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A distinct growth physiology enhances bacterial
growth under rapid nutrient fluctuations
Jen Nguyen 1,2, Vicente Fernandez1, Sammy Pontrelli3, Uwe Sauer 3, Martin Ackermann4,5 &

Roman Stocker 1✉

It has long been known that bacteria coordinate their physiology with their nutrient envir-

onment, yet our current understanding offers little intuition for how bacteria respond to the

second-to-minute scale fluctuations in nutrient concentration characteristic of many micro-

bial habitats. To investigate the effects of rapid nutrient fluctuations on bacterial growth, we

couple custom microfluidics with single-cell microscopy to quantify the growth rate of E. coli

experiencing 30 s to 60min nutrient fluctuations. Compared to steady environments of equal

average concentration, fluctuating environments reduce growth rate by up to 50%. However,

measured reductions in growth rate are only 38% of the growth loss predicted from single

nutrient shifts. This enhancement derives from the distinct growth response of cells grown in

environments that fluctuate rather than shift once. We report an unexpected physiology

adapted for growth in nutrient fluctuations and implicate nutrient timescale as a critical

environmental parameter beyond nutrient identity and concentration.
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Our planet is sustained by the metabolic activities of
microorganisms. In our gut, microbial communities
break down nutrients into forms that we can take up and

use; at sea, microbial growth affects the sequestration of carbon in
the ocean and its release back into the atmosphere; and in the soil,
microbes convert organic molecules into forms that facilitate
plant growth. These metabolic activities are often performed
under conditions that depart from a steady state. Rather, the
quality and quantity of available nutrients often fluctuate rapidly
due to microscale spatial heterogeneity, fluid flow, or host eating
habits. Many host-associated and free-living microbes experience
second- and minute-scale fluctuations in nutrient availability as
they swim through resource landscapes that are highly hetero-
geneous at sub-millimeter scales1–5. Surface-attached micro-
organisms experience rapid changes in resources through the
movement of the liquid around them6–8.

To understand the impacts that microorganisms have on the
physiology of their hosts and on global elemental cycles, we have to
understand how individual bacteria respond to nutrient fluctuations.
However, our understanding of microbial physiology draws heavily
on knowledge derived from steady environments or single transi-
tions between steady states9–11. Microbial metabolism and growth
under nutrient fluctuations remains a knowledge gap, largely due to
the technical challenges of studying cells in highly dynamic envir-
onments. Here, we address this gap using single-cell growth
experiments in a custom microfluidic device to show that rapid
fluctuations substantially diminish growth, but also that bacteria can
exhibit a fluctuation-adapted growth physiology that enhances
growth under frequent environmental change.

Recent advances in single-cell measurement techniques have
laid foundations for considering the implications of second- and
minute-scale fluctuations on bacterial growth and physiology.
Single-cell measurements of bacterial mass at femtogram reso-
lution have confirmed that individual bacteria add mass
exponentially12,13. Experiments enabled by a groundbreaking
microfluidic tool, the Mother Machine, revealed that the expo-
nential growth of individual cells is stable over hundreds of
generations14, indicating that steady-state growth applies not only
at the population level but also to individuals. This seminal dis-
covery has catalyzed major progress toward understanding the
homeostatic regulation by which bacteria tune their growth and
physiology to their environment, resulting, for example, in the
Adder model of cell-size control15–17 and hypotheses for its
underlying mechanisms18–20. This wealth of literature stems from
and reinforces a long-standing paradigm that each nutrient
environment induces a characteristic steady-state growth
rate9,10,17 in which cells tightly regulate their size17, proteome21,
and biosynthesis rates10 in response to nutrient availability. The
robustness of steady-state cell physiologies has led to growth laws
that relate physiological traits, such as RNA–protein ratios10,22,
with steady-state growth rate.

The expansive experimental and theoretical characterization of
steady-state growth has led to its use as the framework to inter-
pret bacterial physiology and ecology, even in dynamic environ-
ments. Currently, our understanding of bacterial responses to
changes in the environment derives heavily from characteriza-
tions of physiological transitions from one steady state to another.
Upon a nutrient shift out of steady state, cells initiate a cascade of
responses that depend on the nutrient composition of the new
environment and require hours to complete11,23. Specific pro-
cesses respond over a range of timescales—transcription over
seconds, translation over minutes, cell division over hours23—and
the progression of these physiological changes is reflected in a
cell’s growth rate. The dynamics of growth transitions thus pro-
vide insight into the strategies employed by bacteria and the

ecological challenges under which these strategies have
evolved11,23–25.

Steady-state growth is highly informative when nutrients fluc-
tuate on timescales longer than the timescales required for cells
to transition between steady states; however, it is unclear whether
it provides an appropriate framework for understanding physiol-
ogy when nutrients fluctuate on timescales of seconds or minutes.
For example, minute-scale alternation in the expression of meta-
bolic pathways associated with different steady states may produce
cells with proteins that are not usually co-expressed. Proteins
expressed during prior exposures to a condition might reduce lag
times when that condition returns26,27, yet unnecessary gene
expression can also reduce growth rate21. Understanding how
frequent and repeated shifts in nutrient concentration integrate to
affect bacterial growth physiology requires systematic study of
single-cell growth under rapid nutrient fluctuations.

In this study, we characterized the rate and dynamics of bac-
terial growth under fluctuations between two fixed nutrient
concentrations on timescales of seconds to minutes. Using a
custom microfluidic device that precisely controls nutrient con-
centration over time, we quantified the growth dynamics of
thousands of individual Escherichia coli cells exposed to identical,
periodic nutrient fluctuations with periods as short as 30 s. We
found that rapid nutrient fluctuations reduce growth rate by up to
50% when compared to a steady nutrient condition delivering
the equal average concentration. However, the measured loss is
considerably smaller than the growth loss expected from a null
model based on measured growth responses to single shifts in
nutrient concentration. Here, we provide the first evidence of a
fluctuation-adapted growth physiology that alleviates growth loss
in fluctuating nutrient environments and implicate continued
temporal variability as a fundamental parameter for under-
standing bacterial physiology in dynamic habitats.

