-
B

Av
g

Si
m

ila
rit

y

C
N

N
U

bx
ab

d-
A

Ab
d-

B

R
an

do
m

Fo
re

st

1.0

2.0

3.0

O
dd

s 
R

at
io

Fig. 1 Deep learning connects transcription-state and chromatin structure. a Schematic of major features of ORCA BX-C data set from Mateo et al. 2019.
Fifty-two individual barcodes cover 312 kb. Representative images of the DNA structure are shown, where unique steps along the sequence are denoted as
distinct colored balls, colors match the probe track. The line joining these balls is a guide to the eye. Example images of nascent RNA transcripts from these
hox genes are also shown. b Viewing angle changes the absolute (x,y,z) coordinates, but not the matrix of all pairwise distances within the polymer.
c Schematic depiction of convolutional neural network architecture. d Receiver operating characteristic (ROC) curve of training (blue) and test (orange)
data sets for prediction of abd-A expression. The dotted red line represents the performance of random classification. e Comparison of odds ratios for the
indicated methods of predicting transcription from the structure. Enhancer–promoter contact predictions are shown for each known enhancer
corresponding to each gene. Variation was quantified by bootstrapping (n= 3000) resampling the data with replacement. Boxplots indicate quartiles.
Whiskers extend to the furthest point within 1.5 of the interquartile range. Outliers are indicated with “+”. Average similarity measures each example’s
similarity to the average ON and OFF structures and assigns a class label based on this measurement. Average similarity, random forest, and CNN
measurements from n= 10-fold cross-validation are shown as dots for each trial, overlaid on the boxplots. f Comparison of CNN and random forest model
AUC performance upon noise introduced into the training set.
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both the training and test ROC curves for predictions of gene
expression were then compared for each gene (Fig. 1d and
Supplementary Fig. 1). The substantial correspondence between
these two curves indicates that the trained CNN was generalizable
to new data and not overfit. Furthermore, from our 10-fold cross-
validation, we see that the results are highly stable across new
partitions of the data (Supplementary Data 2), indicating the
model’s performance is agnostic to the specific training sets used,
further evidence that the CNN has not overfitted the data. We
find that our CNN model is consistently capable of accurately
predicting gene expression from chromatin state alone without
overfitting to the training set, and with strong robustness to
training set noise, and alternate train/validation partitioning.

We chose the best-performing combination of hyperpara-
meters using the highest measured validation set score (Supple-
mentary Fig. 2, Supplementary Data 3). To ensure the model had
reached a stable plateau in training, we examined the cost over
epoch curves as well as the training and validation set scores
(Supplementary Fig. 3). We found that our training epoch
number was well within the cost plateau with only incremental
change in cost, and that this was highly stable across all cross-
validations. We found that our model followed traditional
behavior throughout training, and saw no evidence of a potential
double descent improvement in performance41. In favor of
selecting a maximally robust model, we decided not to utilize
early stopping, but rather focus on ensuring our model was
demonstrating only incremental changes the longer it trained. As
a further control, we randomly shuffled the data to remove any
true correlation between the structure inputs and transcription-
state output, and trained the CNN on this shuffled set. This
completely removed the ability of the CNN to predict transcrip-
tion, as indicated by an AUC of 0.5 (Supplementary Fig. 4a). As a
further control on whether the data set of ~50,000 cells was deep
enough to reliably train, we explored the effects of downsampling
the data on the CNN performance. Downsampling the training
data (up to 50% reduction in the number of examples) resulted in
only a small drop (<2%) in model performance, indicating the
data set was sufficiently large to enable deep learning (Supple-
mentary Fig. 5).

After training, we observed the CNN was able to predict
transcription from structure significantly better than at random
(Ubx, abd-A, Abd-B p= 0.001, Wilcoxon test over the odds
ratios), indicating structural features of the chromatin domain
folding are in fact predictive of gene expression, for each of the
genes (Ubx, abd-A, Abd-B) (Fig. 1d, Supplementary Fig. 1). The
prediction of expression state is not perfectly dependent on
chromatin structure, as indicated by the AUC <1 (Fig. 1d and
Supplementary Fig. 1), which would indicate perfect correspon-
dence between predicted and real labels. This is expected, as many
other unmeasured processes, such as transcription factor binding,
also influence transcription. However, the improvement relative
to a random assignment indicates just how much information is
dependent on structure alone.

We then asked how the performance of this unbiased approach
compared with the previous enhancer–promoter–centric
approach33. To do this, we calculated the odds ratio of observing
transcription from a given hox gene promoter when its enhancer
was in proximity (150 nm) for all known enhancers. As a second
comparison, we calculated the average distance matrix for all ON
and OFF cells, and compared every single cell’s distance matrix to
these average matrices. The cell was then assigned to the class
(ON or OFF) whose average it was the most similar to. This
method did not require the selection of any threshold values and
was not solely focused on enhancer–promoter distances.

Our deep learning approach uncovered a significantly stronger
relationship between chromatin structure and expression state

than either of the comparison cases. While observing
enhancer–promoter contact increased the odds of observing
transcription by 0–30%, the CNN-predicted structures had
180–220% greater odds of transcription (Fig. 1e). The improve-
ment relative to estimates derived from the average structure
(Fig. 1e, green bars) indicates that this relationship depends on
structural complexity in single-cell structures that are not well
preserved by averaging. We concluded that there are significantly
greater interdependencies of structure and expression than just
enhancer–promoter proximity or a distinct ON or OFF structure.

Comparison to alternative machine learning approaches. We
benchmarked the performance of the CNN against alternative
machine learning approaches, including dense neural networks
(DNNs)39 and a random forest (RF) algorithm42. DNNs avoid an
explicit ordering (or spatial structure) to the input data, but
otherwise have a similar training approach to CNNs39. RFs are a
popular alternative to CNNs, which construct an ensemble of
decision trees to classify input data and take the mode as the
prediction42,43. Although both approaches out-performed the
predictions from pairwise enhancer–promoter contact, neither
achieved the performance of the CNN assed by odds ratio
(Fig. 1e). For all three genes, the performance of the CNN was
significantly better (Wilcoxon test, p < 1e-4). The average AUC
performance of the CNN was also better for predictions of all
three genes (p < 1e-4), (Supplementary Data 2 vs. Supplementary
Data 4).

