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Quantum loop states in spin-orbital models on the
honeycomb lattice
Lucile Savary 1,2✉

The search for truly quantum phases of matter is a center piece of modern research in

condensed matter physics. Quantum spin liquids, which host large amounts of entanglement

—an entirely quantum feature where one part of a system cannot be measured without

modifying the rest—are exemplars of such phases. Here, we devise a realistic model which

relies upon the well-known Haldane chain phase, i.e. the phase of spin-1 chains which host

fractional excitations at their ends, akin to the hallmark excitations of quantum spin liquids.

We tune our model to exactly soluble points, and find that the ground state realizes Haldane

chains whose physical supports fluctuate, realizing both quantum spin liquid like and

symmetry-protected topological phases. Crucially, this model is expected to describe actual

materials, and we provide a detailed set of material-specific constraints which may be readily

used for an experimental realization.
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The original proposal of Anderson for quantum spin liquids
(QSLs) involved resonating valence bonds, i.e. coherent
superpositions of singlet coverings of the lattice1–3. More

recently, proposals for both QSLs4–6 and symmetry-protected
topological (SPT) phases7–10 have emerged, which are now based
on fluctuating chains rather than singlets. More precisely, the
building blocks are Haldane-like chains11–13, which are feature-
less in their bulk but host-protected gapless states confined to
their ends. This is clearest in the AKLT chain (a representative
state of the Haldane phase)13, where each spin one is rewritten as
two spin half’s subsequently projected back onto the S= 1
representation at each site, and singlets form astride each bond.
In this picture, two free S= 1/2 are indeed left at each end of open
chains. The Haldane states are themselves one-dimensional SPTs;
in the two- and three-dimensional Haldane-based QSL and SPT
constructions, their physical supports fluctuate and their ends act
as the bulk or edge fractional excitations, respectively, which
characterize such phases. While such wavefunctions and even
parent Hamiltonians have been proposed, it has remained far
from obvious how they could be achieved in a realistic setting,
let alone an actual material.

Independently, concrete spin-orbital (Kugel–Khomskii14,15)
models, which capture single-site spin and orbital degeneracies,
have been shown to host a rich spectrum of phenomena15, notably,
valence bond solids16–24 and orbital liquids (e.g. refs. 22,25–29 and
refs. 30–33 after this paper first appeared). The crucial ingredient is
the modulation of the effective spin-exchange strength, which
allows for stronger and weaker bonds to form, owing to the rela-
tionship between effective exchange strength and orbital overlap.

Here, we show that orbital degrees of freedom provide a simple
loop-forming mechanism, and allow to naturally realize the
AKLT chain ground state picture (see Fig. 1). Specifically, we
construct a spin-orbital model, i.e. a model with orbital degen-
eracy, on the honeycomb lattice for S= 1 and effective L= 1,
which supports fluctuating Haldane chains (subtended by “orbital
loops”, i.e. closed strings of bonds with large orbital overlap), a
Haldane chain-based SPT, as well as a hexagon Haldane loop
crystal with “Haldane-gap wave” excitations. When taken to the
three-dimensional hyperhoneycomb lattice, the model is also
home to a fully-fledged symmetry-enriched U(1) Coulombic
spin-orbital liquid and a fractionalized antiferromagnet.

RESULTS
We proceed as follows. We first introduce the appropriate
ingredients and mathematical formalism and derive the minimal
realistic model that induces the formation of fluctuating loops.
Then, we analyze in detail the pure orbital part of the

Hamiltonian and show how orbital loops emerge, before intro-
ducing spin degrees of freedom. The addition of a large spin
exchange produces new, fluctuating, decorated loops. Along the
way, we derive results in a large portion of the phase diagram we
set out to study.