Results and discussion
Exposing single bacteria to precisely controlled, rapid nutrient
fluctuations. To determine how rapid nutrient fluctuations affect
bacterial growth, we engineered a microfluidic device to rapidly
switch between the delivery of two different nutrient concentra-
tions while simultaneously imaging individual bacteria with time-
lapse phase-contrast microscopy (Fig. 1a, “Methods”, and Sup-
plementary Fig. 1). We grew surface-attached E. coli
under nutrient oscillations with periods of 30 s, 5 min, 15 min, or
60 min (Fig. 1b). Each experiment began by flowing cells from a
growing batch culture into the device and allowing them to
adhere onto its glass surface prior to initiating nutrient fluctua-
tions (“Methods” and Supplementary Fig. 2). Switches between
the two nutrient concentrations occurred while maintaining a
constant flow rate and each switch was completed in <3 s (Sup-
plementary Fig. 3). The resulting nutrient signal was reliably
experienced by the cells as a square wave of equal time (half the
period) in each concentration (Fig. 1b), with sharp transitions
between concentrations (Fig. 1c). Neither nutrient depletion nor
metabolite accumulation altered the composition of the nutrient
media experienced by the cells, due to the high flow rates and
channel depth (60 µm) used (Supplementary Fig. 4 and Supple-
mentary Table 1). Usually, one of the two cells emerging from
each cell division event was transported away by the flow
(Fig. 1d), allowing us to acquire time series of thousands of
individual cells (4000–20,000) for each experiment. We con-
firmed that growth rate was independent of a cell’s position along
the 10-mm-long region imaged within the microchannel (Sup-
plementary Fig. 4) and that cells within the same condition
therefore experienced identical nutrient signals over time.
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To isolate the role of nutrient timescale from that of nutrient
concentration, we switched between the same two nutrient
concentrations for all fluctuating environments, a high and a
low concentration of a complex growth medium (Chigh= 2% LB,
Clow= 0.1% LB), empirically chosen to avoid the saturation of
growth rate (Supplementary Fig. 5a, b). Three control experi-
ments with steady nutrient concentrations were run in parallel
with each fluctuating experiment: one at Chigh, one at Clow, and
one at Cave= (Chigh+ Clow)/2 (i.e., 1.05% LB) (Fig. 1a). We found

that varying nutrient concentration reproduced key relationships
between growth rate, cell size, and division time (Supplementary
Fig. 5c, d) previously established by varying nutrient source (e.g.,
glucose vs. tryptic soy broth)17, suggesting that variations in
growth rate due to changes in nutrient concentration and
nutrient source are physiologically similar. Importantly, the Cave

control provided cells with average and total nutrient identical to
that in the fluctuating environments. Together, these steady
controls enabled us to distinguish the effects of fluctuation
timescale from those of nutrient concentration by providing
reference growth rates in steady low, average, and high nutrient
concentrations.

Growth rate rapidly responds to nutrient fluctuations. This
microfluidic system allowed us to measure the growth rate of
individual cells in steady and fluctuating nutrient concentrations
with high precision and temporal resolution. Growth rate, defined
here as the rate at which cell volume doubles, was quantified from
phase-contrast images of single cells acquired approximately
every 2 min (see “Methods”). For each cell imaged, we extracted
the length and width using image analysis and quantified cell
volume, V(t), by approximating the cell as a cylinder with
hemispherical caps18,28. Using the resulting time series of cell
volume (Fig. 2a), we computed the instantaneous growth rate for
each single cell, µ(t), from V(t+ Δt)= V(t) × 2µΔt (see “Meth-
ods”). We focused on single-cell volumetric growth rather than
cell replication or division time because biomass production has
been shown to respond within minutes of a nutrient shift,
whereas cell division responds more slowly (within an hour)23.
The growth rate in the steady controls stabilized within 3 h of the
start of the experiments (Supplementary Fig. 5). Thus, the steady-
state growth rates (Ghigh, Gave, and Glow) from steady Chigh, Cave,
and Clow were computed by averaging all single-cell growth rates,
µ, measured after 3 h within each respective condition (Fig. 2b).
We confirmed with metabolomic profiling that the different
steady-state growth rates between the three steady conditions
resulted from changes in nutrient uptake rates, rather than
changes in preferred metabolites (i.e., serine is likely the preferred
metabolite across all conditions) (“Methods” and Supplementary
Fig. 6).

Growth rate in the fluctuating environment changed rapidly in
response to changes in nutrient concentration. Because instanta-
neous growth rate dynamics from single cells were noisy
(Supplementary Fig. 7), we averaged the single-cell growth rates
at each time point to visualize the dynamics of time-averaged
instantaneous growth rates, which displayed strong and sharp
fluctuations, changing more than two-fold within minutes
(Fig. 2b). Instantaneous growth rate fluctuated with the
immediate nutrient concentration, such that higher growth rates
were observed in the high-nutrient phase and lower growth rates
in the low-nutrient phase (Fig. 2b). While cell divisions occurred
more frequently during phases of high nutrient, we confirmed
that the fluctuations in growth rate reflected responses in single-
cell volume, rather than cell division responses (Supplementary
Fig. 8). When averaging the instantaneous growth rates from each
phase of the nutrient signal, periodic changes were observed when
nutrients fluctuated with a period of 5, 15, or 60 min (Fig. 2c),
indicating that growth rate responded to nutrient shifts in <2.5
min. Changes in growth rate that slightly precede changes in the
nutrient signal are not an anticipatory response, but rather are
caused by limits in the time resolution of our measurements
(Supplementary Fig. 9a). Similarly, fluctuations in growth rate
were not resolvable with 30 s fluctuations, owing to the temporal
resolution of image acquisition (2 min) (see Image acquisition in
“Methods”). Nevertheless, these results establish that rapid
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Fig. 1 The microfluidic signal generator (MSG) creates automated,
precise high-frequency fluctuations in nutrient concentration while
enabling single-cell microscopy. a The two channel configurations: the
MSG switches between two media (top) and the straight channels
each steadily deliver a single medium (bottom). Each experiment
contains four parallel channels: one MSG and three straight. The two MSG
channels displayed here schematically represent the flow conditions that
deliver either Clow or Chigh to the cells. The upstream portion of the MSG
switches the nutrient media delivered to cells via automated control over
the pressure differences driving each medium while maintaining a constant
flow rate into the device. The top MSG delivers Chigh (red) to cells by
pressurizing the red inlet higher than the Clow (purple) inlet. The wider
downstream section fits over ten imaging fields of view at ×60
magnification. b Bacteria were exposed to fluctuating signals in the form of
even oscillations between a low and a high LB concentration (Clow and
Chigh), with periods, T, between 30 s and 60min. Three control
environments, Clow, Cave, and Chigh, were run simultaneously with each
fluctuating environment. c Fluorescence intensity, from fluorescein added
to one of the media, illustrates the signal received at the cell imaging region
over multiple oscillations (T= 30 s). Transitions between media are
completed in <3 s. d Individual E. coli cells growing within the MSG. Cells
were imaged at 117 s intervals; timestamps of selected images are displayed
in minutes. Cells divide between t2 and t3 (orange) and between t4 and t5
(blue), and can be seen elongating between other frames. One of the two
cells emerging from division is swept away with the flow. Images were
cropped from one steady nutrient experiment and are representative of the
growth behaviors observed in all experiments described in this paper.
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fluctuations in nutrient concentration lead to minute-scale
fluctuations in instantaneous growth rate. We next asked how
these nutrient fluctuations—and the resulting fluctuations in
instantaneous growth rate—impact the mean rate at which
individual cells grow.