We also compared the robustness of the CNN and RF
approaches to added noise in the training data set. Noise in the
measured positions of the chromatin trace may arise for a variety
of experimental reasons, including the photon shot noise from a
small number of emitters, undetected degrees of sample drift, or
undetected anisotropic background signal in data collection,
leading to typical uncertainty of 25–50 nm33. Added noise of up
to 100 nm uncertainty in the training set induced a minor
decrease in CNN predictive performance and a more substantial
decrease in the already lower RF performance (Fig. 1f). Having
observed that the CNN architecture both outperforms all other
tested architectures in the odds ratio for predicting expression
state from 3D structure, and is also robust to training set data
noise, we examined what the CNN had learned about DNA
structure.

Blanking analysis reveals gene-specific regulatory regions. To
investigate which structural properties of chromatin were most
informative to the CNN predictions, we began with a deletion-
inspired approach. Similar to genetic deletion strategies that test
function by replacing candidate regions with neutral non-
regulatory DNA to preserve genomic spacing, we blanked geno-
mic windows of the polymers by replacing position data within
the window with the data set average value (Fig. 2). This removes
any potentially informative information from this part of the
polymer structure while preserving the pairwise distances among
non-blanked points. The blanked test data set was then passed
through the trained CNN and the performance measured by the
AUC (ROC). We then converted these AUCs to a normalized
predictability score, where 100 corresponds to the AUC without
any data blanking (or the base AUC), and 0 represents random
performance (AUC= 0.5). We explored the effect of blanking a
single 6 kb step on the chromatin polymer (i.e., onemonomer) up
to 30 monomers (180 kb) (Supplementary Fig. 6).

To provide an intuition for interpretation of the data blanking
results, we began by analyzing simulated data. These data
were produced from simple versions of two popular, distinct
models of gene regulation: enhancer–promoter-loop activation of
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transcription and chromatin compaction-mediated repression. In
the loop model, polymers in which the enhancer monomer
(monomer 20 in Fig. 2a) was in 3D proximity to the promoter
monomer (monomer 40 in Fig. 2a) were marked ON, whereas
others were marked OFF (Fig. 2a). In the compaction model, all
polymers with a median inter-monomer distance below the
compaction threshold were marked OFF, and those with a
median distance above the threshold were marked ON (Fig. 2b).
To capture the effect that chromatin structure is not the sole
determinant of transcriptional state, in both cases, only 50% of
the population followed the model rule and the other 50% were

randomly assigned to ON or OFF. Analyses of simulations in
which the contribution of the structure was more or less
predictive, with cutoffs at 25% and 75% of the population
following the rule, showed different absolute predictivity changes
as expected but similar results in the relative importance of each
sequence (Supplementary Fig. 7). Importantly, since we knew the
ground truth for these simulation cases, we could directly evaluate
how well the CNN could be “unpacked” to identify which
properties of chromatin structure were being used for the
predictions. p values are Wilcoxon rank-sum test unless otherwise
specified.
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Fig. 2 Data blanking identifies sequences driving predictions of transcription activity. a Schematic illustration of simulation 1: enhancer–promoter (E-P)
contact drives transcription. b Schematic of simulation 2: de-compaction drives transcription. c Blanking results for a window size of five monomers on two
simulations, E-P contact (blue), and compaction (red). Boxplot of results shows normalized predictability, where 100 corresponds to the AUC (ROC)
without any data removal and 0 corresponds to random performance. The position of the enhancer monomer 20, (green) and promoter, monomer 40
(blue) are indicated. d As in c, but with a blanking window of size 20. e–g As in c, but for CNNs predicting expression of Ubx (red), abd-A (blue), and Abd-
B (purple), respectively. h–j as in e–g, but with a window of 20 steps (60 kb). In c–h, results from 10 independent trials used for cross-validation are shown
as dots. Boxes denote quartiles. Whiskers extend to the furthest data point within 1.5 of the interquartile range. * in e–g indicates arbitrarily selected
examples of statistically significant local minima, p < 0.05, relative to the average predictability, two-sided Wilcoxon rank-sum test.
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Examining the blanking results for the simulated
enhancer–promoter loop model (E–P model) with a window of
five monomers, we see no significant change in performance
score (p > 0.05) until the blanking window intersects either the
enhancer or promoter (Fig. 2c). The performance reaches a
minimum when the blanking window is centered on either
enhancer (p= 6.9e-08 for windows spanning the enhancer vs
non-regulatory regions). Importantly, even though these are the
only informative structural behaviors in the model, the AUC is
only reduced to 85%, not 0% (Fig. 2c). This effect is a
consequence of the polymer nature of the data. Unlike a random
cloud of points, the remaining monomers of the polymer still
provide a constraint on the likely position of the blanked
monomers. Upon increasing the blanking window to size 20, we
found a similar trend—the largest drop was centered at the two
structurally relevant loop elements (Fig. 2d). This much larger
window completely removed the ability of the CNN to infer loop
interactions for windows centered on these elements, where
performance hits 0% (p > 0.7 for a difference from 0).

In contrast to the behavior of the loop model, we find an effect
at all positions in blanking data from the compaction simulation
(Fig. 2c), (p= 9.8e-04 for all positions compared with non-
regulatory regions from the E-P model). Thus, the analysis
uncovered the distributed nature of regulation by compaction—
all parts of the domain contribute information to determining the
degree of compaction. Moreover, the effect is notably smaller
than for the E-P model—the information is not contained in any
single contact, but is in effect redundantly distributed across the
domain. The drop is similar across all windows, save for those
near the ends of the polymer. This edge effect is likely owing to
CNN’s ability to infer the position of missing monomers from
their neighbors. For the edge monomers, the CNN would have
less data to constrain this inference. Blanking larger windows
further decreases model performance (p= 1.9e-129 window size 5
vs 20), but in no case drops performance to 0%. Even removing 2/
5th of the domain, performance remains over 50% (Fig. 2d), as
the remaining monomers still contain information about the
overall compaction of the polymer. These two simulation
examples provide a useful source of comparison as we interpret
the experimental data.

In the experimental data, we observe more-complex patterns
than in the simulations. Using small blanking windows, we found
that all three genes show evidence of distributed regulation. All
blanking windows cause a drop-in predictability (for all but the
few positions indicated, this was statistically significant p < 0.05)
(Fig. 2e–g), unlike in the binary contact simulation where only
windows overlapping the critical positions showed a drop. In
addition, we observe multiple local minima throughout the
domain, (p < 0.01 for indicated minima (*) compared with the
median of all domains), indicating the existence of distinct, cis-
regulatory elements whose physical position is informative of
transcription (such as enhancer–promoter proximity). No single
element has as large an effect as in the loop model, suggesting
redundancy in this regulation. Interestingly, these local minima
occur both inside and outside the positions of the previously
identified enhancers for each BX-C gene. Finally, the three genes
each had substantially distinct sensitivities to domain blanking (p
< 3.0e-8 K-S-test), indicating distinct structural influences on
their expression.

