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Assessment of protein–protein interfaces
in cryo-EM derived assemblies
Sony Malhotra 1,2✉, Agnel Praveen Joseph 2, Jeyan Thiyagalingam 2 & Maya Topf 1,3✉

Structures of macromolecular assemblies derived from cryo-EM maps often contain errors

that become more abundant with decreasing resolution. Despite efforts in the cryo-EM

community to develop metrics for map and atomistic model validation, thus far, no specific

scoring metrics have been applied systematically to assess the interface between the

assembly subunits. Here, we comprehensively assessed protein–protein interfaces in mac-

romolecular assemblies derived by cryo-EM. To this end, we developed Protein Interface-

score (PI-score), a density-independent machine learning-based metric, trained using

the features of protein–protein interfaces in crystal structures. We evaluated 5873 interfaces

in 1053 PDB-deposited cryo-EM models (including SARS-CoV-2 complexes), as well as the

models submitted to CASP13 cryo-EM targets and the EM model challenge. We further

inspected the interfaces associated with low-scores and found that some of those, especially

in intermediate-to-low resolution (worse than 4 Å) structures, were not captured by density-

based assessment scores. A combined score incorporating PI-score and fit-to-density score

showed discriminatory power, allowing our method to provide a powerful complementary

assessment tool for the ever-increasing number of complexes solved by cryo-EM.
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A majority of proteins are known to interact in order, to
perform their functions, and sustain the activities of cells.
Unveiling the molecular details underlying these func-

tions provides crucial structural, and functional insights. In recent
years, cryo-EM has become a prominent technique for solving the
structures of complex biological systems, such as polymerases,
transmembrane receptors, viral assemblies and ribosomes, by
overcoming some of the limitations of X-ray crystallography and
NMR spectroscopy1. Cryo-EM techniques usually require a small
amount of sample, are more forbearing on sample purity, and the
rapid freezing of the sample maintains its closeness to native
state. Due to these strengths, cryo-EM provides an alternative to
X-ray crystallography for large complexes. Recent advances in
instrumentation and image processing methods in structure
determination using cryo-EM and tomography of sub-cellular
structures have pushed the resolution limit of structures towards
the near-atomic range. However, the average resolution of
structures solved using single-particle cryo-EM per year (since
2002) is worse than 5 Å (for example, 5.6 Å for 2019 and 6.3 Å for
2020), and determining structures at near-atomic resolution is
still a challenge2,3. Additionally, many of the cryo-EM maps
associated with a near-atomic global resolution have regions at
intermediate (∼4–8 Å) resolutions (or even lower), owing to the
variability in local resolution.

The resolution of the cryo-EM map dictates the approach to be
adopted for model building, fitting, refinement and validation to a
great extent4. Regardless of the resolution of the map, upon
model building and/or fitting, assessment of the atomistic model
is crucial to ensure its overall reliability, and thus should be
independent of the score(s) optimised during the fitting stage.

The most commonly used global score to optimise the fitting is
the cross-correlation coefficient (CCC) between the cryo-EM map
and the simulated density of the fitted model. Apart from some
variations of the CCC with masks and filters, there are other
global scores, such as the mutual information5. Local scores are
very useful in identifying the regions of poor fit in the
models, which can be further refined to obtain a better fit. Local
mutual information, TEMPy local scores-SMOC6 (Segment-
based Manders’ Overlap Coefficient) and SCCC7 (Segment-based
Cross Correlation), Q-scores8, and EMRinger9 can guide the fit-
ting at different structure levels, such as residues, domains, sec-
ondary structure elements, and loop regions. Additionally, there
are other metrics that assess the geometry of models, such as
MolProbity10 and CaBLAM11. These metrics, however, do not
include the assessment of the quaternary structure in terms of
quality of the interface between subunits.

Some of the common scenarios that may result in sub-optimal
protein–protein interfaces in cryo-EM derived models are as
follows:

● fitted models are usually built sequentially, i.e. one chain is
fitted into the map at a time, independent of the others;

● map segmentations are an integral part of model building,
but segmentation techniques are not accurate enough to
identify boundaries between the subunits;

● building the model of only one protomer and applying
symmetry operations; and

● integrating models of subunits built in maps reconstructed
by refinement focused on certain segment(s) of the
macromolecule.

The features that characterise the interfaces can be used to
build a model quality assessment metric. While being density-
independent, this metric may provide a complementary quality
measure of modelled assemblies in cryo-EM maps, especially for
cases such as those listed above. Some of the features that have

been shown to be discriminatory in identifying biological (‘native-
like’) interfaces are, conservation of residues at interface12–16,
shape17,18 and electrostatic complementarity19,20, residue contact
pairs21,22, types of interactions23–26, and interface size and
area25,27–29.

Although the interface features listed above are useful for
identifying the quality of interfaces, these derivations rely on the
dataset of protein complexes used in the study and ignore
one major aspect, that is, the extraction and reuse of
the knowledge from different datasets. Machine learning (ML)-
based approaches, on the other hand, are inherently data-centric,
and can accumulate knowledge from various datasets. ML is a
class of algorithms that learns from the data and are trained on
several datasets prior to using them on real datasets (inferencing).

A number of approaches have utilised ML methods for pre-
dicting protein–protein interactions, which can vary in terms of
exact algorithms used, datasets (i.e., protein–protein complexes),
and more importantly, on the set of features used for training.
The most commonly used features for predicting protein–protein
interactions using ML-based methods include physicochemical
properties, evolutionary features, secondary structures, solvent-
accessible area and binding energies among others. The choice of
algorithms for training ML models include support vector
machines (SVM), random forest (RF), neural networks (NN)30.
Combination of different features and ML algorithms lead to a
very rich set of methods that one can rely on. Recent reviews30,31

provide an elaborate comparison of structure- and sequence-
based existing methods, detailing the performance and availability
of these techniques.

In this article, we present a systematic assessment of
protein–protein interfaces in cryo-EM derived assemblies using a
new metric called Protein Interface-score (PI-score). The score
was developed based on various features describing
protein–protein interfaces in high-resolution crystal structures
from the Protein Data Bank (PDB). These derived features were
further used to train a ML-based classifier in order to distinguish
‘good’ (native/native-like) and ‘bad’ interfaces. To assess the
applicability and performance of the trained model to cryo-EM
derived assemblies, we used PI-score to assess the quality of
interfaces in CASP-13 cryo-EM targets, EM model challenge
targets (2016 and 2019), and PDB entries associated with Electron
Microscopy Data Bank (EMDB) (4913, as of Aug 2020). A com-
bined score incorporating PI-score and fit-to-density score
showed discriminatory power, especially in the cases where there
is a disagreement between these two scores.