We consider two electrons at each site of a honeycomb lattice,
in degenerate t2g= {dyz, dxz, dxy} orbitals (which we also denote
for convenience x, y and z orbitals, respectively), with all other
orbitals filled or empty and far away in energy from the t2g
manifold. We assume large Hund’s coupling JH, which enforces
the high-spin state S= 1, and large intra-orbital repulsion U,
which imposes no more than one electron per orbital. There are
then two occupied and one empty orbital at each site, and the site
Hilbert space is H ¼ HLeff¼1 ´HS¼1. The orbital-space basis
ðjxi; jyi; jziÞ is defined such that in state xj i the x orbital is empty,
while the other two are filled, and similarly for jyi and zj i (see
Fig. 2b, c). [More formally, we can write that state μ

�� �
is such that

dμ− 1,μ+ 1 is empty, where x ± 1= y, z, etc.]34. A set of nine
operators acting in this space can be chosen to be {Lμ, Pμ, Tμ} with
μ= x, y, z, such that Lx ¼ iðjzihyj � jyihzjÞ, Px ¼ 1� jxihxj ¼ n̂x

and Tx ¼ �ðjzihyj þ jyihzjÞ and cyclic permutations. The Lμ

operators are Hermitian, obey the angular momentum
algebra and are such that Lμjμi ¼ 0. Pμ is a projection
operator that measures the occupation of the μ [i.e. dμ− 1,μ+ 1

with (x ± 1= y, z and permutations)] orbital, so that the two-
electron per-site constraint is written ∑μPμ= L(L+ 1)= 2.
Moreover, [Pμ, Pν]= 0.

We now write the minimal physically realistic Hamiltonian
acting in H, including only nearest-neighbor interactions, which
realizes a resonating chain regime. We assume isotropy in spin
space (no spin–orbit coupling) and a local cubic environment
(necessary for t2g orbitals). This Hamiltonian is

H ¼ ∑
hiji

P
γij
i P

γij
j �ζ þ J Si � Sj þ βðSi � SjÞ2

� �h i�
� υ T

γij�1
i T

γijþ1
j þ h:c:

h i�
:

ð1Þ

Except where otherwise noted, we take ζ, J ≥ 0 and −1 ≤ β ≤ 1. υ
can always be chosen positive, up to a gauge transformation (see
“Methods”). γij= x, y, z denotes the bond type of bond 〈ij〉 (in a
cubic environment each of the three types of honeycomb bonds is
orthogonal to a different cubic axis x, y, z and may be thereby
labeled, see Fig. 2), and x ± 1= y, z etc. For example, if 〈ij〉 is a z-

Fig. 1 Pictorial representations of a (static) loop and orbital configuration. An orbital and Haldane loop covering a section of the honeycomb lattice.
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type bond,

Hhiji2z ¼ Pz
i P

z
j �ζ þ J Si � Sj þ βðSi � SjÞ2

� �h i
� υ Ty

i T
x
j þ h:c:

h i
:

ð2Þ

The physical relevance of the ζ, J, β, υ parameters is rooted in the
relative geometry of the t2g orbitals and honeycomb bonds.
Indeed the, e.g., dxy (or “z”-) orbitals at each end of a z bond have
a large overlap, while all other overlaps are weak (see Fig. 2); the
first term in Eq. (1) enforces precisely this concomitance of bond
and orbital filling types across a bond. All terms in Eq. (1) arise
from standard orbital-dependent superexchange mechanisms.
They were derived in detail in refs. 21,35: the υ= 0 terms arise in
the case of direct orbital overlap (180° bonds)21, while the υ term,
which causes orbital fluctuations, is due to 90°-bond
superexchange35. [Biquadratic interactions (β contribution to Eq.
(1)) can be obtained at higher orders in t/U, where t,U are the
usual Hubbard model parameters. They are nevertheless not
crucial to the physics described in this manuscript, and mainly
used as a crutch to tune the model to an exactly-soluble point].
Equation (1) with υ= 0 and ζ < 0 was studied in detail in ref. 21

and it was noted that loop states were not favored for the para-
meter values considered.

We now proceed to the analysis of this model.

Orbital sector: fluctuating orbital loops. First, we set J= 0, and
investigate the orbital part of the Hamiltonian, i.e.