Using large windows, we still observed no complete loss of
predictivity (minimum performance >40%), contrasting the
enhancer–promoter simulation results and supporting the
observation for distributed regulation (compare Fig. 2h–j and
Fig. 2d). The widespread effects and general sensitivity of end
positions are similar to the effect seen in compaction and
suggestive that compaction does contribute to regulation.

However, the predictions were not always symmetrically most
sensitive at the ends of the domain, contrasting a mechanism of
regulation based purely on compaction. Interestingly, for all three
genes the predictions were significantly sensitive to blanking
windows distal to the transcription unit, which extends to the
other gene bodies (Fig. 2e–j). This suggests a prominent role for
long-range regulation and physical interaction between the genes
in controlling transcription.

Together, these analyses indicate that much of the structural
information the CNN has used to predict transcription activity is
physically distributed across the domain, spanning 10 s to 100 s of
kilobases of neighboring chromatin, where no individual element
accounts for >20% of the total effect. Notably, although these
predictive regions overlap domains identified by prior genetic
analyses37,44,45 they also extend beyond the most distal known
enhancers of these genes.

SHAP analysis identifies distinct features that predict activa-
tion and silencing. Although an effective way to identify the
position and importance of different structural features of the
domain in predicting transcription activity, the blanking analysis
does not tell us whether the features used were more important
for predicting the active or silent state. Furthermore, blanking
only indicates if the position of a certain region is important. It
does not identify if proximity or separation between such regions
is predictive. To answer these questions and generate mechanistic
hypotheses linking structure to expression, we developed a
complementary approach to distinguish ON and OFF-predictive
events and determine whether contact or separation was most
important.

SHAP (SHapley Additive exPlanations)46 is an approach
commonly used to interpret machine learning models and
understand what they have learned46–50. The SHAP value is the
estimated difference between the expected feature importance
(based on a background reference data set) and the actual feature
importance (see Methods). The major benefits of using SHAP as a
method to open the black box are the dual mathematical
guarantees of global and local interpretability46. Unlike many
other feature importance methods, SHAP values are assigned on a
per-example basis, such that each example can be assigned its
own set of values, and the collective aggregation of these SHAP
values for any one feature show the overall magnitude and
directionality of that feature’s contribution to predictions across
the data set46. Because of these unique properties, the lack of need
to perturb either the model or the input data externally to
produce a readout of feature importance, and their ability to
showcase feature combinations and interactions, SHAP values are
one of the most-used approaches to understanding deep learning
models.

In our CNN models, a positive SHAP value indicates that a
feature influenced the model to assign the example to the ON
class, whereas a negative SHAP value indicates that a feature was
influential in the assignment of that example to the OFF class.
Observing the SHAP values of the pairwise distance maps of
individual examples, therefore, gives an understanding of which
specific distances the CNN was most dependent on to make the
correct classification of that example. Any individual structure
can have both positive and negative SHAP values. Where the
SHAP value map shows that interactions in a particular
chromosome were indicative of an ON or OFF transcriptional
state, the corresponding distance map for that chromosome
reveals whether these interactions corresponded to contact,
proximity, or separation (Fig. 3a).

We began by analyzing simulated data to assess how well this
method could disentangle complex regulatory schemes with a
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known ground truth before applying it to the real BX-C data.
Accordingly, we designed a simulation in which multiple
enhancers (E1 and E2) and one silencer (S) function in a
contact-dependent manner to regulate expression from a single
promoter (P), where the silencer is dominant over the enhancers
(Fig. 3b, c). We simulated a large number of polymers using
molecular dynamics as before and classified them as ON or OFF
with the above set of hierarchically structured rules, including a
stochastic component to take into account the effects of TF
binding/unbinding and potential temporal lag between expression
and structure (Fig. 3c). This produced 50,000 individual cells with
polymer structures and expression states following the known
rules for subsequent SHAP analysis.

Figure 3d shows two examples of SHAP maps from simulated
ON cells. The map values are primarily close to zero, indicating
most interactions are not informative of the transcriptional state,
consistent with the ground truth for the model. On the left map,
at the coordinate representing the interaction between E1 and P
and between E2 and P (black solid boxes), large positive values
show that the distance between these elements is indicative of
transcription. The corresponding distance map (Fig. 3d) shows
these informative distances (white solid boxes) have low values
confirming that it is E-P proximity that leads to the ON
prediction (and not just that E-P distances are important). In the
right map of Fig. 3d, only a single E-P distance has positive SHAP
values and once again we see it corresponds to contact in the
pairwise distance map (solid boxes). Weakly positive SHAP

values are assigned to the S-P interaction, which the distance map
shows are far apart in this cell (dotted boxes). The silencer
contributes less to the ON prediction since many cells that lack S-
P contact are still OFF as they also lack E-P contact. For example
in the OFF cells, we find that it is the enhancer–silencer
interaction that is marked as most predictive (Fig. 3e, dotted black
box) and that accordingly, corresponds to the proximity between
the S and P positions in the distance map (Fig. 3e, dotted white).
In the second (right) OFF example, the E-P SHAP values are blue,
indicating that these are counter-indicative of the OFF state. The
corresponding distance map shows these enhancers are in
proximity to the promoter, which would suggest an ON state.
However, the CNN has correctly learned the hierarchical
relationship that while E-P contact indicates ON, it is overridden
by the S-P contact for a final prediction of OFF.

Thus, SHAP analysis on select examples shows signatures of
the underlying regulatory rules. Traditionally, SHAP is used to
understand the interpretation of individual images46,51,52.
Through repeated anecdotes, it is then inferred what features
CNN has “learned” about the image. For example, SHAP analysis
of images of cats that repeatedly highlight the ears may be
interpreted as the CNN “has learned to recognize cats by their
ears”. However, this anecdotal approach makes it difficult to
derive general, population-level conclusions. This is especially
true for heterogeneous input data in which diverse features
(structures) may indicate the same classification (ON/OFF), as
seen in examples from our simulated data (Fig. 3d, e) and
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experimental data (Fig. 3a, b). However, given the unique
organization of the distance maps in our study, we are able to
develop a statistical approach to aggregate SHAP values,
providing an unbiased and global view of the key features rather
than an anecdotal one.

