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Improved prediction of solvation free energies by
machine-learning polarizable continuum solvation
model
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Theoretical estimation of solvation free energy by continuum solvation models, as a standard

approach in computational chemistry, is extensively applied by a broad range of scientific

disciplines. Nevertheless, the current widely accepted solvation models are either inaccurate

in reproducing experimentally determined solvation free energies or require a number of

macroscopic observables which are not always readily available. In the present study, we

develop and introduce the Machine-Learning Polarizable Continuum solvation Model (ML-

PCM) for a substantial improvement of the predictability of solvation free energy. The per-

formance and reliability of the developed models are validated through a rigorous and

demanding validation procedure. The ML-PCM models developed in the present study

improve the accuracy of widely accepted continuum solvation models by almost one order of

magnitude with almost no additional computational costs. A freely available software is

developed and provided for a straightforward implementation of the new approach.
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Free energy of solvation is one of the key thermophysical
properties in studying thermochemistry in solution, where
the majority of real-life chemistry happens. In theoretical

studies of solution chemistry, estimation of free energies allows
evaluation of reaction rates and equilibrium constants of physical
or chemical reactions of interest. Nevertheless, direct evaluation
of free energies in solution can be quite challenging since it
sometimes requires appropriate sampling of phase space1–3 and
appropriate treatment of the non-covalent interactions between
the solvent and solute, which can have a remarkable impact on
electronic structures of both the solvent and solute and conse-
quently on the microscopic and macroscopic observables4,5.

Theoretical approaches for evaluating physical chemistry
behind solvation free energy can be generally divided into two
main categories, namely explicit solvent and implicit solvent
approaches. In explicit solvent approaches, solvent molecules are
treated explicitly, and the free energy is typically evaluated by
analyzing the trajectory of time evolution of phase space obtained
via molecular dynamics or Monte Carlo simulations. For that
end, a number of efficient free energy estimators have been
developed in the past decades such as thermodynamic integra-
tion, free-energy perturbation, and histogram analysis methods6.

Despite obvious advantages of applying the explicit solvent
methods such as retaining the physically proper picture of dis-
crete solvent molecules, they suffer by a number of limitations
when applied to free-energy estimation. For example, in case of
applying methods which evaluate the free energy through
alchemical transformations (e.g., thermodynamic integration or
free energy perturbation), defining intermediate states and
pathways between the endpoints appropriately can be quite
tricky7. Also, necessity of employing appropriate force fields,
which for many solute-solvent mixtures requires to develop or
reparametrize a force field, and running the simulations and
trajectory analyses can be laborious and time-taking tasks.

To overcome the mentioned limitations, the implicit solvent
approach has been developed and is widely applied as standard
method for studying solvent effects in computational chemistry.
In implicit solvent approaches, the solvent molecules are treated
implicitly as a continuous medium and the solute is placed in a
cavity of this implicitly defined solvent. The solute-solvent
interactions are then evaluated via considering the solvent
polarization due to the solute charge distribution and its resulting
potential field acting on the solute, known as the reaction field5.
For a moderate level of theory and medium-sized molecules,
implicit solvent approaches can yield a reasonable estimation of
the solvation free energy in few seconds to few minutes on a
normal desktop PC, while for explicit solvent approaches it might
take from hours to days.

The most widely applied implicit solvent approaches are those
based on the so-called polarizable continuum model (PCM)
proposed by Tomasi and co-workers8. In polarizable continuum
models, the solvation free energy is constructed by summing the
contributions of electrostatic interactions including electronic,
nuclear, and polarization interactions (ΔGENP), changes in free
energy by solvent cavity formation, dispersion energy and local
solvent structure changes (GCDS), and corrections for differences
in molar densities in the two phases compared with the standard
state (ΔG�

cons). The contributions of electrostatic interactions are
evaluated by iteratively solving the following relationship:

ΔGENP ¼ hΨ ð1ÞjH þ 1
2
VjΨ ð1Þi � hΨ ð0ÞjHjΨ ð0Þi ð1Þ

which is known as the self-consistent reaction-field (SCRF)
calculations5. Here, superscripts (0) and (1) refer to the gas and
solution phases, respectively, and V is the potential energy
operator resulting from the reaction field. Various constructions

of the potential energy operator as well as GCDS have resulted in
different continuum solvation models. The parallel existence of
several continuum solvation models is a good indicator that each
of them has its own strengths and weaknesses, and choosing a
single, optimal model is not trivial. It is totally impossible to
provide a detailed overview here; a 2005 review of implicit sol-
vation models9 covered 95 pages and cited 936 references. In the
present study, we only consider the most widely used PCM-based
models.

One of simplest and yet successful continuum solvation models
is CPCM which implements the conductor-like screening solva-
tion boundary condition within the PCM framework. In CPCM,
the following correction of the polarization charge densities by
the scaling factor x is employed10:

f ðεÞ ¼ ε� 1
εþ x

ð2Þ

where ε is the solvent dielectric constant. One main advantage of
CPCM is its much simpler defined boundary conditions. More
importantly, unlike more advanced PCM-based models which
require the normal component of the solute electric field as input,
CPCM only requires the solute electrostatic potential; for this
reason it is much less affected by outlying charge errors
(OCE)11,12. A more versatile model exploiting the conductor-like
screening solvation boundary condition is COSMO-RS, devel-
oped by Klamt and co-workers13,14, which although initially
proposed in 1995, still is one of the most accurate available
continuum solvation models. A more sophisticated treatment of
the boundary condition is implemented in the integral equation
formalism of PCM (IEF-PCM) taking into account apparent
surface charge isotropic15 or anisotropic16 dielectric continuum
solvation. Another extensively used continuum solvation model is
the SMx family of methods which specifically focuses on more
accurate estimation of the solvation free energy4,5.

We already discussed the main advantages of continuum sol-
vation models such as their efficiency in terms of computational
cost. Nevertheless, it should be noted that all this has become
possible for a considerable amount of assumptions and simplifi-
cations on the physics of the problem, such as overlooking the
conformational entropy of solvent and solute which can have a
significant contribution on the total free energy17, neglecting the
site-specific solute-solvent interactions and decoupling the polar
and nonpolar components of free energies and considering them
independent, linear and additive18,19. The inaccuracies resulting
from such simplifications are commonly compensated for via
incorporating additional macroscopic observables as well as
adjustable parameters in the solvation models. In the CPCM
model for example, this is achieved by implementing an ad hoc
modification of the atomic radii via defining a number of
adjustable parameters and empirical descriptors, such as the
number of bonded hydrogens and the number of bonded active
atoms10. In the COSMO-RS model, it is achieved by ad hoc
modification of the interaction energies and effective contact area
via some adjustable parameters14.

In contrast, in the SMx family of methods, to provide a more
accurate estimation of the solvation free energy, an ad hoc
modification of the GCDS term in (1) has been proposed. For that
end, employing additional macroscopic observables in the model
has been considered4, including the refractive index, Abraham’s
hydrogen bond acidity and basicity of the solute, macroscopic
surface tension of the solvent at the air/solvent interface at 298.15
K, the square of the fraction of solvent atoms that are aromatic
carbon atoms, and the square of the fraction of solvent atoms that
are F, Cl, or Br. Although these employed macroscopic obser-
vables indirectly introduce more physics into the model and
hence provide the chance to make predictions of solvation free
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energies more universal, except for the last two they are not
readily available for many new compounds and their experi-
mental or theoretical evaluation is not straightforward.

In a number of recent studies, Machine Learning (ML) has
been exploited to map the highly complicated relationship
between solvation free energy and potentially relevant macro-
scopic or microscopic observables.