Results
In this section, we discuss the workflow of building a training and
testing dataset for a machine learning (ML)-based model to assess
protein–protein interfaces. The derived score (PI-score) is then
applied to assess the quality of interfaces in models submitted for
CASP13 targets (https://predictioncenter.org/casp13/), EM model
challenge targets (https://challenges.emdataresource.org/), and
PDB entries (https://www.rcsb.org/) associated with EMDB
(https://www.emdataresource.org/). We discuss the examples
from each of these datasets. We also compared the performance
of PI-score with density based-scores and statistical interface
potentials.

Building the dataset. A total of 3926 high-resolution complexes
obtained from PDB32 were subjected to an in-house python
script to assign the interfaces using a distance-based threshold
(‘Methods’). To avoid the over-representation of similar inter-
faces in the dataset, structurally similar interfaces within a
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quaternary structure were filtered out using interface similarity
score calculated with iAlign33, resulting in 2858 interfaces from
2314 complexes. Various interface features, namely: number of
interface residues, contact pairs, surface area, shape com-
plementarity, number of hydrophobic, charged, polar and con-
served residues at the interface and other interface properties
evaluated by PISA (protein interfaces, surfaces and assemblies),
were computed for the dataset. These features were successfully
calculated for 2406 interfaces, which form ‘positive dataset 1’
(PD1, see ‘Methods’).

To train the ML classifiers of our choice on data closer in
quality to models fitted on cryo-EM maps (especially at
intermediate-to-low resolutions), noise was added to PD1 by
slightly perturbing the relative positions and orientations of the
interacting subunits. This was performed using a protein–protein
docking method34 and then selecting the poses with high fraction
of aligned interface residues/interface residues in native complex
(fNal), and low interface RMSD (iRMSD) (see ‘Methods’ for cut-
offs). This set, which contains 3743 interfaces, is referred to as
‘positive dataset 2’ (PD2).

A ‘negative dataset’ (ND), containing 3578 interfaces, was also
derived using docking and includes complexes in which the
interfaces are structurally different, i.e., ‘far’ from native interfaces
(low fNal and high iRMSD, see ‘Methods’ for cut-offs). The
schematic of the procedure to collate the datasets and workflow is
summarised in Fig. 1.

Ranking of interface features. Various interface features (listed
in ‘Methods’) were computed for the above-described datasets.

As the number of derived features (12) was manageable and
computationally not very expensive, we used all the features to
train our classifiers. To identify the top-ranking (or most influ-
ential) interface feature(s), we ranked them using different
methods namely, Ridge, Random Forest, Recursive Feature
Elimination, Linear Regression and Lasso. Our exploration
showed that the top-ranking features were shape com-
plementarity, number of polar interface residues, number of
charged interface residues, and interface solvation energy
(Fig. 2a).

Training the classifier and cross-validation. To develop a better
understanding of the performance, we evaluated ML classifiers,
namely, support vector machine (SVM), random forest (RF),
plain vanilla neural network (NN), or simply, multi-layer per-
ceptron (MLP) and gradient boost (GB) using the Scikit-learn
Python package35 (scikit).

We used the following combination of datasets described above
to train two high-level models, namely, Model A and Model B
(referred to as models henceforth), using the interface features
(‘Methods’) (Fig. 1). Each of these models relies on different
classifiers, described above (SVM, RF, NN and GB).

Model A: Positive and negative datasets derived using docking
(PD2 and ND, respectively). Model B: Positive dataset constitutes
high-resolution complexes and computationally derived docked
complexes (PD1+ PD2) and ND as negative dataset.

While training and testing both models (Model A and
Model B), to minimise the bias of the classifiers, which can
easily become an issue with unbalanced datasets, the dataset was

Fig. 1 Workflow for developing a protein–protein interface-based score (PI-score) to assess macromolecular assemblies derived using cryo-EM. High
resolution complexes (with >= two chains) were obtained from the PDB and are referred to as the ‘positive dataset 1’ (PD1). Protein–protein docking was
used to derive structurally close (to PD1) complexes that form the ‘positive dataset 2’ (PD2). The complexes obtained upon docking that have a higher
interface RMSD (iRMSD) and lower fraction of aligned native residues (fNal) at the interface form the ‘negative dataset’ (ND). Interface features are
calculated on all the complexes and are used as an input to train a supervised machine-learning classifier, which is further used to predict the class labels of
the benchmark dataset.
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split into training set (70%) and test set (30%) using stratified
shuffle split (scikit learn) and a ten-fold cross-validation was
performed. In both scenarios, the performance, which was
measured based on ML- and classifier-specific metrics, namely,
accuracy, precision, recall, F1 and Matthews correlation
coefficient (MCC), was comparable between the three methods
(Fig. 2b and c).

The different classifiers gave a comparable performance and
SVM-trained model, with a validation accuracy of 86% (Model
B), was selected to assess the quality of protein–protein interfaces
modelled in cryo-EM maps. The SVM classifier finds a hyper-
plane that maximises the inter-class variance, and enables the use
of the distance of a given data-point from this hyperplane as the
machine learning-based score (PI-score) for a given prediction
(interface). The farther a point (interface) is located from
the hyperplane (more negative or positive), the more confident
is the prediction using the SVM model36. We assessed the
performance of the PI-score at different thresholds by analysing
the number of false positives (FP) and false negatives (FN). For
the ten test sets (30%) obtained using the stratified shuffle split
(for cross validation purpose), the fractions of FP (41%) and FN
(42%) were observed to be highest in the PI-score ranges of (0 to
0.5] and (−0.5 to 0], respectively (Fig. 2d). We also estimated the
measures of performance in different PI-score thresholds and
observed that the PI-scores >1 and <−1 (for the positive and

negative class label, respectively), were more reliable, based on the
low false positive rate (FPR) and high true positive rate (TPR) in
the respective bins (Table 1).

Application to CASP targets (high resolution targets). We
applied the above-trained models to make predictions on the
quality of protein–protein interfaces in cryo-EM targets from the
CASP13 competition37. Three of the targets (T1020o, T0995o,
and T0984o) were classified as ‘easy targets’, with many high-
accuracy models deposited by the participating groups and were
also evaluated for the goodness-of-fit to the experimental cryo-
EM maps38. For each of these targets, a submitted pool of models,
an experimentally solved structure (target) and a density-based
score for assessing the goodness-of-fit are available from the
CASP13 website. Therefore, these targets form an ideal dataset for
assessing the performance of PI-score.