Rapid nutrient fluctuations reduce growth rate relative to
steady conditions. The mean growth rate in fluctuating envir-
onments, Gfluc, was consistently lower than the growth rate in the
steady average conditions, Gave. For each fluctuation timescale, we
computed Gfluc as the average of all instantaneous growth rates
for all cells measured from 3 h to the end of the experiment.
For nutrient fluctuations on 30 s, 5 min, 15 min, and 60 min
periods, this measure yielded Gfluc values of 1.93 ± 0.16, 1.53 ±
0.20, 1.15 ± 0.28, and 1.15 ± 0.13 h−1, respectively (mean ± stan-
dard deviation; n= 3–4 replicate experiments per condition, each
with at least 1842 cells; Fig. 3a and Supplementary Table 2). The

corresponding value of Gave was 2.31 ± 0.18 h−1 (n= 13 replicate
experiments; Supplementary Table 2). Accordingly, Gfluc was
lower than Gave by 16.5–50.2% of Gave.

This reduction in mean growth rate has strong implications
for bacterial population dynamics. For example, for each initial
biomass of M0= 1 µm3, the measured Gfluc from 30 s fluctuations
(1.93 ± 0.16 h−1) and Gave (2.31 ± 0.18 h−1) correspond to a daily
(t= 1 day) produced biomass of 9 × 1013 and 5 × 1016 µm3,
respectively (Supplementary Table 3). In other words, two cells of
equal initial volume, both growing exponentially (M(t)=M0 · 2Gt)
with one at rate Gfluc and one at Gave, will differ in biomass
production by >500-fold in a single day. Thus, by affecting growth
rate, the timing of nutrient availability is an important parameter in
the growth and productivity of bacterial populations.

Why do nutrient fluctuations reduce growth rate relative to the
steady-state growth rate, Gave? A simple mathematical model,
relevant to the concave Monod curve, illustrates a physiological
implication of fluctuating nutrients. In the Monod curve, steady-
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state growth rate increases less than linearly with nutrient
concentration (Fig. 3b). This steady-state function is an example
of Jensen’s inequality, which states that for a concave function, the
mean of the function (i.e., GJ= (Glow+Ghigh)/2) is smaller than
the function of the mean (i.e., Gave). This inequality predicts that
fluctuations between Chigh and Clow would result in a growth rate,
GJ, lower than Gave (GJ= 1.97 ± 0.16 h−1 <Gave= 2.31 ± 0.18 h−1)
(Fig. 3b). Still, Jensen’s inequality does not explain the observed
growth reductions. The growth rates from fluctuating environ-
ments, Gfluc, were lower than GJ for all fluctuation periods except
30 s (Fig. 3c). This difference is consistent with the unrealistic
scenario represented by Jensen’s inequality, which considers a cell
that fluctuates between growth at two steady states, Glow and Ghigh

(1.07 ± 0.23 and 2.86 ± 0.14 h−1, respectively). In reality, the
magnitude by which Gfluc is lower than GJ depends on the
dynamics by which single-cell growth rate responds to fluctuations
in nutrient concentration.

We hypothesized that the reduction in growth rate results from
the time required for cells to adopt the steady-state physiology
characteristic of the current nutrient condition after each
fluctuation. The prevailing paradigm for growth transitions
presumes that cells initiate a physiological transition to the
immediate nutrient environment11, regardless of the nutrient
timescale. In response to a single shift in nutrient concentration
(e.g., from Clow to Chigh), cells grow at rates lower than steady-
state Ghigh for several hours until the physiological transition is
complete (Fig. 4a). This hours-scale transition in growth rate is a
characteristic response to environments in which the nutrient
condition shifts only once11,23–25. When nutrient fluctuations
occur on timescales longer than this hours-scale transition in
growth rate, predicting growth dynamics from such single-shift
responses is relatively straightforward29. When nutrient fluctua-
tions occur on timescales faster than the time required to
physiologically transition between steady states, the paradigm
predicts that cells should never stabilize in growth rate and that

cells continuously grow at rates lower than steady state, causing
Gfluc to be lower than GJ.

Growth rate responses differ between repeated fluctuations and
single nutrient shifts. To determine whether the timescale of
physiological transitions could explain the reduction in Gfluc, we
compared the growth rate dynamics between cells exposed to
fluctuations and cells exposed to a single up- or downshift in
nutrient concentration after having reached steady state prior to
the shift. In single-upshift experiments, cells growing steadily at
Glow were switched to Chigh, while in single-downshift experi-
ments, cells growing steadily at Ghigh were switched to Clow. These
single-shift experiments enabled us to quantify the time required
for cells to physiologically transition between the two steady
states, as well as the dynamics of growth rate across the transition
(Fig. 4a). In single-upshift experiments, the growth rate gradually
increased from Glow until reaching steady-state Ghigh after 2–3 h.
In single-downshift experiments, the growth rate dropped sharply
from Ghigh down to 10% of Glow, then gradually increased until
reaching steady-state Glow after 5 h (Fig. 4a).