Wang et al. employed a pool of 30 molecular representations
which all are either per atom reaction field energies or partial
charges, as the input of the learning-to rank (LTR) machine
learning algorithm, resulting in a root mean squared error
(RMSE) of 1.05 kcal/mol18. Borhani et al. developed a QSPR
model which requires 12 experimentally determined properties of
solvent and 9 QM derived representations of solute as model
input, yielding a Mean Unsigned Error (MUE) of 0.43 kcal/mol20.
Hutchinson and Kobayashi proposed a structure property rela-
tionship for prediction of hydration free energy which yields a
RMSE of 1.65 kcal/mol21.

Another recent example is the kernel-based machine learning
model of Rauer and Bereau which is developed to predict the free
energy of solvating small organic molecules containing C, H, O,
and N atoms in pure water via implicit-solvent molecular
dynamics simulations22. For a 39-parameter model they reported
a MUE of 1.06 kcal/mol.

The most recent example of employing machine learning for
prediction of solvation free energy is the model developed by
Vermeire and Green23. Their model is developed based on the
transfer of knowledge learned through one million data of QM
evaluated free energies and fine tuning it to accurately reproduce
the experimentally determined solvation free energies. They
reported a MUE of 0.21 kcal/mol for their model which is cur-
rently the most accurate ever reported result for prediction of
solvation free energy.

In the present study, we propose a machine-learning-based
PCM model, which, similar to other conventional continuum
solvation models, is based on considering the solvent as a con-
tinuous medium and calculating the solvation energy components
of a solute placed in the cavity of this medium by the SCRF
procedure. Nevertheless, unlike the conventional PCM models
which propose simple and ad hoc expressions to integrate and
modify those calculated energy components, we employ machine
learning for this purpose and show its efficiency in substantial
improvements of the predictability of solvation free energy.

Results and discussions
After setting up and training the neural networks and screening the
appropriately trained models via the post-validation strategy dis-
cussed in the previous section, the best results with MUE of 0.52526
and 0.40011 kcal/mol were observed for the computations at
B3LYP/6–31 G* and DSD-PBEP86-D3/def2TZVP levels of theory,
respectively. The two models employed SCRF energy components
and solvation free energy computed via CPCMx=0.5 solvation model
in both cases and 100 and 130 hidden layer neurons, respectively.
These two models are denoted by ML-PCM(B3LYP) and ML-PCM
(DSD-PBEP86) hereafter, respectively. Details of the selected input
variables and implementation instructions for all selected models
are provided in Supplementary Software 1. These results show a
substantial improvement compared to the original continuum sol-
vation model CPCMx=0.5, which for the same dataset yielded MUE
of 3.1611 and 2.9130 kcal/mol, respectively.

In comparison to the SMD model, which for the same dataset
and solvation free energy computations at B3LYP/6–31 G* and
DSD-PBEP86-D3/def2TZVP levels yields MUE of 0.78623 and
0.85396 kcal/mol, respectively, the obtained results still show a
higher accuracy, without requiring additional solvent parameters

needed in the SMD approach. In comparison to the MUE of
0.4214 kcal/mol reported by Klamt and Diedenhofen24 for
employing one of the recent versions of the COSMO-RS model for
the same dataset, the ML-PCM(DSD-PBEP86) provides a slightly
higher accuracy. Also, in terms of maximum unsigned error, the
two ML-PCM models which yield maximum unsigned error of
6.2252and 3.8799 kcal/mol, respectively, are more accurate than
that of COSMO-RS for which this value is 6.8701 kcal/mol. For
other continuum solvation models studied for the same dataset,
the maximum unsigned error of the SMD, PCM, CPCM and
CPCMx=0.5 were 11.311, 12.75, 12.2, 12.6 kcal/mol for B3LYP/
6–31 G* and 11.311, 12.83, 12.31, 12.68 kcal/mol for DSD-
PBEP86-D3/def2TZVP levels of theory, which are all substantially
higher than those achievable by the ML based models.