We used the CASP multimeric scores (https://predictioncenter.
org/casp13/multimer_results.cgi), namely, F1, Jaccard index,
lDDT(oligo) and GDT(o) (see ‘Methods’: comparison with
CASP13 oligomeric scores) to define true positives (TP), true
negatives (TN), FP and FN for CASP targets39. If any of the four
CASP13 multimeric scores was equal or greater than (>=) 0.5,
and the model was scored positive by our classifier, it was treated
as TP. TN were defined as model structures that did not have any

Fig. 2 Machine learning-based classifier to assess the quality of protein–protein interfaces. a Importance of interface features in distinguishing the
‘native-like’ interface. The ranks calculated using different methods (Ridge, Random Forest (RF), Recursive feature elimination (RFE), Linear regression
(Linear reg) and Lasso) were normalised between 0 and 1 and the mean feature rank is plotted in black. b, c Performance of different classifiers on the
training dataset: RF (random forest), SVM (support vector machine), NN (neural networks), and GB (gradient boost) are used to perform supervised
learning on the training dataset using stratified shuffle split as a means of cross-validation with ten splits. The performance is evaluated using accuracy,
precision, F1, recall scores and Matthews correlation coefficient. Performance measures of Model A (b): trained on docking-derived positive dataset (PD2)
and negative dataset (ND). Performance measures of Model B (c): trained using both high-resolution and docking-derived positive datasets (PD1+ PD2)
and negative dataset (ND). d Fraction of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) in different PI-score
thresholds. The fractions (Y-axis) are averaged over the ten splits (stratified shuffle split) of the data. The different PI-score thresholds (X-axis) are indicated
in absolute values.
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of the CASP13 scores >= 0.5 and were scored negative by
the classifier. The models which were scored >= 0.5 by any of the
four CASP13 scores and negative using our classifier score
were defined as FP and models which were scored negative by
the classifier but had at least one of the CASP13 score >= 0.5
were FN.

For the target T1020o, 3.3 Å resolution homo-trimer structure
of an S-type anion channel from Brachypodium distachyon, nine
of the assessed 111 submitted models (with 329 interfaces)
were predicted to have at least one ‘negative’ interface (negative
PI-score) in the complex. These nine models were also scored low
on the CASP multimeric assessment scores39 (Supplementary
Table 1). With a more systematic comparison of PI-scores against
the oligomeric assembly assessment scores from CASP1339, we
achieve 82% accuracy for this target (see ‘Methods’: comparison
with CASP13 oligomeric scores).

All interfaces in the target structure (Fig. 3a) and in the top-
ranked model based on the cross-correlation of the model with
the cryo-EM density (CCC) (TS004_2o, Fig. 3b) have positive PI-
score. Out of the nine negatively-scoring models, TS008_4o and
TS135_3o have negative PI-score for all the three interfaces
(Fig. 3c and d, respectively). When these models are compared to
the target structure, all three interfaces have high iRMSD and low
fraction of aligned native residues (average iRMSD of 2.93 Å and
3.33 Å for TS008_4o and TS135_3o, respectively, Table 2). For
model TS208_1o, two of the interfaces (formed by chains, AC and
BC) have negative PI-score (Fig. 3e). PI-score was not calculated
for the third interface, as only 9 residues in chain A and 8
residues in chain B are forming the interface in this case, which is
less than our cut-off for defining an interface (see ‘Methods’).

For the model TS208_1o (CCC= 0.34, target structure CCC=
0.77), we generated density maps at resolutions lower than the
target map: 5, 8, 10 and 12 Å using the low pass filter utility in
CCP-EM suite (https://www.ccpem.ac.uk/). Since the CCC does
not have a defined absolute cut off value to differentiate between
good and bad fits at any given resolution, it is difficult to identify
‘target-like’ models (Supplementary Table 2). On the other hand,
PI-score, which is a density-independent metric, can be very
useful to distinguish ‘target-like’ interfaces in the modelled
complex(es).

The PI-score for the target structure, T0995o, a 3.15 Å
resolution homo-octamer (A8) of cyanide dehydratase, was

positive for the dimer interface (Supplementary Fig. 1a). We
calculated the PI-score for 657 interfaces in the 118 CASP13
models for this target and assessed the quality of the dimer
interface between all subunits. 123 interfaces in 37 models were
observed to have negative PI-score. The top-ranked model (after
target) in terms of CCC was TS008_2o (Supplementary Fig. 1b),
which is calculated to have a positive PI-score for the equivalent
dimer interface (iRMSD= 1.55 Å). Examples for the models with
a negative PI-score are TS117_1o (iRMSD= 4 Å, Supplementary
Fig. 1c) and TS008_5o (iRMSD= 2.76 Å, Supplementary Fig. 1d).
The models with interfaces having negative PI-score using our
classifier were also scored low for the CASP13 multimeric scores
(Supplementary Table 1).

By comparing it with the multimeric scores in CASP13, we
achieve an accuracy of 67% for this target. This target has higher
stoichiometry and more interfaces than T1020o, and therefore it
is expected to achieve a lower accuracy against the CASP13
assembly scores, which are calculated per complex (while our
classifier is per interface and hence this may not be a direct
comparison).

For the target T0984o- 3.4 Å dimer of a calcium channel, 145
models were assessed, and all were observed to have a positive PI-
score for the interface (Supplementary Data 1).

PI-scores for the assessed interfaces in models for CASP13
cryo-EM targets are provided in Supplementary Data 1. Given the
nature of CASP experiments where the participating groups
model the complexes without the knowledge of cryo-EM map,
protein–protein interface assessments such as PI-scorecan provide
additional insights into model quality.

Application to EM model challenge. Next, we calculated PI-
scores for the models submitted for the targets from two EM
validation challenges (https://challenges.emdataresource.org/),
namely, 2016 EM model challenge and 2019 model metrics
challenge (Supplementary Data 2).

Target T0002 (from model challenge 2016) is a 3.3 Å resolution
cryo-EM map of the 20S proteasome (EMD-5623). We assessed
the ten submitted models (with 175 interfaces) based on the
interfaces in the target structure (PDB ID: 3J9I). In three of the
models- EM164_1, EM189_1 and EM189_2, there was at least
one interface that obtained a negative PI-score.

Table 1 Performance in different bins of the scores using the SVM machine learning-based classifier.