To achieve this, we created population-level SHAP maps by
plotting a new map of the highest SHAP value obtained across
any ON cell for each interaction in the matrix (Fig. 3f). This
shows for any interaction, however rare, just how predictive it is
of the ON state when it is at its most predictive. This would allow
features that occur rarely in the population but which are very
predictive of the ON state to still be emphasized. It also avoids
canceling effects that could arise averaging large positive values
with large negative ones. To avoid bias from limiting sampling,
we found the average of the top decile, instead of the maximum,
gave similar results more robust to sample size (Supplementary
Fig. 8). To determine the associated distances at this population-
level view, we examined a second matrix that plots the median
distance among interacting pairs whose interaction was in the top
decile of SHAP values. A similar approach was used among OFF
cells, looking instead at the decile of most-negative SHAP values,
to determine features predictive of the OFF state (Fig. 3f,
Supplementary Fig. 9).

When applied to the simulation data, we see this approach
correctly identifies the contact-dependent enhancer–promoter
activation. It also uncovered the dominant, contact-dependent
silencing interactions built into the model (Fig. 3g, dashed boxes,
Supplementary Fig. 9). A map of the p values for which positions
in the SHAP maps are statistically significantly also highlights
the enhancer–promoter and silencer promoter interactions as
the regions of most significance (Fig. 3g). Similar results were
achieved with additional simulations in which the relative distance
between enhancer and promoter was altered (Supplementary
Fig. 10), or when different cutoffs for the contribution of the
structure were used (Supplementary Fig. 11).

SHAP de novo identifies enhancers and silencers. Turning to
Ubx, we find a substantial portion of the map has SHAP values
statistically distinct from zero, contrasting the simple model
(compare Figs. 3g and 4a). There are notably more local maxima
in the integrated SHAP map than observed in the simulated
example, suggesting the regulation is more distributed. Several
hot spot areas stand out. For example, the ~60 kb domain
spanning the Ubx promoter and its cluster of upstream enhancers
(box 1) shows significantly higher SHAP values (p < 1e-20, K-S
two-sample test) than a corresponding sized region (box 2) inside
the gene body (Fig. 4a). The corresponding position on the dis-
tance map shows this structural feature was predictive when its
distances were small, <100 nm (Fig. 4a, box 1). This supports a
contact/proximity-dependent mechanism for enhancer function.
This effect is statistically significant ((p < 1e-20, predictive vs non-
predictive, one-sided Wilcoxon rank-sum test). Consistent with
this finding, these distances are also highlighted in the OFF-
predictive maps, where larger values indicative of physical
separation between enhancers and promoters is predictive of the
non-transcribing state (Fig. 4d), (p < 1e-20, predictive vs. non-
predictive, one-sided Wilcoxon rank-sum test). Even though the
CNN did not know which positions contain promoters and
enhancers, it recovered the experimentally validated link between
the Ubx promoter and these enhancers. Moreover, unlike the
blanking analysis, the SHAP analysis shows this interaction is
proximity-dependent, as hypothesized from prior experimental
analysis44,45. This example illustrates the ability of this SHAP
approach to unpack biologically interesting interactions.

Several other structural features, however, were similarly
informative. For example, enhancer–enhancer interactions
upstream enhancers of Ubx have similarly high SHAP values
(p < 1e-5 for the difference from zero) as the enhancer–promoter
interactions (Fig. 4a box 3). This could reflect enhancer–enhancer
communication that is predictive of transcription, or a physical
interaction resulting from enhancers preferentially scanning this

Ubx abd-A Abd-B

abd-A

Ubx abd-A Abd-B

Abd-B

Genes
Enhancers

PREs

Ubx

Ubx abd-A Abd-B

8

0

1.2x10-3

0

0

1000

0

1.5
x10-3

5

0

0

1000

0

1.5
x10-3

10

0

Ag
gr

eg
at

e
 S

H
AP

 v
al

ue
s 

(A
ve

. o
f t

op
 d

ec
ile

)
-lo

g1
0(

P 
va

lu
e)

M
ed

ia
n 

di
st

an
ce

s 
(n

m
)

ON Predictive

1

2

3

1

2

3

1

2

3

4

4

4

5

6

6

6

5

5

0

1000

0

-1.5
x10-3

0

-2
x10-3

0

-1.5
x10-3

8

0

5

0

10

0

0

1000

0

1000

0

1000

Ubx abd-A Abd-B

abd-A

Ubx abd-A Abd-B

Abd-BUbx

Ubx abd-A Abd-B

OFF Predictive

a b c d e f
7

7

7

8

8

7
8

7
8

7 8 7 8

7 87 88

g h i j k l

m n o p q r

30 kb 30 kb 30 kb 30 kb 30 kb 30 kb

Fig. 4 Integrated SHAP analysis identifies distinct elements associated with activation or repression. a–c Top decile of SHAP values for all pairwise
distances from all ON cells for each gene model Ubx, abd-A, Abd-B. Selected regions of interest highlighted in numbered boxes 1–6. d–f Bottom decile
of SHAP values for all pairwise distances from all OFF cells for each gene model, in parallel to a–c. g–l −log10(P value) maps of SHAP values (a–f).
m–o Median distance among the top decile of SHAP values in a–c. p–r Median distance among the bottom decile of SHAP values d–f. Numbered boxes
mark regions of interest discussed in the text.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23831-4

8 NATURE COMMUNICATIONS |         (2021) 12:3423 | https://doi.org/10.1038/s41467-021-23831-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


domain when active, as hypothesized previously33. In addition,
significantly slightly elevated SHAP values extend downstream of
the promoter to the intronic enhancers in a contact-dependent
fashion in both maps (Fig. 4a). These intronic enhancers are
necessary to maintain the lower levels of Ubx observed in the
posterior-thoracic body segment, a small subset of cells in the
data44,45.

Long-range interactions between the Ubx control regions and
the region around abd-A and downstream of Abd-B all show
statistically elevated SHAP values in both ON and OFF-predictive
maps (Fig. 4a, box 4). In the ON case, these values are associated
with large distances and in the OFF case with small distances
(Fig. 4a), similar to the contact-dependent silencer element in our
simulation (Fig. 3g). Interestingly, the degree of asymmetry in the
strength of the SHAP values for the contact-dependent silencing
in the simulation is not recapitulated in the data. This would arise
if the absence of the repressive contact is alone permissive of
transcription in some cells without enhancer–promoter activa-
tion. Intriguingly, these long-range contacts predictive of
repression involve two regions rich in polycomb response
elements (PREs). Classically, PREs are known to maintain local
repression53,54, though some evidence suggests long-range
PRE–PRE interactions may facilitate stronger silencing55–58.