The higher accuracy of the predicted solvation free energies by
the COSMO-RS model compared to the other conventional sol-
vation models also motivated us to study neural networks which
take SCRF energy components computed via PCM or CPCM
models in addition to the solvation free energies predicted via
COSMO-RS as neural network feeds. For these updates, the best
results with MUEs of 0.26057 and 0.24387 kcal/mol and max-
imum unsigned errors of 7.1349 and 2.9154 kcal/mol were
obtained for energy components calculated via CPCMx=0.5 and
CPCM solvation models, 130 and 120 hidden layer neurons, and
computations at B3LYP/6–31 G* and DSD-PBEP86-D3/
def2TZVP levels of theory, respectively. These two models, which
are denoted by ML-PCM/COSMO-RS(B3LYP) and ML-PCM/
COSMO-RS(DSD-PBEP86) hereafter, respectively, show a
remarkable improvement in predicted solvation free energy
compared to those obtained via the original implementation of
COSMO-RS reported by Klamt and Diedenhofen24. This implies
considerable flexibility of the proposed approach in improving
accuracy of various solvation models. Nevertheless, it should be
noted that the solvation free energies evaluated by COSMO-RS
which were used as additional model inputs in the present study
were evaluated using the 2015 version of that method. Using free
energies evaluated by more recent versions of COSMO-RS and
also the energy terms computed with this method, will probably
result in more accurate predictions of the solvation free energy by
the presented ML-PCM.

As the most important parameter in developing ANN models,
we studied the impact of the selected number of hidden layer
neurons on the performance of the developed machine learning
models. As can be seen in Fig. 1, by increasing the number of
hidden layer neurons, the predictability of the solvation free
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Fig. 1 MUE of developed ML-PCM/COSMO-RS(B3LYP) models versus
the number of hidden layer neurons. The general trend shows the reducing
pattern in MUE with increasing the size of the neural network model.
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energy is generally improved. This is due to the larger number of
adjustable parameters of the resulting models and their conse-
quently higher flexibility to map complicated functionalities.
However, at the same time this may reduce the extrapolation
capability of the model, i.e., it may reduce performance when
applied to samples remarkably different from those already
examined in developing the models.

To investigate the impact of the number of hidden layer neu-
rons on extrapolation performance of the models developed in
the present study, we re-examined the trained models for out-of-
sample predictions, following the approach proposed by Ver-
meire and Green23. For that end, we compared the results of
models for which a group of samples with either a specific ele-
ment or a specific solvent were included in the training dataset
with the same models trained with a dataset excluding that spe-
cific group of samples. We studied out-of-sample prediction
performance for 20 solvents and 6 solute elements most fre-
quently encountered in our studied dataset. The obtained results
are reported in Tables 1 and 2. According to the results, the
developed models show an excellent extrapolation capability for
out of sample predictions of solvent splits, while for the element
splits, the extrapolation is slightly less accurate. Furthermore,
except for the element Br, the out-of-sample predictions tested for
ML-PCM/COSMO-RS(B3LYP) are within chemical accuracy.

A comparison of predicted and experimentally determined free
energies is depicted in Fig. 2. As can be seen, the linear correlation

between the predicted and reference data is more evident for the
newly derived models, compared to the conventionally accepted ones.

The overall results obtained via newly developed ML models
are compared with various other models proposed in the litera-
ture in Table 3. Although a more informative comparison would
be possible if different models were compared for the same
dataset and, if applicable, the same level of theory, the larger size
of the benchmark dataset used in the present study compared to
most of the other works confirms the superior accuracy of the
newly proposed method compared to the majority of the widely
accepted ones. In comparison to the model developed by Ver-
meire and Green23 which yields MUE of 0.21 kcal/mol, our
results are slightly less accurate, but it should be noted that our
results are obtained for a much lower number of neurons and
model parameters.

Furthermore, it should be noted that the inaccuracies inherent in
the reference data of solvation free energies (Aleatoric uncertainty)
can also impact both the training efficiency and inferences about
model performances, as pointed out by Vermeire and Green23.

To summarize, we have demonstrated substantial improve-
ments of continuum solvation models in evaluating solvation free
energy with the help of machine learning. For that end, we pro-
posed a more versatile machine learning assisted integration of the
continuum solvation energy components calculated in SCRF
computations which can be used to modify the predicted solvation
free energy by various solvation models. It allowed us to achieve

Table 1 Out-of-sample predictions for solvent splits.