Scores’ bins TPR (True Positive Rate) FPR (False positive Rate) Precision Specificity

(−/+)[0.0 to 0.5] 0.15 0.76 0.15 0.24
(−/+) [0.5 to 1.0] 0.29 0.58 0.29 0.41
(−/+) [1.0 to 1.5] 0.61 0.39 0.63 0.61
(−/+) [1.5 to 2.0] 0.78 0.21 0.78 0.78
(−/+) [2.0 to 2.5] 0.93 0.11 0.93 0.99
>=2.5 and <=−2.5 1.0 0.18 0.97 0.81

The following bins according to the listed thresholds and the measure TPR, FPR, precision and specificity are averaged values over the test datasets obtained from ten-fold cross-validation:
0.0–0.5: True positives present in the score range of 0.0 to 0.5 and true negative in score range of −0.5 to 0.0. False positives are the complexes from negative dataset (ND) that are predicted
positive with a PI-score assigned between 0.0 and 0.5 and false negatives are positive complexes from either positive dataset 1 or 2 (PD1 or PD2) that are predicted as negative with the PI-score between
−0.5 and 0.0.
0.5–1.0: True positives present in the score range of 0.5 to 1.0 and true negative in score range of −0.5 to −1.0. False positives are the complexes from negative dataset (ND) that are predicted positive
with a PI-score assigned between 0.5 and 1 and false negatives are positive complexes from either positive dataset 1 or 2 (PD1 or PD2) that are predicted as negative with the PI-score between −0.5
and −1.0.
1.0–1.5: True positives present in the score range of 1.0 to 1.5 and true negative in score range of −1.0 to −1.5. False positives are the complexes from negative dataset (ND) that are predicted
positive with a PI-score assigned between 1.0 and 1.5 and false negatives are positive complexes from either positive dataset 1 or 2 (PD1 or PD2) that are predicted as negative with the PI-score between
−1.0 and −1.5.
1.5–2.0: True positives present in the score range of 1.5 to 2.0 and true negative in score range of −1.5 to −2.0. False positives are the complexes from negative dataset (ND) that are predicted
positive with a PI-score assigned between 1.5 and 2.0 and false negatives are positive complexes from either positive dataset 1 or 2 (PD1 or PD2) that are predicted as negative with the PI-score between
−1.5 and −2.0.
2.0–2.5: True positives present in the score range of 2.0 to 2.5 and true negative in score range of −2.0 to −2.5. False positives are the complexes from negative dataset (ND) that are predicted
positive with a PI-score assigned between 2.0 and 2.5 and false negatives are positive complexes from either positive dataset 1 or 2 (PD1 or PD2) that are predicted as negative with the PI-score between
−2.0 and −2.5.
>=2.5 and <=−2.5: True positives with a score >= 2.5 and true negative with score <=−2.5. False positives are the complexes from negative dataset (ND) that are predicted positive with a PI-score
>2.5 and false negatives are positive complexes from either positive dataset 1 or 2 (PD1 or PD2) that are predicted as negative with the PI-score <−2.5.
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As an example, we chose model EM164_1, for which most the
interfaces in the alpha and beta subunits were scored negative
(Supplementary Data 2). In the alpha ring, the two subunits in the
model (chains F and C, shown in red and green Fig. 4a) were
scored negative by our classifier (PI-score: −2.27). The interface
conformation is slightly different as compared to the target
structure (iRMSD= 0.86, fNal= 0.54). This interface is loosely
packed (Fig. 4) and smaller than the equivalent interface in the

target structure (23 interface residues in model and 37 in the
target structure). Due to its small size the iRMSD is low, and
therefore is not a good indicator of the quality of the modelled
interface in this case. Due to the offset in the modelled interface,
the shape complementarity at the interface drops significantly to
0.32, as opposed to 0.73 for the interface in the target structure.
We also checked the multimeric scores from CASP assessment
and EM164_1 is scored high for QS-global (0.88) and lDDT

Fig. 3 Scoring the interfaces in the oligomeric CASP13 target T1020o. The target structure is shown in gold in all the panels and the model structures
being assessed are shown in red, green and blue. The chains are labelled accordingly. a Target structure within the cryo-EM map. The interface residues
from the three chains are shown as grey spheres. b Model TS004_2o, with a positive PI-score for all the three interfaces in the trimeric assembly.
c–e Models TS008_4o, TS135_3o and TS208_1o, respectively, for which interfaces are scored negatively with PI-score.

Table 2 Assessment of interfaces in the models of CASP13 cryo-EM target T1020o.

Model ID Model interface Target interface iRMSD (Å), fnal Predicted class Score

TS004_2o AB AB 2.2, 0.81 Positive 2.6
BC BC 2.5, 0.75 Positive 2.6
AC AC 2.1, 0.82 Positive 2.7

TS008_4o AB AC 3.16, 0.42 Negative −1.5
BC BC 2.82, 0.48 Negative −1.5
AC AB 2.81, 0.48 Negative −1.5

TS135_3o AB BC 3.08, 0.56 Negative −1.6
BC AB 3.4, 0.52 Negative −1.6
AC AC 3.51, 0.6 Negative −1.6

TS208_1o AB BC 2.6, 0.63 Not ranked (Interface residues from model
9 and 8)

NA

BC AC 2.5, 0.54 Negative −0.2
AC AB 2.6, 0.52 Negative −0.39

The model and equivalent target chains forming the interface are listed along with the interface RMSD (iRMSD), fraction of aligned native interface residues (fNal) and predicted class using our model.
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(0.98)) scores but these scores reflect the quality of a multimeric
structure as a whole rather than per interface. Other interface
assessment scores (from CASP13) such as F1 and Jaccard index,
which are calculated per interface, are not reported in the EM
Model challenge 2016 website for this model.

Structurally equivalent subunits in the target structure (chains
P and Q) have a CCC of 0.85 and the model subunits (chains F
and C) have a CCC of 0.73 (Supplementary Table 3) and local
score (SMOC) averaged over interface residues are 0.73 and 0.23
for target and EM164_1, respectively. Our model has rightly
predicted this interface as ‘negative’ as reflected by the loose
packing at the interface and lower local density-based score for
the modelled interface.

Further, we calculated the density-based scores (global and
SMOC) at different resolutions (map simulated using low pass
filter utility in CCP-EM, Supplementary Table 3). The scores
assessing the fit of the model (with interface offset) are
comparable at resolution worse than 5 Å. Therefore, especially
at intermediate-low resolution, our proposed density-
independent PI-score can be a crucial model validation tool.