In contrast to cells exposed to single shifts in nutrient
concentration, cells grown in fluctuations stabilized at growth
rates lower than steady state. We observed this stabilization of
growth rate in fluctuating environments with 15 and 60 min
periods, which were better resolved with our 2-min imaging
interval (Fig. 4b). Growth rate under these fluctuations stabilized
at 66% of Ghigh after each upshift and at 63–68% of Glow after
each downshift (Fig. 4c, d and Supplementary Table 4) within
minutes: 3.8 ± 0.0 or 3.3 ± 1.4 min after each upshift and 2.2 ± 1.9
min or 15.0 ± 7.6 min after each downshift (T= 15 or 60 min,
respectively) (Fig. 4e). The minute-scale stabilization of growth
rate observed from fluctuating conditions was in stark contrast to
the hours-long timescale observed from single-shift conditions
(116.3 ± 12.4 min after a single upshift and at least 297.5 min after
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dynamics of cells experiencing a single shift. Data were aligned such that the nutrient shift in all conditions occurs at t= 0. Post-shift data in fluctuating
environments are plotted up until the next shift occurs. Shaded error bars denote the standard deviation of the mean among replicate experiments (n= 3–4
for fluctuating conditions; n= 2 for single-shift conditions). c Growth rate is considered stabilized once the slope of the growth signal within a shrinking
window reaches zero. Stabilization time is defined as the time between the nutrient shift and the time at which the growth rate is stabilized. d The growth
rate of fluctuation-grown cells stabilized at rates lower than steady-state Ghigh or Glow. Cells experiencing 15 and 60min fluctuations stabilized at 1.86 ±
0.47 and 1.86 ± 0.13 h−1, respectively, after an upshift and at 0.65 ± 0.22 and 0.60 ± 0.10 h−1 after a downshift. Cells shifted once from steady-state
stabilized only upon reaching steady state Ghigh (2.84 ± 0.08 h−1) after an upshift or Glow (0.96 h−1) when growth rate stabilized after a downshift (only
one of two replicates stabilized at Glow after 5 h of post-shift observation). e Cells grown in fluctuations stabilize in growth rate within 3.8 ± 0.0 (T= 15
min) or 3.3 ± 1.4 min (T= 60min) of each upshift and within 2.2 ± 1.9 (T= 15 min) or 15.0 ± 7.6 min (T= 60min) of each downshift (n= 3–4). Cells grown
in steady environments stabilize hours after a single shift, 116.3 ± 12.4 min in the case of upshifts (n= 2) and at least 297.5min after a downshift (one of
two replicates stabilized after 5 h). f The initial change in growth rate in the minutes following a nutrient shift differed between cells experiencing
fluctuations and cells experiencing only a single shift. Over the first 7.5 min after each upshift, cells experiencing fluctuations increased in growth rate
relative to their pre-shift growth rate (t= 0) by 138.3 ± 20.6% (15 min) or 158.7 ± 48.4% (60min), compared to a 12.0 ± 14.0% increase in the single-shift
case. Over the 7.5 min after each downshift, cells experiencing fluctuations decreased in growth rate by 57.8 ± 3.7% (15min) or 80.4 ± 2.6% (60min),
compared to a 90.9 ± 2.5% decrease in growth rate in cells after a single shift. d–f Error bars denote the standard deviation of the mean of n= 3 or 4
biologically independent experimental replicates (none displayed for n < 3). Overlaid data points represent measurements from each of n replicates.
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a single downshift) (Fig. 4e) and is more consistent with a stable
growth physiology, i.e., a single cellular composition that grows at
different rates due to changes in metabolite flux (Fig. 4f), than
changes in gene expression.

These observations show that the effect of rapid nutrient
fluctuations on growth cannot be understood by reference to a
sequence of single up- and downshifts. Instead, the minute-scale
stabilization of growth rate and distinct values of growth rate
(once stabilized) suggests that cells grown under fluctuations have
a different growth physiology from cells grown under steady
nutrient conditions. While we measured different stabilization
times between the two fluctuating timescales after downshifts,
the overall growth rate dynamics observed from both
conditions (T= 15 and 60 min) were more comparable with
each other than with the single downshift condition. Growth rate
dropped sharply after a shift to Clow in fluctuating and single-shift
conditions (Fig. 4b), yet growth rate quickly increased in both
fluctuating conditions while no such rebound occurred after a
single shift (Fig. 4b).

That cells grown in T= 15 and 60 min nutrient fluctuations
induced growth rate responses, distinct from cells responding to
single shifts, suggests the existence of a distinct physiology
adopted by cells upon experiencing rapid nutrient fluctuations.
Growth rate stabilized at comparable values in both fluctuating
timescales (Fig. 4d), suggesting that T= 15 and 60 min nutrient
fluctuations induce the same or very similar physiologies. Future
work to access the proteomic and transcriptomic responses to
fluctuations will be important to understand the molecular
mechanisms of adaptation to fluctuations. Currently, our
observations do not support the hypothesis that the reduction
in growth rate under fluctuations results from continued
physiological transitions toward growth at Ghigh and Glow.
Instead, they led us to hypothesize that rapid fluctuations may
induce a fluctuation-adapted physiology, one that remains stable
across minute-scale changes in nutrient concentration.

Rapid nutrient fluctuations induce a fluctuation-adapted
growth physiology. To demonstrate that bacteria can adopt a
distinct physiological state when exposed to rapid nutrient fluc-
tuations, we performed an experiment in which cells growing
under steady Clow for at least 3.5 h were then exposed to

fluctuations of T= 60 min. We found that the first nutrient
upshift induced the gradual increase in growth rate characteristic
of the physiological transition between Glow and Ghigh observed
from single-shift conditions (Fig. 5a). Subsequent upshifts dis-
played faster growth rate adjustments that increasingly resembled
that characteristic of cells grown in fluctuating conditions
(Fig. 5a), confirming that cells can adopt a fluctuation-induced
growth physiology, induced by repeated nutrient shifts.

The transition to a stable growth physiology occurred within
2–3 h of the onset of fluctuations. Growth from each successive
nutrient upshift (growth in Chigh) increased during this 2–3 h
transition time, offsetting the decreasing growth following each
successive downshift (growth in Clow) (Fig. 5b), and ceased to
differ significantly from the third period of nutrient fluctuation
onwards (Fig. 5b). The overall increase in growth between the
initial and stabilized periods suggests that adopting the
fluctuation-induced physiology enhances growth in fluctuating
environments. This enhancement is potentially a physiological
trade-off that limits the maximum growth rate in any
given nutrient concentration to increase the cell’s potential for
growth when higher nutrient concentrations become available
(Fig. 5b). Indeed, in the minutes after a nutrient shift, growth rate
measured from cells in fluctuating conditions was higher than
that of cells exposed to a single shift (Fig. 4f and Supplementary
Fig. 9b). Thus, the stable physiology adopted by cells exposed to
rapid nutrient fluctuations can alleviate the potential reduction of
growth by unsteady conditions.