ML-PCM/COSMO-RS(B3LYP) ML-PCM/COSMO-RS(DSD-PBEP86)

Solvent Nr. Samples MUE (solvent included) MUE (solvent excluded) MUE (solvent included) MUE (solvent excluded)

Water 261 0.13921 0.53856 0.12724 0.52107
n-Octanol 199 0.21116 0.40528 0.19416 0.34079
n-Hexadecane 184 0.47931 0.63312 0.42914 0.38652
Chloroform 102 0.2962 0.33126 0.27975 0.28894
CycloHexane 88 0.27941 0.30729 0.30521 0.35877
CarbonTetraChloride 73 0.37704 0.38958 0.30407 0.31146
Benzene 71 0.21953 0.24581 0.37323 0.52627
DiethylEther 66 0.23975 0.29187 0.22181 0.22156
Heptane 64 0.41215 0.4795 0.2033 0.19233
n-Hexane 57 0.19548 0.19648 0.28332 0.3775
Toluene 49 0.22219 0.20023 0.31435 0.33986
Xylene-mixture 46 0.25694 0.22309 0.27209 0.27789
DiChloroEthane 37 0.38469 0.49085 0.22075 0.28748
n-Decane 37 0.21171 0.25761 0.15559 0.17148
ChloroBenzene 36 0.2183 0.2374 0.20119 0.22425
n-Octane 35 0.13265 0.13455 0.17431 0.19447
2,2,4-TriMethylPentane 32 0.2097 0.20388 0.23426 0.23618
EthylBenzene 27 0.20878 0.23166 0.20471 0.24331
BromoBenzene 24 0.16054 0.22188 0.13648 0.18478
Decalin-mixture 24 0.39408 0.44484 0.31164 0.33004

Table 2 Out-of-sample predictions for element splits.

ML-PCM/COSMO-RS(B3LYP) ML-PCM/COSMO-RS(DSD-PBEP86)

Element Nr. Samples MUE (element included) MUE (element excluded) MUE (element included) MUE (element excluded)

N 611 0.25549 0.40139 0.25486 0.37139
F 81 0.29188 0.38812 0.32345 0.48087
P 62 0.12927 0.64773 0.20648 0.95936
S 91 0.26592 0.50868 0.29104 0.53079
Cl 174 0.25295 0.5194 0.17956 0.47383
Br 102 0.25005 1.4559 0.26268 0.91972
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accurate predictions of solvation free energy with MUE as low as
0.2439 kcal/mol for a large dataset of 2493 binary mixtures of 435
neutral solutes and 91 solvents from diverse chemical families.

Methods
Dataset. To benchmark our results, we used the solvation free energy data of 2493
binary mixtures of 435 neutral solutes and 91 solvents from diverse chemical
families available in the Minnesota solvation database4. The full list of the studied
samples can be found as Supplementary Data 1.

Computational details. The performance of models is reported as mean unsigned
error (MUE) and root mean squared error (RMSE) defined as:

MUE ¼ 1
N
∑ yexpi � ypredi

���
���

� �
ð3Þ

RMSE ¼ 1
N
∑ yexpi � ypredi

� �2
� �� �1

2 ð4Þ

where yexpi and ypredi are experimentally determined and predicted solvation free
energies, respectively.

Prior to SCRF computations, all solute geometries were optimized in vacuo at
the B3LYP/6-31 G*level of theory. Using the optimized structures, the SCRF
principal energy components listed in Table 4 were computed for each compound
at the B3LYP/6-31 G* and DSD-PBEP86-D3/def2TZVP levels of theory. The latter
method as a double hybrid has been shown to yield more precise charge
distributions and energy estimations compared to lower-rung DFT or MP2
methods, for a cost comparable to that of the MP2 calculation25.