The interfaces between the beta-subunits were also scored
negative (TS164_1) by our classifier. This is reflected by the
presence of steric clashes at the interface (blue and purple in
Fig. 4). The clashes present at the interface resulted in lower shape
complementarity score for the interface in model (0.28) as
opposed to a higher score (0.62) for the equivalent interface in the
target structure. The subunits (chains X and Y) have a CCC of
0.85 whereas the subunits (chains n and d) of model have a CCC
of 0.65. This model interface also has a much lower SMOC score
than the equivalent interface in the target at all resolutions
(Supplementary Table 3).

Recently, model metrics challenge (2019) was open, and we
applied our score for assessing the only multimeric target -T0104
(Horse liver alcohol dehydrogenase, 2.9 Å, dimer). We assessed
the reference structure (PDB ID: 6NBB) and 17 submitted models
using PI-score. Two models (T0104EM060_1; PI-score −0.31 and
T0104EM060_2; PI-score 0.13), were scored low (Supplementary
Data 2), which is in agreement with the CASP multimeric scores

(QS and lDDT scores, https://challenges.emdataresource.org/?
q=model-metrics-challenge-2019).

Application to fitted entries in EMDB. We divided this dataset
into three sets: high resolution (better than 4 Å, high resolution),
4–8 Å (intermediate resolution) and 8–12 Å (low resolution). As
we have described above the performance of PI-score using high-
resolution complexes from CASP and the EM model challenge
targets, in this section we will focus more on selected examples
from intermediate and low resolution cryo-EM maps. The fitted
models were also compared with the interfaces in the corre-
sponding crystal structures. For completeness, we also provide the
PI-scores of our SVM model for the interfaces fitted at high
resolution (better than 4 Å) in Supplementary Data 3.

Chikungunya virus: the available cryo-EM map with an
associated fitted model is resolved at 5 Å (EMD-5577, PDB:
3J2W, shown in green and red in Fig. 5a, with interface residues
shown as grey circles). The envelope1–envelope2 (E1–E2)
heterodimer was observed to have a negative PI-score (−1.67).
The available crystal structure (PDB: 3N44, 2.35 Å) for the
E1–E2 subcomplex (chains B and F, coloured in gold and
interface residues in grey spheres, Fig. 5a) is scored positive (PI-
score: 1.67). The interface between E1 and E2 is slightly shifted as
compared to the crystal structure (Supplementary Table 4).

We also calculated the density-based scores (global and local)
for the E1–E2 subcomplex to assess the fitted model and crystal
structure. The E1–E2 subcomplexes from both the fitted model
and crystal structure have a CCC of 0.64 and average SMOC over
interface residues of 0.72, and hence are indistinguishable with
these scores. The plot for the SMOC score (per residue) is shown
in Fig. 5a, for both chains and the average SMOC score per chain
is shown with a blue dashed line. Interestingly, the interface
residues (grey circles) are observed to score higher than the per-
chain average, especially for chain B. Therefore, at intermediate
resolution interface-based scores such as PI-score can prove
useful to distinguish the offsets in the modelled protein–protein
interfaces that are indistinguishable with the density-based scores.

PI-scores for the interfaces in the fitted models at the
intermediate resolution range derived from EMDB are available
as Supplementary Data 4.

TFIID complex: the available cryo-EM map with an associated
fitted model is available at 9.8 Å resolution (EMD-9302, PDB:
6MZD, shown in green and red in Fig. 5b, with interface residues
shown as grey circles). The interface between subunits 9 and 5 in
the fitted model (LF) was scored negative (PI-score: −1.99). This
interface is shifted when compared to the corresponding crystal
structure (Supplementary Table 4) at 2.5 Å (PDB: 6F3T, chains F
and A, shown in golden with interface residues marked as grey
circles, Fig. 5b).

Next, we calculated the density-based scores (global and local)
to assess the fitted model and crystal structure. The CCC of the
fitted model is 0.54 and CCC of the crystal structure is 0.63 upon
local optimization of the fit in the map, whereas the average
SMOC score over interface residues is 0.84 and 0.87 for the fitted
model and crystal structure, respectively (Fig. 5b). In this
example, we see again (but this time with low resolution maps)
that PI-score can provide additional complementary assessment
when density-based scores alone are not sufficient to identify the
offsets in the modelled interfaces.

PI-scores for the interfaces in the fitted models at the low-
resolution range derived from EMDB are available as Supple-
mentary Data 5.

Application to SARS-CoV-2 cryo-EM derived complexes. We
also assessed the fitted models in the SARS-CoV-2 cryo-EM maps

Fig. 4 Scoring the interfaces in the target T0002 from 2016 EM model
challenge. a Scoring the interfaces between the alpha subunits’ ring in the
model structure EM164_1, the chains (F and C), which form a negatively-
scoring interface is shown in red and green and the target structure is
shown in golden. The surface for the interface forming chains (F and C) are
shown as spheres and the loose packing at the interface is marked with
black ovals. b Scoring the interfaces in the beta subunits’ ring of the 20S
proteasome, one of the targets in EM model challenge (T0002). The target
structure is shown in golden and the chains forming the interface (n and d)
in the model structure (EM164_1) being assessed are shown in blue and
purple. The surface (mesh) of the chains forming interface are shown to
highlight the clashes at the interface formed by chains n and d in the model.
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using PI-score. 108 fitted models were downloaded from EMDB:
(https://www.ebi.ac.uk/pdbe/emdb/searchResults.html/?EMDB
Search&q=text:(ncov%20OR%20SARS-CoV-2). Out of the 108
models, we were able to successfully compute interface features
and PI-scores for 55 complexes (149 interfaces). Of these 149
interfaces, 12 were observed to have a negative PI-scores (Sup-
plementary Data 6), with 11 of these being antibody-antibody or
protein–antibody interfaces. As our machine learning classifier is
not trained on such interfaces (which are reported to have dif-
ferent shape complementarity from other protein–protein
interfaces17), we decided not to further investigate these cases.

However, the interface between small subunits (S28-S5) of a
human 40S ribosome bound to SARS-Cov2 nsp1 (blue spheres,
Supplementary Fig. 2a) protein (EMD-11301, PDB ID: 6ZMT)
obtained a negative PI-score of −0.04 (Supplementary Fig. 2b).
We next inspected this complex using the validation suite in
CCP-EM. The sub-complex S28-S5 was found to have a
clashscore of 7.20 with severe clashes reported at the interface.
We used real space refine zone and auto fit rotamer, with backrub
rotamers switched on to fix the steric clashes at the interface using
Coot40. Upon re-refinement in Coot, the clashscore dropped to
6.20 and PI-score improved to 0.25 (Supplementary Fig. 2c). The
improvement in PI-scores is most likely due to resolving the
clashes between the interface residue pairs R63-A138, V55-34S
and L59-R122 (Supplementary Fig. 2b) from chain d and K,
respectively.