Growth in rapid nutrient fluctuations is higher than predicted
by single-shift growth models. To quantify the advantages of a
fluctuation-induced physiology, we compared mean growth rates
under fluctuations with mean growth rates predicted by a null
model. We constructed the null model from the growth rate
dynamics quantified from single shifts (Fig. 4a), simulating
growth rate over time under nutrient fluctuations while assuming
single-shift dynamics (Fig. 6a). Two different assumptions pro-
duced different dynamics under minute-scale fluctuations, yet
predicted the same trends (Supplementary Fig. 10 and Con-
struction of Null Model in the Supplementary information).
These dynamics were then averaged to predict Gfluc in the absence
of a fluctuation-induced physiology across a range of fluctuation
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timescales (T= 30 s to 96 h) (Fig. 6b and Supplementary Table 5).
For very slow fluctuations, the null model predicted that Gfluc

approaches the value predicted by Jensen’s inequality, GJ

(Fig. 6b), as cells spend almost the entirety of each nutrient phase
at either Glow or Ghigh (Fig. 6a). Across all nutrient timescales T,
the null model predicted that Gfluc diminishes with decreasing T
(Fig. 6b).

This trend in the null model is the opposite of that displayed by
the measured values of Gfluc for rapid fluctuations. Experimen-
tally, we measured an increase in Gfluc with decreasing fluctuation
period: Gfluc is 50% below Gave for T= 60 min, but only 16.5%
below Gave for T= 30 s (Fig. 6b). Relative to Gave, the measured
Gfluc represents only 70.8 ± 10.0% of the predicted growth lost for
T= 5 min and 38.9 ± 10.8% for T= 30 s (mean and standard
deviation, n= 3). This increase in measured Gfluc over the null
model predictions represents the growth advantage in fluctuating
conditions afforded by the fluctuation-induced growth physiol-
ogy. These results demonstrate that growth rate in rapid
fluctuations is not only quantitatively distinct from the values
of Gfluc predicted from single-shift dynamics, but also shows a
qualitatively different trend in Gfluc across nutrient timescales.
While the values of Gfluc predicted by the null model decreased
with decreasing nutrient timescale, measured Gfluc increased with
decreasing nutrient timescale, suggesting that the cellular
physiology induced by rapid fluctuations is an adaptation suited
to alleviate some of the growth rate losses imposed specifically by
second- and minute-scale nutrient fluctuations.

A remaining question concerns how cells sense that the
environment is rapidly fluctuating and initiate the transition to a
fluctuation-induced growth state. It is unclear how the fluctuation-
induced physiology is achieved, in part because we do not know
how gene expression or function may differ between cells growing

in fluctuations and cells growing at steady state; however, prior
work in bulk chemostat systems delivering transient minutes-long
pulses of glucose may offer important insights30–32. For example, in
glucose-limited conditions, some yeast species (including Sacchar-
omyces cerevisiae) respond to a pulse of glucose by activating
alcoholic fermentation, while others prevent ethanol production by
increasing acetaldehyde oxidation33. Yeasts that ferment the pulsed
glucose into ethanol instead of biomass generally exhibit no change
in growth rate across the pulse, whereas yeasts avoiding pulse-
activated fermentation exhibit increased biomass production upon
the addition of glucose33. The dependence of growth rate in
dynamic environments on the allocation of metabolic flux has also
been proposed to occur in E. coli, which uses the carbon storage
molecule glycogen to maintain higher growth rates under pulsing
nutrient conditions34. Experiments to test whether similar processes
may explain our findings could be performed by adapting such bulk
systems to measure gene expression and metabolic activity under
minute-scale nutrient fluctuations.

Alterations in gene expression can be beneficial when
environments change on rapid timescales. For example, increased
expression of photoprotection proteins has been demonstrated to
increase the growth yield of plants exposed to minute-scale
fluctuations in light35. Alternatively, post-translational activation
of so-called spare ribosomes has been implicated as a bacterial
strategy to increase growth rate rapidly (i.e., without new
protein synthesis) upon nutrient upshift24,25,30. E. coli, upon
sensing depleted intracellular amino acid levels, has also been
observed to induce broad responses to increase energy produc-
tion, ribosome levels, and translational capacity36. These
observations illustrate the diversity of strategies that life has
evolved to cope with the challenges of environmental change. By
reporting a fluctuation-adapted physiology with growth benefits
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differentiates the growth physiology at rapid fluctuation timescales from the growth behaviors expected from single shifts, and highlights the timescale-
dependent nature of the growth advantage conferred by a physiology adapted for growth under rapid nutrient fluctuations.
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in rapidly fluctuating environments, we contribute a framework
by which to pursue an understanding of bacterial growth that is
relevant to realistic habitats.

Accounting for fluctuations in models of bacterial growth. Our
study is the first to observe single-cell responses to rapid nutrient
fluctuations and report a fluctuation-induced growth physiology.
We found that bacteria exposed to nutrient fluctuations exhibit
reduced growth rates compared to that of the steady average
nutrient condition, even when nutrients fluctuated on timescales
as rapid as seconds. These reductions are not explained by the
current paradigm in bacterial physiology, which holds that cells
experiencing a shift in their nutrient environment will begin the
transition to the steady-state growth physiology of the post-
shift environment11,23–25. Despite the evidence that bacteria
encounter rapid and repeated nutrient fluctuations in their
environments1,2,4,5,8,37–41, single shifts in nutrient composition
remain the dominant method by which bacterial growth is stu-
died in dynamic nutrient conditions11,24,25. This study reports
key differences in growth rate dynamics between fluctuations and
single shifts, thus introducing repeated fluctuation as a better
experimental system to study variability in microbial habitats
than the classic single-shift paradigm.

In finding starkly different responses between fluctuations and
single shifts, our study presents a conceptual advance important for
the interpretation of past work and the direction of future work
considering microbial growth in complex environments. By
quantifying single-cell growth rate across a range of fluctuation
timescales relevant to many bacterial habitats, this work demon-
strates that growth responses to fluctuations are not simply
transitions between two discrete states. Instead, we uncovered a
strong dependence of bacterial growth on the temporal dynamics of
nutrient concentration, highlighting the importance of temporal
variability (and by extension, microscale heterogeneity) when
considering bacterial growth in realistic environments. This work
establishes nutrient timescale as a fundamental parameter char-
acterizing bacterial environments, forming a third axis (in addition
to chemical composition and temperature) to consider when
studying bacterial growth.