Similar patterns of domains of enhancer–promoter and
enhancer–enhancer proximity are observed in the predictive
patterns for abd-A and Abd-B (Fig. 4b, c), for example, the
domain spanning the abd-A gene and its enhancers (Fig. 4b, box
5) or the downstream regulatory region of Abd-B (Fig. 4c, box 6).
Although it is general proximity among regulatory elements that
the network finds predictive, the Abd-B regulatory locus provides
a more-complex picture where separation of some elements is
favored (Fig. 4c). This may reflect the altered regulatory structure
where, in some Abd-B expressing cell types, more proximal
regulatory elements remain silent and must be bypassed by more
distal elements to activate the promoter44. There is some
significant elevation of SHAP values around the genes that are
not being predicted. As a significant number of cells in posterior
body segments transcribe one or more of these genes at once,
whereas the anterior segments repress all three, these values may
reflect the network has learned to factor in this co-expression in
prediction rather than a cis-regulatory interaction, an indirect
effect of cell type. They may also reflect cis-regulatory interactions
between the regulatory domains of each gene that were masked in
previous genetic studies by the effects on the primary target genes.

The integrated distance maps associated with the OFF state
share an interesting pattern for all three genes. Sequences within
~50 kb of one another (box 7) typically show notable separation
(>500 nm) when their relative distances are at their most
predictive of the OFF state (Fig. 4d–f). Sequences 50–200 kb
(box 8) apart typically show close proximity (<200 nm) when they
are at their most predictive values. This latter observation,
proximity of distal elements, indicate compaction of the domain,
a structural feature previously observed for Pc-repressed
chromatin9,10,28–30,59. This observation indicates the network
has identified compaction as a repressive feature. However, the
form of compaction that the CNN finds most predictive is
unusual, in that relatively large distances (>500 nm) are preferred
among proximal (<50 kb) elements at the same time that small
distances are preferred among distal elements (p < 1e-20, one-
sided Wilcoxon rank-sum test, box 7 vs. box 8, for each Ubx, abd-
A, Abd-B) (Fig. 4d). This surprising inverted architecture suggests
a solution for the paradox of separating enhancers and promoters
while compacting the overall domain. Such unusual compaction
also places significant constraints on the molecular mechanisms
which achieve it. For example, it is inconsistent with textbook
depictions of heterochromatic compaction into 30-nm or larger

organized fibers60, and is generally more consistent with a
polymer in a confined volume61.

Higher-order chromatin interactions inform CNN transcrip-
tion predictions. Next, we investigated if the CNN learned about
more-than-pairwise interactions that are predictive of transcrip-
tion, such as the formation of enhancer hubs. To benchmark the
ability of our approaches to unpack this information from the
CNN, we started by comparing results from two simulations that
differed only in the cooperativity among contacts. For a non-
cooperative example, we considered the model with two enhan-
cers introduced in Fig. 3a. We compared this with a modified
version in which individual enhancer–promoter contacts had
only a minor bias to the ON state (10%) but simultaneous contact
of both enhancers had a substantial bias (80%), simulating a
cooperative effect from hub formation.

To quantify the degree of cooperativity learned by the model,
we computed for every pair of genomic positions (a,b) that had
high SHAP values in an individual ON cell (top percentile), the
frequency that any other pair (c, d)~=(a, b) also had high SHAP
values (top percentile). In simulated data produced under the
cooperative model, we observe, for interactions between E1 and P,
(a= 5, b= 20) this produces a map with a clear punctum
connecting P and E2 (a= 20, b= 35), but no peak in the non-
cooperative case (Supplementary Fig. 12a). We computed such
interaction maps across all possible combinations of four points
(Supplementary Fig. 12b). We summarized this large interaction
space by averaging over all possible (a, b), creating a simpler map
of which pairs exhibit cooperativity with any other pairs
(Supplementary Fig. 12c, Fig. 5a–f). In data from the cooperative
model, reveals that both E1–P and E2-P have higher-order/
cooperative interactions with another position (Fig. 5a). In the
data from the independent enhancer simulation, we observe
much weaker peaks (Fig. 5d). The peaks are non-zero owing to
the uncorrected polymer effects—when E1–P is predictive, the
distances between more distant parts of the polymer are also
predictive, though weaker. The cooperative interactions are
statistically signficant at and around the E–P contacts (p < 0.01)
and not particularly significant for interactions that do not
involve the cis-regulatory elements or their immediate neighbors
(p > 0.01) (Fig. 5b). The map of the inter-element distances
associated with these cooperative interactions has small median
distances (Fig. 5c), indicating that these are cooperative contacts.
Notably, if we examine the highly negative SHAP values among
the OFF cells, we see the opposite result. Now the independent
enhancer model shows cooperativity (as the enhancers must both
be disengaged from the promoter in the same cell to be likely
OFF), and the corresponding distance map confirms this
cooperative effect is for separation (Fig. 5g–l).

We next applied this approach for detecting the contribution of
hub-like interactions to predict transcription to our experimental
data (Fig. 6a–r). In the case of Ubx, much of the map shows
evidence of statistically significant cooperative interaction, though
the strength of such interaction for any position is weaker than
that used in our model simulation (Fig. 5a vs Fig. 6a). This broad
cooperativity indicates that higher-order contacts play a sig-
nificant role in the CNN’s performance, beyond the simple
pairwise associations discussed in Fig. 4. For example, we found a
modest degree of cooperativity among upstream enhancers
(Fig. 6a, box 1), which is significant (p < 0.01) and corresponds
to the physical proximity of the enhancer and promoter region
(<150 nm) (Fig. 6g, m, box 1). No significant cooperativity was
detected among the intronic enhancers (Fig. 6a, box 2). The
regions with the strongest cooperative effects are distances
between the entire Ubx regulatory unit and the regulatory regions
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of abd-A and Abd-B (Fig. 6a, g, m box 3). These distances are
substantial (>300 nm), indicating a simultaneous physical separa-
tion of the Ubx regulatory region from the control regions of abd-
A and Abd-B is predictive of the active transcription of Ubx. For
predicting the OFF state, a moderate dependence on more-than-
pairwise distances is seen throughout the map, with few hotspots
(Fig. 6d, j, p). The distance map reveals opposite cooperative
behaviors for linearly proximal vs. distal elements. Enhancers and
other proximal sequences are simultaneously far from the
promoter in the OFF state (Fig. 6d–r). Meanwhile, long-range
(in terms of linear sequence) interactions show the most
cooperativity when they are close in 3D—indicating general
compaction of the domain and not just isolated long-range
contacts with potential cis-regulatory silencers (Fig. 6d, p). Close-
range interactions show the most cooperativity when they are far
apart in 3D from one another (Fig. 6d, p), emphasizing the
inverted structure of repressed chromatin discussed above. Both
abd-A and Abd-B share this general pattern of cooperative,
moderate distance separation among long-range interactions in
ON cells (Fig. 6b, c, n, o), the proximity of long-range elements in
OFF cells, and separation of close-range elements in OFF cells
(Fig. 6e, f, q, r).