The SCRF energy components listed in Table 4 were computed for two widely
accepted polarizable continuum models, namely the IEF-PCM and CPCM, as
implemented in Gaussian 16 (ref. 26). For CPCM, the default value of zero is
considered as the scaling factor x in relationship (2). However, a value of 0.5 has
been shown to be a more reasonable choice for this scaling factor11,27. Therefore, in

addition to the default implementation of CPCM in Gaussian 16, we also employed
a CPCM model with a scaling factor of x=0.5 and denote it by CPCMx=0.5. For
that, we replaced the original dielectric constant of the solvent with an effective
dielectric constant eεðε; xÞ calculated via:

eεðε; xÞ ¼ εþ x
xþ 1

ð5Þ

as suggested by Klamt et al.11. For comparison purposes, we also calculated the
solvation free energy via the SMD approach.

We employed feed-forward neural networks to map the relationship between
the solvation free energy and the calculated SCRF energy components, which in
addition to the solvation free energy estimated by the applied continuum solvation
model and to the dielectric constant of the solvent, comprised our model inputs.

The obtained pool of model inputs was further screened using the Minimum
Redundancy and Maximum Relevance (MRMR) algorithm28 resulting in various
8–16 membered combinations of those variables. MRMR is a highly efficient
algorithms for selecting most effective sets of variables for developing robust
machine-learning-based models29. For each number of selected variables, 25
different settings of the MRMR algorithm were applied, distinguished by the
employed quantization level, level of dependency, forward or backward variable
selection and considering pseudo-samples based on Bayesian statistics or not28. In
many cases, this resulted in diversely selected set of variables, even for the same
applied level of theory and continuum solvation model.

In the next step, various configurations of neural network models were set up
and their reliability were examined with a demanding procedure based on the
guidelines presented in a previous study30. Accordingly, we assigned large parts of
the dataset for test (25%) and validation (15%), and only 60% of the dataset
compounds were used for training the models.

To improve the transferability of the developed models for out-of-sample
predictions, validation and test sets were selected in a way to include either solvent
or solute elements not available in the training set.

We employed Levenberg-Marquardt backpropagation and Gradient descent
backpropagation training algorithms, and hidden layer transfer functions of the
logarithm-sigmoid and tangent-sigmoid types31. We only employed neural
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Fig. 2 Comparison of experimentally determined and predicted solvation free energies for various solvation models. The results show a higher
correlation between the experimentally determined and predicted data for the proposed machine learning solvation models compared to the SMD or
COSMO-RS models.
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networks with one hidden layer and 1 to 140 neurons in the hidden layer, with
intervals of 10 neurons for ANNs with more than 50 neurons in the hidden layer.
For each neural network configuration, training was carried out for 60 randomly
selected training, validation and test sets, and for each one 40 different
initializations of weight and bias constants of the neural networks were made.
Above all, to avoid getting misleading data affected by favorable or unfavorable
division of dataset into training, validation and test sets, the post validation strategy
proposed in a previous study30 was carried out. Accordingly, during the initial
training of the neural networks, for the models which yielded mean absolute
percentage errors lower than 22%, the final optimized weights and bias constants of
the neural network models were recorded. These recorded constants were used as
the initial guess to train, validate and test the same neural network configurations
but under 100 different randomly selected training, validation and test sets. The
models for which in at least 80 out of 100 iterations their test and training sets

errors had the same means and variances as evaluated by the two sample t-test
method with 5% significance level were considered as reliably trained models. For
them, the average of the ANN-predicted results in all repeats were reported as the
performance of that model. Setting up and running the neural network models
were implemented in Matlab software. A freely available C++ code for practical
use of our proposed ML-PCM models, with detailed user instructions, is provided
in Supplementary Software 1.

All the computations were carried out on the High Performance Computing
center clusters of the Christian-Albrechts-University of Kiel.

Data availability
All data produced in this study are available and can be provided by contacting the
corresponding author.

Code availability
The source file of the C++ code developed for implementing the proposed method with
detailed used instructions are available in Supplementary Software 1 or can be provided
by contacting the corresponding author.
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