Comparison with protein–protein interface statistical
potentials. Next, we compared PI-score to the existing
protein–protein interface-based statistical potentials (PIE41 and
PISA42) commonly used for protein–protein docking. PIE and
PISA scores provide residue and atomic potentials, respectively,
and we also used a combination (0.1*PISA+ (−0.8)*PIE+
PISA*PIE) of these, which is reported to perform better in
identifying ‘native-like’ complexes42. We used the 30% randomly

selected test dataset from the entire set (PD1+ PD2+ND) to
calculate the statistical potentials (combined PIE-PISA score) for
the interfaces. Different weights for SVM-based score and sta-
tistical potentials were tried ranging from 0 to 1, with an incre-
ment of 0.1. For this dataset, PI-score separates the ND and PD2
(both derived using docking) better than the combined statistical
potential score (Supplementary Fig. 3).

Application of a combined score. As PI-score is a density-
independent interface quality measure, providing an additional
validation metric for a fitted cryo-EM assembly, we further
developed a weighted combined score, which consists of a PI-
score term and a quality of fit-in-map term (iCCC) (see
‘Methods’). The performance of the combined score was assessed
on the pool of models associated with two targets from the EM
Model Challenge 2016 (T0002: archaeal 20S proteasome, 3.3 Å
and T0003: GroEL, 4.1 Å). The predictions based on the com-
bined score were assessed using iRMSD (Supplementary Fig. 4a
and d). We have highlighted two cases in each of these examples
where the combined score was proven helpful.

For the target T0002, the majority of the modelled interfaces
(83%) with iRMSD <1 Å have a combined score of at least 0.3.
For the interface between chains N and M in one of the models
for the target T0002 (EM133_1), it is difficult to interpret the
quality of the modelled interface, due to the disagreement
between the two scores (PI-score is positive while iCCC is
negative: 2.1 and −0.04, respectively). Clearly, the interface
between chains N and M is modelled reasonably well, with
iRMSD= 0.81 (Supplementary Fig. 4b). However, it is fitted
poorly within the density (Supplementary Fig. 4c). In this
scenario, the combined score of 0.39, which is lower than other
good models (<1 Å iRMSD), shown with black outline in
Supplementary Fig. 4a), helps to interpret the quality implying
that the interface is reasonable despite the poor fit.

Fig. 5 Application to the fitted models in EMDB at intermediate-low resolution. The chains from the crystal structure are in gold and the chains from the
modelled structure are in red and green. The interface residues are shown as grey spheres. The plot of the local density-based score (SMOC) is shown for
the chains forming an interface in the model and the equivalent chain in the crystal structure. The X-axis is numbered as per residue numbers in the crystal
structure. The average SMOC over the model chain is shown as a blue dashed line. a 5 Å resolution structure of Chikungunya virus and the subcomplex
envelope1–envelope2 heterodimer (E1–E2) (EMD-5577; fitted PDB: 3J2W). The corresponding 2.35 Å resolution crystal structure is PDB: 3N44 (gold).
b 9.8 Å resolution structure of the TFIID subunit 5 and 9 sub-complex (EMD-9302, fitted PDB: 6MZD, cyan and green). The 2.5 Å corresponding crystal
structure for subunit5-subunit 9 is PDB: 6F3T (gold). PI-score and CS (the weighted combined score, see ‘Methods’) are listed.
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For the target T0003, all the modelled interfaces with <1 Å
iRMSD were observed to have a combined score of at least 0.5.
For the interface between chain E and F in one of T0003
associated models (EM164_1), PI-score indicates that it is
modelled with an offset (PI-score=−0.78, iRMSD= 1.73,
Supplementary Fig. 4e) but iCCC score is 0.44 (Supplementary
Fig. 4f). Modelled interface (EF, EM164_1 for T0003) gets a low
combined score of 0.26, and hence provides a better metric
combining both the information on quality of protein interface
and fit-in-map.

We further applied the combined score for the fitted model and
the crystal structure for the complexes described in Fig. 5. For
both the examples namely E1–E2 complex of Chikungunya virus
(Fig. 5a) and the complex between the subunits 5 and 9 of the
TF2D (Fig. 5b), the weighted combined score was correctly able
to reflect the fit-in-map and interface quality for the fitted model.
For the E1–E2 interface, both the fitted model and crystal
structure are scored 0.27 for iCCC whereas the combined score
was correctly able to distinguish between the two (−0.12 for the
model vs 0.43 for the crystal structure). For the sub-complex
between the subunit 5 and 9, iCCC for the fitted model was 0.16
whereas for the crystal structure it was 0.33. The combined score
is correctly able to distinguish between the fitted model (−0.27)
and the crystal structure (0.66).

Discussion
Density independent PI-score to assess modelled assemblies in
cryo-EM maps. Machine learning-based methods trained using
interface features have proven to be discriminatory in identifying
the ‘native-like’ complexes, and are routinely used for protein
interface sites and hotspots prediction using sequence and
structure-based features30. So far, such methods have not been
applied to the models derived from cryo-EM data, where errors at
the interface are likely. Here, we have developed a density inde-
pendent metric to assess the quality of protein–protein interfaces
in cryoEM derived models (PI-score), using a machine learning-
based method trained on interface features. We carefully collated
high-resolution crystal structures of the protein–protein com-
plexes and annotated them with interface features, which were
further used to train a machine learning-based classifier.

In total, 12 features were calculated for 9727 interfaces in our
dataset. A 9727*12 vector was used as an input to train a classifier
using random forest, support vector machines and neural
networks. Shape complementarity at the interface, which is a
well-known feature to discriminate ‘native-like’ complexes17, was
observed to be the most discriminatory feature (see the section
‘Training the classifier’). We first tried the combination PD1 as
positive and ND as negative set, and we achieved a training
accuracy of 96% as it was too simple a problem for a classifier (no
noise), therefore did not proceed with this. Using both PD1 and
PD2 as positive labels and ND as negative class labels, we were
able to achieve a validation accuracy of 86% using a ten-fold
cross-validation.

We show that PI-score can help in identifying native-like fits
from a pool of candidate models (see sections ‘Application to
CASP targets’ and ‘Application to EM model challenge targets’).