Discussion
Here we have introduced a deep learning approach for the ana-
lysis of paired super-resolution imaging of chromatin and nascent
transcription data. Our approach is not dependent on prior
assumptions about how chromatin structure influences tran-
scription or reliant on arbitrary thresholds, in contrast to many
previous approaches. Importantly, the method is capable of
teasing out combinatorial regulatory mechanisms and hier-
archical relations in this regulation, as validated with our use of
simulated regulatory architectures.

Although a powerful way to identify previously unappreciated
predictive features in the data, machine learning approaches and
CNNs have several notable limitations. The degree to which we
can unpack what the approach has learned remains incomplete,
despite recent improvements in this area such as the SHAP
approach we have adapted here. Compared with the mathema-
tical descriptions of laws of physics, for example, it is difficult to
build similarly deep intuition from a well trained machine
learning algorithm. Most importantly, where a mechanistic
mathematical model makes clear assertion of causation; the useful
features, identified by unpacking the CNN, do not distinguish
purely correlative from causative inputs. Nonetheless, it can
highlight features in the data previously unappreciated, and we
are excited to test experimentally the transcriptional importance
of several structural features identified here.

Applied to the available data, the method has identified mul-
tifaceted aspects of chromatin structure that are predictive of
transcription. Many of these predictive features receive little
attention in existing models or hypothesis-driven investigations
of animal gene regulation, which tend to emphasize single master
control elements, such as super-enhancers and locus-control
regions. We found structural features that predict active tran-
scription in the BX-C domain are highly spatially distributed.
Although enhancer–promoter proximity did emerge from the
unbiased approach as predictive of transcription activity, we
found no single element is especially informative. In contrast to
recent speculation of enhancer–enhancer interactions forming a
cooperative hub62–64, the predictive accuracy of the CNN did not
depend appreciably on cooperative interactions. We speculate
that other genes regulated by enhancer clusters (also called super-
enhancers) may also function through independent rather than
synergistic interactions. In addition, CNN found that cis-element

proximity is important in the BX-C, contrasting recent sugges-
tions, based on analysis of gene loci distinct from these, that cis-
interactions may occur without change in proximity between
regulatory elements23,65. These differences may reflect different
classes of cis-interaction that are proximity-dependent or
independent.

Although the majority of discussion surrounding chromatin
structure’s effect on developmental gene expression has focused
on transcription activation, our approach also identified diverse
structural features in the BX-C predictive of silencing. We spec-
ulate that some of these features may represent structural
mechanisms of repression of relevance to genes beyond the BX-C
as well. These features included a compact state, previously
associated with Polycomb repression66,67 a surprising inverted
domain architecture, and specific long-range cis-regulatory con-
tacts. The inverted organization is reminiscent of a polymer
confined within a volume of diameter much smaller than the
polymer length with sufficient time to equilibrate61 and consistent
with prior sub-domain analysis of Pc-repressed chromatin28. This
organization may reflect the mechanisms of repression and is
consistent with the formation of a spatially segregated compart-
ment. Long-range (>5 kb) cis-regulatory contacts associated with
repression, like those identified by the CNN, have been largely
ignored in our understanding of development, though emerging
work suggests they are more common and important than pre-
viously appreciated68. Notably, the repressive interactions iden-
tified by the CNN connect PRE-rich sequences. Although PREs
are largely thought to function in a local manner53,66, recent
genetic analyses have found certain PRE–PRE cis-contacts (at
other Drosophila genomic loci) contribute to more robust
silencing53,56,57,66. Furthermore, we found physical proximity of
linearly distal elements associated with repression tended to be
cooperative, in contrast to the enhancer–promoter proximity
associated with activation. This is consistent with a model in
which individually rare, long-range contacts cooperatively rein-
force a silent state.

Collectively, these observations have broad implications for our
understanding of the links between chromatin structure and gene
regulation and the approaches we use to study them. Given the
distributed nature of the regulation uncovered by our analysis, we
suggest that the existing reliance on pairwise methods, such as
proximity ligation used in 3C approaches and pairwise analyses
common in microscopy approaches, have provided a skewed
view of transcriptional regulation which over-emphasizes
enhancer–promoter contact. Supporting such a view, increasing
genetic evidence has advocated for this more distributed, inte-
grated view of transcriptional regulation in which redundancy is
the norm, and even proximal elements may have separable,
redundant functions that contribute to the robustness of
expression69–75. Similarly, consistent with CNN’s emphasis on
structures predictive of the repressive state, recent data also sup-
port a major role for developmentally regulated repression that
extends beyond simple enhancer decommissioning to expand
our view of regulation beyond this focus on individual
enhancer–promoter interactions56,57,68.

The development of high-resolution, high-throughput, mul-
tiplexed imaging methods now provides an excellent opportu-
nity to test hypotheses and models of more-complex
interactions between genome folding and transcriptional reg-
ulation. Although the availability of these data sets is currently
sparse33,34, we expect to see considerable growth in these types
of data in the near future and an increasing demand for com-
putational approaches to leverage these data sets. Given the
depth and complexity of these data sets, we expect machine and
deep learning approaches will play an increasingly valuable role
in their interpretation.
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Methods
Statistical analyses
P value calculation. Wilcoxon tests: One-sample Wilcoxon signed-rank tests were
used to compare the median of a population against an expected or standard value.
The R function wilcox.test from the stats package was used for all one-sample
Wilcoxon signed-rank tests. P values are calculated by normal approximation with
the R function wilcox.test. Two-sample Wilcoxon rank-sum tests (equivalent to the
Mann–Whitney test in the R implementation) were carried out to compare whe-
ther the two-sample distributions (not paired) have a median shift greater than the
null hypothesis (parameter mu, default = 0). P values are calculated by normal
approximation with the R function wilcox.test.

Kolmogorov-Smirnov test (K-S test): Two-sample K-S tests were carried out to
test whether two samples were drawn from the same continuous distribution (null
hypothesis), else they came from different distributions, using the empirical
cumulative distribution functions of the two samples. The R function ks.test from
the stats package was used to carry out all K-S tests.

Polymer normalization. 3D polymer coordinates were converted to pairwise dis-
tance matrices by calculating pairwise distances between all pairs of barcodes in
order to remove the effect of stochastic rotation on the data. The data set was then
split into train/validation/test sets with 60/20/20 proportions. All examples were
then standardized to the training set mean and standard deviation.