The discovery of a fluctuation-induced growth physiology in E.
coli highlights the importance of temporal context in bacterial
regulation of growth with nutrient availability. Further studies
with diverse patterns of nutrient fluctuations may yield additional
strategies of bacterial growth in temporally variable environ-
ments. It is also possible that distinct strategies of growth in
complex temporal environments have evolved between bacterial
species that occupy distinct ecological niches. Taxon-specific
specializations for the timescale of light fluctuations have long
been observed in plants42, and more recently in microbial
response times to inputs of water to dry soils43.

Our results illustrate how identical environmental shifts can
induce different responses depending on the timescale at which
the shifts are delivered, demonstrating the need to account for
temporal variability in the environment at timescales that have
been mostly ignored to date. Understanding the diversity of
growth responses to realistic features of microbial environments
will bring us closer to the establishment of general frameworks for
bacterial growth in natural ecosystems and the discovery of
mechanistic links between the interactions that occur on the scale
of single cells, populations, and communities.

Methods
Bacterial strain. All experiments in this study were performed with the same E.
coli strain, K-12 NCM3722 ΔmotA. The motility mutant (ΔmotA) lacks flagella,
facilitating long-term observation in microfluidics17, and is derived from the

background strain K-12 NCM3722, which lacks the growth defects observed in
other strains of E. coli44,45.

Growth media
Batch culture medium. MOPS (3-(N-morpholino)propanesulfonic acid) medium
(Teknova) supplemented with 0.2% glucose w/v and 1.32 mM K2HPO4 was used
for overnight and seed batch cultures. All batch cultures were 3 mL of supple-
mented MOPS medium inoculated with E. coli.

Microfluidics medium. Lysogeny broth (LB) composed of tryptone (10 g/L), yeast
extract (5 g/L), and NaCl (10 g/L) was used for all microfluidic nutrient conditions.
For the microfluidic experiments, the same stock solution of 100% LB was mixed
with an equimolar NaCl solution (2.5 g NaCl in 250mL 0.22 µm filtered water;
Millipore Millipak Express 40, catalog no. MPGP04001) to prepare three dilutions:
low, average, and high. To avoid bubble formation within the microfluidics, the
NaCl solution was freshly autoclaved the day of each experiment and then cooled
before preparing the LB dilutions. The high LB (2%) mixed 2mL of the full LB into
98 mL salt solution. The low LB (0.1%) mixed 5mL of the high LB solution with 95
mL salt solution. Afterward, the high LB solution was labeled with 0.26 nM sodium
fluorescein, to allow visual calibration of switching between media. All solutions
were adjusted to pH 7 with NaOH. Equal parts of low and high LB were mixed to
produce the average LB control; hence, the average LB medium contained 0.13 nM
sodium fluorescein. This fluorescein addition had no effect on the growth rate
(Supplementary Fig. 2a). Furthermore, we confirmed with metabolomic profiling
that the different steady-state growth rates between the three steady conditions
resulted from concentration-dependent changes in nutrient uptake rates, rather
than changes in preferential metabolite uptake (Supplementary Fig. 6). Growth
media were loaded into plastic 10 mL syringes (Codan) or glass vials (VWR, cat. no.
548-0154) and warmed to 37 °C at least 3 h prior to the start of each experiment.

Metabolomics characterization of growth media. Changes in extracellular
nutrient concentrations can affect uptake rates (due to variations in transporter
affinity) or uptake order (in rich media, E. coli have been observed to deplete
preferred metabolites before beginning to consume others46). To determine whe-
ther the preferred nutrient sources in our microfluidics experiments differed with
nutrient concentration, we measured the depletion of extracellular metabolites
from batch cultures. Batch cultures were necessary to observe metabolite depletion
by enabling higher cell densities per volume. Measurements of depletion from the
earliest time points after inoculating the batch cultures (i.e., when the media
composition was least changed) best represented the nutrient consumption
in microfluidic conditions, which continuously replenished all metabolites.

We collected the supernatant from 20 mL batch cultures grown at 37 °C
with shaking in 125 mL Erlenmeyer flasks. Twelve flasks were prepared in parallel,
four of each nutrient concentration (Clow, Cave, and Chigh). Three of each
concentration were inoculated with cells, while the fourth flask was kept bacteria-
free and sampled as a blank control. The inoculum was prepared with the same
overnight and seed culture preparation used for the microfluidics experiments (see
Cell preparation). Once the seed culture reached an OD600 of 0.1 (grown in MOPS
medium with 0.2% glucose), nine 1 mL aliquots were centrifuged for 2 min at 2500
r.c.f. (Eppendorf, Centrifuge 5424R) and the MOPS-based supernatant was
removed. The cell pellet was gently resuspended in the final growth medium (Clow,
Cave, or Chigh) and then inoculated into the appropriate flask. Each flask was
sampled every 30 min by centrifuging 500 µL of culture for 5 min at 2500 r.c.f.
Then, 100 µL of supernatant was removed from the top of each tube and stored in a
96-well plate (Thermo Scientific). Samples were kept on ice when in 1.5 mL
microcentrifuge tubes (Sarstedt AG & Co.), and then at −20 °C when in the plate.
The samples were thawed and diluted 1:10 in milliQ water prior to direct injection
and were measured with flow-injection time-of-flight mass spectrometry.

Untargeted metabolomics measurements were performed with a binary LC
pump (Agilent Technologies) and an MPS2 Autosampler (Gerstel) coupled to an
Agilent 6520 time-of-flight mass spectrometer (Agilent Technologies) operated in
negative mode, at 4 Ghz, high resolution, with an m/z (mass/charge) range of
50–100047. The mobile phase consisted of isopropanol:water (60:40, v/v) with
5 mM ammonium fluoride buffer at pH 9 at a flow rate of 150 μl/min. Raw data
were processed and analyzed with preprocessing raw mass spectrometry data
functions contained in the bioinformatics toolbox of Matlab (The Mathworks,
Natick)47. Overall, we detected 7037 ions, of which 284 could be annotated against
the KEGG database (restricted to E. coli) with 0.003 Da tolerance. We monitored
the depletion of these 284 metabolites over time in batch cultures inoculated into
Cave or Chigh. We found that detectable metabolites displayed comparable dynamics
in the two nutrient concentrations (Supplementary Fig. 6). This suggests that the
different growth rates observed among nutrient concentrations arise from
differences in nutrient flux and not from differences in the composition of nutrient
consumed. Metabolites in Clow were below the detection limit.