Importance of interface validation in cryo-EM maps. Most of
the structures (∼95%) derived using cryo-EM have at least two
protein chains. Hence, it becomes crucial to model
protein–protein interfaces in such structures.

With the recent advances in technology, single-particle
reconstructions are getting to near-atomic resolution, where
the modelling of protein–protein interface is becoming
more accurate. However, several complexes in the EMDB are in

the intermediate-to-low resolution range. The average resolution
achieved in 2019 is still less than 5 Å, where the models are likely
to be less reliable, especially at regions with less-resolved density.
Additionally, there are plenty of maps where the nominal
reported resolution is high, but the local resolution varies
significantly. In EMDB, we have identified 107 interfaces in 54
complexes (at resolution better than 4 Å), 508 interfaces in 171
complexes (at 4–8 Å), and 51 interfaces in 23 complexes (less
than 8 Å), with a negative PI-score, implying potential modelling
issues at the protein–protein interface. Investigating these cases
revealed that the errors at the interface could be of different types,
including steric clashes, loose interface packing, smaller interface
size and lower shape complementarity (see section on ‘Applica-
tion to fitted models from EMDB’).

Comparison with other scores. As we have demonstrated, PI-
score is density-independent and is especially useful to distin-
guish the native-like interfaces at low-to-intermediate resolution,
where density-based scores alone become less informative (see
section on ‘Application to fitted models from EMDB’). Most
studies calculate the global CCC, which will not reflect minor
changes at local regions of the structure (such as interface
regions). Local scores can be more informative in this respect;
however, they require a well-resolved density around the inter-
face. PI-score captures different types of information, specifically
assessing interface quality, and therefore brings an added value.

To explore the intention that a combination of both
approaches could be extremely beneficial in guiding model fitting
and validation (see section ‘Application to fitted entries in
EMDB’) we examined the performance of weighted combined
score on some of the targets in the benchmark. We find that our
weighted combined score captures the information from PI-score
and iCCC and is able to provide a metric for distinguishing
‘target-like’ models. For example, the combined score specifically
will be very helpful in the scenarios where the interface is not
correctly modelled (low PI-score) but is still well fitted in the map
(high iCCC) as well as the cases where the interface is correctly
modelled (high PI-score) but the fit-in-map is poor (low iCCC).

We acknowledge that there is scope for further improvement of
the combined score as one should be wary of the limitations. As
we have discussed above, CCC is intrinsically dependent on map
resolution and there is no recommended/absolute cutoff to
determine the quality of fit. This directly influences the
performance of the combined score.

Potential usage of PI-score. PI-score has two key uses: to validate
and to aid the modelling of interfaces in cryo-EM derived
assemblies. We demonstrated its use as a validation score on the
CASP and EM model challenge targets. In addition to these, PI-
score can also be implemented as part of the model building/
refinement process in software packages, such as CCP-EM43 and
Scipion44, to guide the process of model building and model
validation (e.g. as part of the CCP-EM validation suite at https://
www.ccpem.ac.uk/download.php). Furthermore, PI-score can
also be used to filter solutions and identify ‘native-like’ interfaces
from protein–protein docking software, such as ZDOCK, and
from software that use multi-component assembly fitting
approaches, such as PRISM-EM45, IMP46 and gamma-TEMPy47.

Summary and future directions. In this work we have intro-
duced an interface-centric metric, PI-score, and systematically
assessed the PDB cryo-EM derived assemblies for their interface
quality. We are working towards expanding the features’ set (e.g.
coevolution scores) to calculate PI-score and implementing deep-
learning approaches. We believe that PI-score will be a crucial
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addition to the set of validation scores currently used in the cryo-
EM community as part of structure modelling tools. It is likely
that many protein–protein interfaces in future-deposited cryo-
EM structures will contain errors, especially in low-to-
intermediate resolution structures. Scores such as PI-score,
which provide insights into interface modelling, have the poten-
tial to be extremely beneficial if included in the EMDB validation
report.

Methods
Dataset of high-resolution complexes (positive dataset 1—PD1, ‘native’
interfaces). High-resolution crystal structures of complexes were obtained from
PDB with following filters:

1. Minimum number of chains= 2
2. Experimental method= X-ray
3. Resolution between 0.0 and 2.5 Å
4. R factor (all) between 0 and 0.25
5. R-free between 0 and 0.3
6. Length of each chain >= 30 amino acids

Using these filters, we fetched the non-redundant PDB structures at 40%
sequence identity, resulting in a total of 3926 complexes.

Interface assignment. Interface residues between two chains were defined using
the distance-based threshold of Cα–Cα distance48 of 7 Å. An interface was only
included in the datasets, if it contained at least ten residues from each of the
interacting chains.

The complexes were processed to remove symmetric interfaces present in the
same structure using iAlign33 to structurally align the protein–protein interfaces
between different chains of the same PDB structure. At the recommended cut-off
of interface similarity score of 0.7, non-identical or identical monomers forming
similar interfaces were filtered out and the final set contained 2315 complexes with
2858 interfaces.

Dataset of ‘near-native’ complexes (positive dataset 2—PD2). ‘Near-native’
complexes were derived from the native complexes (PD1). The pair of interacting
chains from PD1 dataset were subjected to protein–protein docking using
ZDOCK34 and the poses (interfaces) with fNal (fraction of aligned native interface
residues) >= 0.7 and iRMSD (interface root mean square deviation)33 <=3 Å were
selected.

Dataset of ‘non-biological’ complexes (negative dataset—ND). The pairs of
interacting chains from PD1 were subjected to docking using ZDOCK and the
docked poses with fNal < 0.3 or iRMSD >4 Å were selected.

Calculation of interface features. The following interface parameters were
computed:

1. Number of interface residues (num_intf_residues)
This was calculated using an in-house python script to assign the interface as
explained above and count the number of residues from each chain of the
complex.

2. Conserved residues at the interface (conserved_interface)
For each chain in a given protein–protein complex, the homologues were
collected using PSI-BLAST49 (number of iterations= 3, e-value= 10−5,
query coverage= 80%) against Swiss-Prot50 database. The homologues were
further clustered at 90% sequence identity using usearch51, and subsequently
aligned using MUSCLE (v3.8.31)52. The conservation scores were calculated
using the generated multiple sequence alignment as input to the maximum
likelihood-based method Rate4Site53, which measures the evolution of
amino acids residues and identifies functionally important sites. The
intersection of conserved residues and interface residues (as assigned above)
were selected as a set of conserved residues at the interface.