Details of normalization can be found at:
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

CNN/KFoldXVal/KfoldXvalAbdA/src/ReadData.py
Missing data in individual examples was handled by applying linear

interpolation to adjacent barcodes to estimate the position of the missing barcodes.
Code for missing value imputation can be found at:
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

DataPreprocessing

Simulations
Molecular dynamics polymer simulation. To perform simulations of 3D DNA
structures with known RNA labels, the openmm76 package () was used to perform
molecular dynamics simulations of polymers resembling DNA, as well as force
calculation functions from the python library for simulating chromatin polymers
developed by the Mirny lab77. Polymers were constructed from 52 bonded
monomers with no self-attraction. Forces applied to these monomers included a
density (to simulate nuclear constraint) and a repulsion force at close distances
between monomers. In total, 500 individual, unique polymer simulations were run
in a thermodynamic space for 100 timesteps of 100 simulation steps each. The
polymer trace of each timestep was taken as a separate example, resulting in 50000
individual simulated examples. The simulated data set was then split into train/dev/
test with proportions of 60/20/20.

Parameters for the energy functions in these simulations, as well as all other
parameters set in the polymer simulations, are recorded at:

https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/
PolymerSimulation

Binary contact hypothesis simulation. Labels were generated for the binary contact
hypothesis simulation by measuring the 3D distance between monomers 20 and 40
(designated enhancer and promoter) for each example. To match the class
imbalance of the ORCA data, distances were ranked and the polymer examples
with the top 30% smallest distances were assigned a label of ON. The remaining
polymers were assigned a label of OFF. Each example had a threshold percentage
chance of being assigned a random label with 50% probability (ON or OFF). If a
polymer was not assigned a random label, it was then assigned as per the binary
contact rules.

Preprocessing script for the binary contact simulation can be found at:
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

CNN/RandomPolymerControl/process_scripts/
process_polymers_noise_binary_contact.py

Global compaction state hypothesis simulation. Labels were generated for the global
compaction state hypothesis simulation by measuring all pairwise distances of all
monomers and calculating the median distance. Median distances were then
ranked, and polymer examples with the top 30% distances were assigned a label of
ON. The remaining polymers were assigned a label of OFF. Each example had a
threshold percentage chance of being assigned a random label with 50% probability
(ON or OFF). If a polymer was not assigned a random label, it was then assigned as
per the rules for the global compaction rules.

Preprocessing script for the compaction simulation can be found at:
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

CNN/RandomPolymerControl/process_scripts/
process_polymers_noise_compaction.py

Hierarchical simulations. An additional, more-complex simulation was designed to
test the capabilities of the interpretation methods to disentangle interacting and
hierarchical rules. This simulation contained four elements: one promoter (P) at

position 20, two enhancers (E1, E2) at positions 5 and 35, and finally one silencer
(S) at position 45.

Two variations on this simulation were run: a non-cooperative simulation, and
a cooperative simulation. Contact thresholds were set to result in a similar ON/OFF
proportion as the real data.

Non-cooperative: Either enhancer could activate the promoter with equal
probability (0.8) by being in contact. However, the silencer’s presence close to the
promoter silenced the gene with high probability (0.8) regardless of whether an
enhancer was in contact or not.

Preprocessing script for the non-cooperative simulation can be found at:
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

CNN/RandomPolymerControl/process_scripts/
process_polymers_multi_no_coop_move_S_in.py

Cooperative: Either enhancer can activate the promoter with equal low
probability (0.1) by being in contact, however if both enhancers are simultaneously
in contact, the promoter has a high probability of being activated (0.8). However,
the silencer’s presence close to the promoter silences the gene with a high
probability (0.8) regardless of whether either or both enhancers were in contact
or not.

Preprocessing script for the non-cooperative simulation can be found at:
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

CNN/RandomPolymerControl/process_scripts/
process_polymers_multiway_move_S_in_v2.py

Simulating effects of non-structural features. In order to simulate the addition of
non-structural regulation of gene expression state in the polymer simulations,
structures were assigned to expression states based on a probabilistic model. Each
example had a 50% (or for Supplementary Fig. 7: 25% and 75%, respectively)
chance of being assigned a random label, and if an example was selected to be
assigned a random label, it had equal chance of being assigned either ON or OFF. If
a polymer was not assigned a random label, it was then assigned as per the rules for
either the binary contact hypothesis or the global compaction state hypothesis.

Machine learning models
Random forest. RF is an ensemble machine learning algorithm that utilizes the
creation of many individual decision trees, each working on a subset of input
features, and in the classification problem these individual trees then vote on the
optimal classification for an example. RFs have been shown to rival neural network
performance in Kaggle competitions.

The RF model was built using the scikit-learn ensemble package78, specifically
the RandomForestClassifier object. The input data were a flattened matrix of
pairwise distances, as in the CNN but vectorized for input to the RF, and the output
was either ON or OFF.

An optimal RF model was chosen using a hyperparameter search over the abd-
A fit model, in parallel to the CNN hyperparameter search. Of all, 150 models were
run, and the optimal RF model chosen by the validation set AUC (ROC). Code for
the hyperparameter search of the RF model, and details of training, can be
found at:

https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/
RandomForestBest

https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/
RandomForestParamSearchAbdA

Once the best set of hyperparameters was chosen, the optimal RF model was
trained on data for each of the three genes of interest, and final results measured on
the test set, which is held out entirely during both training and hyperparameter
selection.

Deep learning models. All deep learning models were built from the Tensorflow
(v2.2)79 and Keras (v2.3)80 python (3.6–3.8) packages as the base. The normalized
pairwise distance map input data set was split into train/dev/test with a 60/20/20
proportion. Test examples were not fed to the network until evaluation time, after
hyperparameters had already been set.

Dense neural networks. DNN models were built with Tensorflow. Initialization,
architecture construction, parameter ranges, activations, and classification were all
implemented using standard methods. Exact architecture details and schematics of
tested DNN architectures can be found in Supplementary Fig. 2.

Exact specification and detailed parameterization of the DNN implementations
for each gene model can be found at:

https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/
BestFCNNXVal

Convolutional neural networks. CNN models were built with Keras. All CNN
models consisted of alternating convolutional and max pool layers with batch
normalization and ReLu activations (for convolutional layers). The final layer of
each model consisted of a Dense fully connected layer with a sigmoid function
activation for binary classification. Exact architecture details and schematics of
tested CNN architectures can be found in Supplementary Fig. 2.
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Exact specification and detailed parameterization of the DNN implementations
for each gene model can be found at:

For gene models:
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

CNN/KFoldXVal
For simulation models:
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

CNN/RandomPolymerControl

Regularization and optimizer. The optimizer chosen for all deep learning models
was a variant of the standard Adaptive Moment Estimation (Adam)81: the
AdamW82 optimizer, which adds a weight decay term to the weight update and
helps to prevent spurious overfitting during training. The additional parameter of
weight decay was optimized during the hyperparameter search, as were all
hyperparameters, and results can be found in Supplementary Data 3.