Horb ¼ ∑
hiji

�ζP
γij
i P

γij
j � υ T

γij�1
i T

γijþ1
j þ h:c:

h i� �
: ð3Þ

Static loops. To begin, we also focus on υ= 0, in which case the
Hamiltonian is exactly soluble. Indeed, Horb then reduces to a
(classical) Potts model H0 ¼ �ζ∑hijiP

γij
i P

γij
j
21, with ½Pμ

i ; P
ν
j � ¼ 0

and ½H0; P
μ
i � ¼ 0 ∀ i, j, μ, ν. For ζ > 0, because Pγ

i measures the
occupation of the γ orbital at site i, on each bond 〈ij〉 the energy is
minimized when both orbitals γij at each end are filled, in which
case we say the bond is “covered”. Because there are two electrons
per site, ∑γP

γ
i ¼ 2, the configuration where two covered bonds

stem out of every site (forming a two-bond string) is favorable
energetically (see Fig. 3a). The (fully-packed) loop coverings of
the lattice implement this condition throughout the lattice and
constitute the highly degenerate ground-state manifold of H0.

[The loop covering manifold is isomorphic to the more familiar
set of 1/3-plateau states, or 2/3-filling hard-core bosons, on the
kagomé lattice by identifying a covered honeycomb bond with an
“up” spin-1/2, or a hard-core boson, on the center of the bond.]
Owing to the orthogonality of t2g orbitals at the same site, all loop
coverings are strictly orthogonal to one another20. This is in
contrast to many dimer models where the dimers are two spin-1/
2 singlets. The elementary excitations of H0 (which take one out
of the loop covering manifold) are loop “cuts”: a loop is cut open,
which creates nearby two (defect) bonds covered by one orbital
rather than two or zero (see Fig. 3b, c). For H0, while a loop cut
costs an energy ζ and locally creates two defect bonds, once
created the two defect bonds may travel infinitely apart at no
further energy cost. This is, of course, reminiscent of the classical
spin ice problem, where a spin flip creates two monopoles that
can (quasi-)freely separate.

Orbital fluctuations. We now consider a non-zero but small υ≪ ζ.
This gives dynamics to the loops, since now ½H; Pγ

i �≠ 0. In

Fig. 2 Pictorial representation of the orbital states. a The honeycomb lattice embedded in a cubic structure. Honeycomb planes are perpendicular to 〈111〉
axes, here the ½1 1 1� axis. b The t2g orbitals shown in a cubic environment, surrounded by a putative octahedral cage. c Pictorial representation of the
xj i; yj i; zj i states. In state xj i, the dyz orbital is empty, while orbitals dxy and dxz each contain one electron. For clarity, only the lobes in the bond directions
are shown.

Fig. 3 Pictorial representations of the loop and orbital configurations. a
Orbital loop covering the lattice. b, c An elementary defect in the loop
covering: b at the loop cut and c after part of the defect traveled. When the
orbital loops are decorated by Haldane chains, the (purple) chain ends also
carry a spin-1/2.
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degenerate perturbation theory in the υ= 0 manifold, the lowest-
order effective Hamiltonian is

Heff ¼ � 12υ3

ζ2
∑
⎔
W⎔; ð4Þ

where the sum is taken over all hexagons (or “plaquettes” of the
lattice), and corresponds to the “flip” terms given pictorially by

(microscopically, t= 12υ3/ζ2). In Eq. (5), in terms of the T
operators

W⎔ ¼ P Tx
1T

y
2T

z
3T

x
4T

y
5T

z
6 P ð6Þ

where P is the projection onto the loop-covering manifold and
where the sites 1, ..., 6 are defined around a hexagon as in Fig. 2a.
Hexagons with alternating covered and empty bonds, such as
those in Eq. (5), are called “flippable”.

In dimer problems, it is customary to introduce a term, the
Rokhsar–Kivelson potential36, which counts the number of
flippable plaquettes:

which can be written HRK=
V∑⎔

Q2
j¼0 P

γ1þ2j;2þ2j

1þ2j P
γ1þ2j;2þ2j

2þ2j þ
h Q2

j¼0 P
γ2þ2j;3þ2j

2þ2j P
γ2þ2j;3þ2j

3þ2j

i
, where

P
μ
i ¼ 1� Pμ

i . HRK is primarily used as a “crutch” to gain insight
from an accessible exactly-soluble point.