Cell preparation. Cells for each experiment were grown in two batch cultures, the
overnight culture and the seed culture, before entering the microchannels. The
overnight culture was inoculated directly from a −80 °C glycerol stock into 3 mL of
supplemented MOPS medium and shaken for 12–16 h at 37 °C at 200 r.p.m. The
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next morning, cells from the overnight culture were diluted to achieve 3 mL of
supplemented MOPS medium with an initial OD600 below detection, generally a
1:1000 or 1:2000 dilution. This seed culture was used to inoculate microchannels
once cells reached an OD600 between 0.07 and 0.10.

Microchannel fabrication. Microfluidic channels with a depth of 60 µm were cast in
polydimethylsiloxane (PDMS) from a custom-made master mold such that all four
channels (one microfluidic signal generator (MSG) for fluctuating environments and
three straight channels for steady environments) were present on the same
device (Fig. 1a). Each PDMS device was bonded to a glass slide by plasma treating
each interacting surface for at least 1 min, then incubating the assembled chip for at
least 2 h at 80 °C. The morning of each experiment, bonded channels were cooled to
room temperature and then treated with a 1:10 dilution of poly-L-lysine (Sigma,
catalog no. P8920) in milliQ water. Poly-L-lysine treatment increased the number of
attached cells and extended attachment duration, allowing for longer observations of
single cells without affecting growth (Supplementary Fig. 2b, c). This treatment has no
effect on the growth rate (Supplementary Fig. 2c) and involves incubating the diluted
poly-lysine solution inside each channel for 15min, before gently removing the
solution and flushing the emptied channel with sterile milliQ water. The treated
channels were then air-dried for at least 2 h prior to experimental use.

Nutrient signal calibration and generation. All fluctuating nutrient signals in this
study switched between two nutrient media: a high and low concentration of LB. To
switch between media, we oscillated pressure within each reservoir of the nutrient
medium while maintaining a steady mean pressure to ensure a steady total flow rate
of the medium through the device (Supplementary Fig. 1). This flow rate was
determined by collecting the fluid output from the MSG and measuring the volume
per minute. While the pressure differentials across the setup can vary (e.g., different
device, slight variations in tubing lengths and angles), the range of flow rates used had
no effect on growth rate (Supplementary Fig. 2). Because the pressure differentials
could vary from day to day, the pressure differences required to completely switch
between media were calibrated prior to each experiment at ×20 magnification, which
enabled visualization of the entire signal junction (Supplementary Fig. 1). These
calibrated pressure differences were then used to define the fluctuating nutrient signal.
The pressure system was programmed to generate the signal in synchrony with image
acquisition. Thus, timestamps from the image data could be directly correlated with
specific time points within the nutrient signal. Separately, the stability of the calibrated
signals was visually confirmed by comparing the fluorescent signal exiting the junc-
tion with the signal observed downstream (Fig. 1c and Supplementary Fig. 3). These
visualizations were conducted at ×60 magnification and quantified by custom image
processing scripts in MATLAB (see Code availability).

Quantification of switching timescale and nutrient signal stability. To assess
the correspondence between our designed signal (an even square-wave) and the
signal realized within the microfluidic device (Fig. 1c), we compared the transition
dynamics of nutrient shifts occurring immediately after the signal junction and
those occurring near the end of the cell imaging region. Two positions in the MSG
were imaged while the fluid flowing through fluctuated between a medium labeled
with 0.26 nM sodium fluorescein and an unlabeled medium on a 30 s period.
Specifically, we compared the sharpness of the signal immediately upon generation
with that observed further downstream, as experienced by the surface-attached cells,
and observed virtually no decay in the fluorescent signal between the signal junction
and the imaging region (Supplementary Fig. 3), only the time delay as calculated in
Supplementary Table 1. While no fluid mixing occurs in this device—we operate
under laminar flow regimes and there is no Lagrangian mixing—the diffusion of
nutrients (or sodium fluorescein, which is 2–4 times the molecular weight of an
amino acid) could potentially smooth out our nutrient signal. Diffusion can be
further aided by Taylor dispersion, a phenomenon in which velocity gradients in the
fluid flow (i.e., shear) work to increase the effective diffusion of a chemical species
by spreading it across a larger region, thereby favoring diffusion. Were the mag-
nitude of these effects non-negligible in our system, we should expect different
slopes during transitions between the signals at the junction and downstream.
Specifically, the downstream signal should have a longer transition time as we would
detect fluorescence leaching into the Clow phases of the signal. However, the time
required to complete transitions (i.e., time to go from baseline to saturated fluor-
escent signal and vice versa) was about 2 s in both locations (Supplementary Fig. 3).
Thus, our flow rates are sufficiently fast to carry our intended signal across the entire
length of the device without noticeable smoothing from diffusion. We also deter-
mined that the periodic oscillations in the nutrient signal are robust across time. The
programmed period (T= 30 s) was reliably quantified between peaks and between
troughs from the repetitive fluorescein signal (Supplementary Fig. 3).

Microfluidics experimental procedure. The system used to operate the MSG
involves: (1) a Nikon Eclipse Ti inverted microscope, (2) a full-case incubator that
maintains a stable temperature (37 °C) around the entire microscope, except for the
camera and light sources, (3) a computer to operate the microscope software (Nikon
Elements) and MATLAB, (4) a data acquisition (DAQ) device that interfaces with
MATLAB to control two pressure regulators, one for each nutrient source, (5) two

reservoirs of nutrient medium, one of each nutrient concentration, and (6) a source
of compressed air. The compressed air is fed into the pressure system through a
manual regulator, which caps the pressure directed toward the two automated
regulators at 1.5 psi. To ensure that the automated regulators receive a stable input,
the pressure of the compressed air source is higher than this maximum value. Each
automated regulator is connected to and modulates the internal pressure of one
reservoir of nutrient medium (Chigh or Clow). Each nutrient reservoir is a septum-
capped glass vial (vials: VWR, cat. no. 548-0154; caps: VWR, cat. no. 548-0872) with
two needles inserted into the silica septum: one short and one long. The short needle
directly connects an automated pressure regulator with the air space within its
reservoir, thereby adjusting the pressure within the reservoir as dictated by the
MATLAB signal (Supplementary Fig. 1a). The long needle connects the fluid within
its reservoir with the microchannel via tubing inserted into the inlets of the device
(Supplementary Fig. 1a). The microscope and media are contained within a custom
LIS incubator, which maintains the sample and all media at 37 °C.