Evaluation metrics. Because both the ON and OFF classes are important to this
problem, the central metric to compare model performance was AUC (ROC).
Precision, recall, and f1 score were also evaluated, and all metrics for the top-
performing model can be found in Supplementary Fig. 4a. Confusion matrices
showing counts of true positive, true negative, false positive, and false negative calls
can be found in Supplementary Fig. 4b.

Hyperparameter search. A grid hyperparameter search was performed for the initial
testing of fully connected and convolutional neural net single-gene models. Values
within a reasonable range for each hyperparameter were tested at equal intervals,
with all possible combinations tried. The best model was then chosen based on the
optimal dev set AUC (ROC) score for the abd-A gene, and evaluated on the test set.
The sorted table of the top 50 models and all associated hyperparameter values can
be found at Supplementary Data 3. Schematics of architectures that appeared
within the top 50 models of the hyperparameter search can be found at Supple-
mentary Fig. 2.

All details of the hyperparameter search, including all hyperparameters tested
and all values of these hyperparameters, can be found at:

https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/
OriginalHyperParamSearch

The best-performing model (architecture and tuned hyperparameters) was then
used for all subsequent instances of model training. This optimal model was then
trained individually for each gene and simulation data set. Tenfold cross-validation
was performed on all final neural network models. Results of cross-validation can
be found at Supplementary Data 2.

Details of cross-validation implementations can be found at:
For gene models:
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

CNN/KFoldXVal
For simulation models:
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

CNN/RandomPolymerControl
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

CNN/KFoldBlanking/KfoldXvalBinContactSim_121019
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

CNN/KFoldBlanking/KfoldXvalCompactionSim_121019

Data sufficiency analysis. Data sufficiency analysis was performed for the best abd-
A CNN model to examine whether the number of examples within the ORCA data
set was indeed sufficient for robust neural network training. Subsets of data were
removed from the training set, and the AUC (ROC) was calculated after training
and testing the model on the reduced data set. To remain comparable, all AUC
(ROC) values were calculated on the same dev set, which was held out from
training of all models. Results of data sufficiency analysis can be found at Sup-
plementary Fig. 3.

Details of data sufficiency analysis can be found at:
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

CNN/KFoldXVal/KfoldXvalAbdA/src/ModelDriver.py

Robustness to experimental noise. The robustness of the training algorithm to
experimental noise (Fig. 1f) was assessed by adding random jitter to all points along
with the measured polymer for all measured data prior to training.

Model interpretation. Model interpretation and analysis of barcode importance to
final model prediction were assessed with two methods for all CNN models.

Blanking analysis. Barcodes in windows of a specific size in the test set pairwise
distance matrices were “blanked”, or set to normalized data set average, and the
obfuscated data was passed through the fully trained model and an AUC (ROC)
was calculated. This AUC was then compared with the base AUC for the test set
with all data present. The window was then shifted with a step size of 1 and the
process repeated. Additional window widths were tested from 1 to 30. For the
multi-class model, the AUC (ROC) for each class was calculated. This simulated a

loss of data, as in image obscuring methods for CNNs83–85. By drop-in AUC score
after obfuscation, the effect of those blanked barcodes’ presence could be assessed
empirically. These AUCs were then converted to a normalized predictability score,
where 100 corresponded to AUC equal to the case without any data blanking, and 0
represented random performance. Error bounds were calculated by 10-fold
resampling of train/test sets, and the standard error of the mean was calculated for
each window over the normalized predictability scores of each of these test results.

Details of blanking analysis implementation for all models can be found at:
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

CNN/KFoldBlanking

SHAP-based interpretability analysis. SHAP46, or SHapley Additive exPlanations, is
a set of methods to explain the output of deep learning and machine learning
models. The method GradientExplainer46 was used to find the most important
pixels in the individual test set examples for each possible class outcome. The top
true positive images for each class were selected, and the SHAP values plotted after
the data and model were analyzed by GradientExplainer with a reference set of the
training set. These were then qualitatively analyzed for indications of class-specific
important distance map patterns in the data.

Implementation of SHAP-based interpretability analysis and parameterization
for GradientExplainer can be found at:

For gene models:
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

CNN/DeepGradientGenes
For simulation models:
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/

CNN/RandomPolymerControl
Top decile Aagregate SHAP analysis: Aggregate ON SHAP maps was generated

by plotting a new map of the average of the top decile of SHAP values obtained
across any ON cell for each interaction in the matrix. Associated distance matrices
were generated by plotting the median distance among interacting pairs from the
top decile of SHAP values. In parallel, OFF aggregate SHAP maps were generated
by plotting the average of the bottom decile of SHAP values obtained across all
OFF cells for each interaction in the matrix, and associated median distances for
OFF cells were also plotted.

Cooperativity analysis: Quantification of cooperativity was done by computing,
for each pair of positions (a,b) with high SHAP values in example, the frequency of
any other pair of positions (c,d) also having had high SHAP values in the same
examples. High SHAP values were defined as being within the top percentile of
SHAP values at that position across the population. These cooperativity
measurements were then summarized in a map of average cooperativity by taking
the average frequency of position (a,b), demonstrating cooperativity with any other
interaction (c,d).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data set used consists of 54,365 independent measurements of WT Drosophila
melanogaster (8–12 hr) embryo single-cell 3D DNA traces (ORCA) paired with single-
molecule intronic RNA FISH readouts for three genes (Ubx, abd-A, Abd-B), published in
Mateo et al.33. Intronic RNA FISH intensities for all three genes were binarized as
nascent transcripts detected (ON) or not detected (OFF). These data are available here:
https://zenodo.org/record/4741214. Code for data set preprocessing can be found at:
https://github.com/aparna-arr/DeepLearningChromatinStructure/tree/master/
DataPreprocessing.

Code availability
All code used for all analysis can be found at: https://github.com/aparna-arr/
DeepLearningChromatinStructure. Code was written primarily in Python 3.8, and
depended on methods from Numpy86,87, Scikit-learn78, and Matplotlib88. Additional
supplementary code was written in MATLAB™ (R2019a) and R. The code is distributed
under the MIT license.
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