3. Charged residues at the interface (charged)
The charged amino acids (Asp, Glu, Lys, Arg) were counted at the interface
and this was normalised by the total number of interface residues.

4. Polar residues at the interface (polar)
The polar amino acids (Ser, Thr, Asn, Gln, His and Tyr) were counted at the
interface and this was normalised by the total number of interface residues.

5. Hydrophobic residues at the interface (hydrophobic)
Hydrophobic amino acids (Ala, Leu, Ile, Val, Phe, Trp, Cys, Met) were
counted at the interface and this was normalised by the total number of
interface residues.

6. Number of contact pairs (contact_pairs)
The contact pairs were defined as the number of atomic contacts between
the interface residues from the interacting chains.

7. Shape complementarity (sc)

Geometric shape complementarity of protein–protein interfaces were
computed using the program-SC17 from the CCP454 software suite. The
value of the calculated statistic sc (shape correlation) describes the extent of
interactions of the two chains with respect to each other and varies between
0–1. Protein–protein interface with sc= 1 suggests that the two protein
subunits mesh precisely, whereas with sc closer to zero implies an interface
with uncorrelated topography.
The following features were calculated using PISA55 (via CCP4) (Protein
interfaces, surfaces and assemblies):

8. Hydrogen bonds (hb)
The number of potential hydrogen bonds at the interface

9. Salt Bridges (sb)
The number of potential salt bridges at the interface

10. Interface solvation energy (int_solv_en)
The difference in energy between the bound and unbound monomers due to
the solvation effect.

11. Hydrophobic p-value (p value)
Probability measure of the specificity of a given interface. The lower the
probability is, the more specific the interface is.

12. Interface surface area (int_area)
Surface area, which becomes inaccessible to the solvent upon interface
formation, measured in Å2.

Importance of interface features. Five methods were used to rank the importance
of each of the interface features: Ridge, Random forest, Recursive feature elim-
ination, Linear Regression, and Lasso. We used the sklearn Python package with
default parameter settings. The mean scores from each of these methods were used
to rank the derived features.

Performance assessment metrics. True positive (TP), true negative (TN), false
positive (FP) and false negative (FN) were used to assess the performance of the
model using the following definitions:

TPR ðTrue positive rateÞ ¼ TP
TPþ FN

ð1Þ

FPR ðFalse positive rateÞ ¼ FP
TNþ FP

ð2Þ

Precision ¼ TP
TPþ FP

ð3Þ

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð4Þ

F1 ¼ 2 � ðPrecision � TPRÞ
ðPrecisionþ TPRÞ ð5Þ

Specificity ¼ TN
TNþ FP

ð6Þ

Matthews correlation coefficientðMCCÞ ¼ ðTP � TNÞ � ðFP � FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ
p

ð7Þ

Benchmark datasets.

1. The structures of fitted models and targets, and corresponding target cryo-
EM maps were downloaded from the CASP13 website
(https://predictioncenter.org/casp13/).

2. The targets’ structure, map and submitted models for EM model challenge
2016 and 2019 were downloaded from EM model challenge website (https://
model-compare.emdataresource.org/).

3. The entries with fitted models were obtained from EMDB (https://www.ebi.
ac.uk/pdbe/emdb/).

Density-based scores. The goodness-of-fit between the model and cryo-EM map
was estimated using global and local cross-correlation scores. The global cross-
correlation (CCC) was calculated using Fit-in-Map function in UCSF Chimera56

and the local scores (TEMPy SMOC-Segment-based Manders’ Overlap
Coefficient6) were calculated using the CCP-EM43 GUI interface. CCC score per
residue was calculated using the SCCC formula (Eq. 3 in Joseph et al.5). iCCC
(interface CCC) is calculated as average CCC over the interface residues.

Comparison with CASP13 oligomeric scores. The models for CASP13 cryo-EM
targets which were scored using our classifier were compared with the protein
assembly scores used in CASP13. The machine learning-based classifier score (PI-
score) for multiple interfaces within a model structure were averaged by the
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number of interfaces and this was compared with the CASP13 scores (F1, Jaccard
index, lDDT(oligo) and GDT(o))39. Interface contact similarity (F1) and interface
patch scores (Jaccard coefficient) range from 0 (worst) to 1(best). GDTo and lDDT
(oligo) (local distance difference test) consider the whole oligomeric assembly and
range from 0 (different quaternary structure) to 1(similar quaternary structure).
The latter are computed after mapping the equivalent chains between the target
and the model using QS algorithm39. If at least one of these CASP13 multimeric
scores was >= 0.5 and the model was scored positive using our classifier, it was
treated as true positive (TP). True negatives (TN) are the set of model structures
that do not have any of the CASP13 scores >= 0.5 and are scored negative by the
classifier. False positives (FP) are the models which were scored >= 0.5 by at least
one of the four CASP13 scores and negative using our classifier score whereas false
negatives (FN) are the models scored negative using the classifier and have at least
one of the CASP13 score >= 0.5.

Weighted combined score. As seen from Table 1, |PI-score| >= 2.5, achieves best
TPR and is highly reliable, therefore 2.5 was used to normalise the absolute
PI-scores. The following conditions were used to obtain the normalised value
for PI-scores:

if PI-score >0:

normalised PIscore ¼ minðPIscore=2:5; 1:0Þ ð8Þ
if PI-score <0:

normalised PIscore ¼ maxðPIscore=2:5;�1:0Þ ð9Þ
if PI-score = 0:

normalised PIscore ¼ PIscore ð10Þ
The value for iCCC score is between −1 and +1 (higher the score, better is the

fit to data).
The normalised PI-scores were binned in the range of [−1.0, +1.0] using a step

size of 0.1. The equivalent weight matrix was designed with the values ranging
between −10 and +10. The weights of normalised PI-scores (w1) were the
respective indices for the score. Weighted combined score is defined as follows:

Weighted combined score ¼ ðw1 � normalised PIscoreþ w2 � iCCCÞ=ðw1þ w2Þ
ð11Þ

where w2= 10. The weighted combined score varies between −1 and 1 (the higher
value the better).

Data availability
The structures and models assessed in this study are deposited in the freely accessible
public database PDB and EMDB. The PDB IDs and EMDB IDs are appropriately cited
throughout the text. All the data generated during this study are within the article and its
Supplementary files.

Code availability
The software to calculate the PI-score is freely available for academic use through:
https://gitlab.com/topf-lab/pi_score.
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