Experiments were based on the exposure of cells attached to the lower surface of
the microchannels to precisely controlled fluctuating or steady nutrient conditions,
and the imaging of thousands of cells in the downstream imaging region in order to
calculate their individual growth rates. The treated, dry microchannels were
inoculated with ~50 µL of the seed culture (see Cell Preparation) for 10–15 min,
allowing cells to settle and attach to the glass surface within each microchannel
before the flow was established. Prior to inoculation, the microfluidic device was
placed in a vacuum for at least 10 min to remove air from the PDMS. This step
helped to avoid the presence of bubbles inside the channels, by removing air from
the PDMS so that any air introduced in the setup would be absorbed by the PDMS.
Inputs to fluctuating conditions were two septum-capped glass vials (one each for
high and low nutrient) from which flow was driven by a custom-built air pressure
system (Supplementary Fig. 1a). Inputs to steady conditions were 10 mL plastic
syringes (Codan) from which flow was driven by a syringe pump (Harvard
Apparatus). Outputs for all conditions led to liquid waste receptacles. To avoid
changes in pressure throughout experiments, we ensured that the waste tubing
was sufficiently short to never become submerged by the rising level of
media waste.

Image acquisition. Individual cells from all microchannel environments were
imaged with phase-contrast microscopy using a Nikon Eclipse Ti inverted
microscope equipped with an Andor Zyla sCMOS camera (6.5 µm per pixel) at ×60
magnification (×40 objective with an additional 1.5×), for a final image resolution
of 0.1083 µm per pixel. This magnification was high enough to detect changes in
growth between each image, yet low enough to image hundreds of cells per field of
view. Each position was repeatedly imaged every 117 s (1:57 min), a time step
sufficiently short to allow the acquisition of multiple time points along a growth
curve (i.e., 10 time points in a 20 min cell cycle), yet infrequent enough to image a
total of 40–50 positions within each time step. Imaging 10–15 positions within each
of four parallel conditions (i.e., fluctuating and steady Clow, Cave, and Chigh)
required roughly 1.5 min. Generally, ten imaging positions per condition allowed
us to track 500–1000 or more cells per nutrient condition. We confirmed that
growth rates were independent of a cell’s position along the 10-mm-long region
imaged within the microchannel (Supplementary Fig. 4) and therefore that cells
experienced identical nutrient time series, regardless of location within the
microchannel. The uneven time step (1:57 min as opposed to 2:00 min) was chosen
to avoid potential aliasing effects, by sampling at various points along the nutrient
period instead of repeatedly at the same few. Light exposure was limited to 20 ms
per image, with the shutter only open during image capture. Image acquisition was
fully automated through Nikon Elements, supplemented with the Nikon Perfect
Focus System to prevent loss of focus due to vertical shifts in the sample.

Image processing. In preparation for analysis, image sequences from microfluidic
experiments were first passed through a particle tracking step and a quality control
step. First, a custom MATLAB particle tracking pipeline was developed to (1) read
image data directly from Nikon Elements image files, (2) identify particles based on
pixel intensity, (3) fit an ellipse to each particle and measure particle parameters
(e.g., length, width) and (4) track individual particles through time. Second, to
exclude errors from our analysis—for example, particles arising from noise (i.e.,
non-uniformity in the background) or particles that include more than one cell—a
quality control step trimmed our tracked dataset, using size criteria and noise filters
to exclude errors. The parameter values used in both steps ensured that 93–97%
(depending on nutrient condition) of tracks derive from isolated single cells. The
final output of these two steps is a data matrix containing parameter data (e.g., cell
length) over time for hundreds of individual cells growing in isolation. Reducing
our analysis to cells without neighbors allowed us to assume no accumulation or
depletion of medium components, and no physical interactions between cells. Cells
in contact were excluded from the analysis to avoid the possibility of metabolic
interactions and imprecision in the measurement of cell size. Specifics
regarding the particle tracking and quality control steps are available in the scripts
(see Code availability). Images in figure panels were adjusted for visualization using
Fiji49.
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Quantification and statistical analyses
Calculating instantaneous growth rate, µ. One widely used method to calculate
growth rate is to consider single-cell growth an exponential process12,48 and solve
for instantaneous growth rate, µ. This definition of growth rate is used throughout
this study. From the length and width measured during particle tracking, the
instantaneous volume of each individual cell was approximated as a cylinder with
hemispherical caps19. The approximated volumes were then used to compute
instantaneous single-cell growth rates in terms of volume doublings per hour.
Using V(t+ Δt)= V(t) × 2µΔt, we calculated µ between each pair of time steps, with
Δt= 117 s (imaging frame rate). Specifically, we took the natural logarithm of each
volume trajectory and calculated the slope between each point. Dividing the slope
by the natural log of 2 changes the base of the exponential from e to 2. Thus, µ
represents the exponential rate at which volume doubles.

Accounting for day-to-day variability in growth rate. While steady-state growth rates
were generally reproducible (Supplementary Fig. 5b and Supplementary Table 6), we
found that growth rate measurements performed on the same day (i.e., same seed
culture) were moderately correlated (Supplementary Table 7). This correlation indi-
cates that slight differences between the seed culture (which was different for each
experiment) contributed to the differences in growth rate measured from identical
conditions between experiments. Thus, when comparing growth rate across condi-
tions (e.g., Gfluc and Gave), we compared measurements performed on the same day
before comparing between experimental replicates, calculating the fraction of Gave

represented by the measured Gfluc from that same experiment before calculating
statistics (i.e., mean and standard deviation of Gfluc/Gave) across experiments. We used
this same approach when comparing Gfluc to GJ, which was calculated from each
experiment’s Glow and Ghigh, and Gfluc to Glow. The alternative approach for this
comparison would be to calculate the mean and standard deviation between
experimental replicates before calculating fractions (e.g., Gfluc/Gave) and combining the
error. Numerically, this alternative approach yields very similar results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw mass spectral data is deposited in massIVE and accessible with the accession code
MSV000087096. The KEGG database used to annotate mass spectral data is available at
https://www.genome.jp/kegg/pathway.html restricted to organism eco. Raw image data
that support this study are available from the corresponding author upon request.
Datasets of measurements from raw images are the Source data of this manuscript that
are available at https://doi.org/10.5281/zenodo.469757250. The Source data can be
directly input into the openly available source code to produce reported figures and
calculations (see Code availability).

Code availability
Image processing, data analysis, and plotting scripts are available at https://github.
com/jkimthu/growing-up51. Scripts to automate fluctuating signal generation are
available at https://github.com/jkimthu/under-pressure52.
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