The loop model in general, and ~H ¼ Hflip þHRK in particular,
is in fact exactly dual to the dimer covering model obtained from
the loop one by “swapping” the covered and empty bonds. The
dimer model was studied in detail in several numerical works37,38,
and the results adapted to our loop model are presented below the
horizontal axis in Figs. 4 and 5a, c, which we now discuss. The
phase diagram of ~H contains an exactly soluble point, that where

Fig. 4 Phase diagram in 2d in the V/t− J/t plane (t= 12υ3/ζ2), for J≥ 0 and ζ > 0. The phase diagram of the pure plain loop model is shown below the
horizontal axis. In the small J/t region, the simplest situation of a single “intermediate” antiferromagnetic (AFM) phase is shown (a nematic valence bond
solid-phase and multiple-phase transitions may also appear for some parameters, see “Methods” and Fig. 5). In the intermediate J/t region, the location
and nature of the phase transitions are speculative. The solid and dashed white lines and the white dot represent putative second and first-order
transitions, and critical end point, respectively. Thick blue lines represent the strength of orbital overlaps (darker blue means larger overlap), yellow
contours Haldane chains and red and blue circles Sz= 1 and Sz=− 1 spins. As indicated in the text, SPT stands for symmetry-protected topological phase.

Fig. 5 Variational phase diagram of the S= 1 spin model on the non-uniform honeycomb lattice. a The non-uniform exchange pattern considered, with
λp; λd ¼ hPγiji P

γij
j ip;d bonds forming plaquette and dimer structures, respectively. Note that ∑γP

γ
i ¼ 2 and the loop constraint impose λd= 2(1− λp). b Phase

diagram for the non-uniform bilinear-biquadratic model with the exchange pattern depicted in (a), in the β− λp plane, in a simple variational approach.
AFM denotes the simple S= 1 antiferromagnet (red and blue circles represent Sz= 1 and Sz=−1 spin), n-VBS denotes a valence bond solid where the
valence bonds have nematic symmetry, and the Haldane hexagon loop state is made of a crystal of hexagonal Haldane chains. c λp (shown in a) as a
function of V/t as obtained from ref. 38. The labeling and coloring of the phases is given in the simplest case β≲ 0.45.
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V= t, called the “RK point”, where the ground state is given by
the equal-weight quantum superposition of all loop coverings of
the lattice36. This state, where the loops fluctuate wildly, has an
emergent U(1) (Coulombic) gauge field, and massive deconfined
fractionalized excitations, whose classical analogs are the non-
matching bonds obtained from loop cuts discussed above. It is a
U(1) quantum orbital liquid, with a gapless (quadratic)
photon mode.

It is a well-known result, however, that, in 2+ 1 dimensions,
the deconfined phase of U(1) Coulombic gauge theories is
unstable39, so that, in our model, the quantum orbital liquid
regime does not exist as a phase in an extended region of the
phase diagram, but survives only at the RK point. Away from the
RK point, the system instead releases its entanglement, breaks
symmetries and orders for both V > t and V < t into the phases
shown below the horizontal axis in Fig. 4 and in Fig. 5a, c. At V/t
> 1, the system immediately orders into ground states, which
feature static “parallel” chains that extend through the whole
system. For V/t < 1, the system first enters an “intermediate
phase” where 0< hPγij

i P
γij
j i< 1, before hitting a first-order phase

transition below which the system favors one of the three
“maximally flippable” “hexagon loop crystal” configurations (see
“Methods” and Fig. 6).

We note that the model presented here can be generalized to
three dimensions (on the hyperhoneycomb lattice40, which shares
with the honeycomb lattice the same essential ingredients), where
Coulombic phases of U(1) gauge theories are stable39,41,42. Details
are beyond the scope of this paper, but will be addressed in an
upcoming publication. Stable two-dimensional generalizations,
such as those allowing for a Z2 spin liquid, are also possible.

Spins. We now finally introduce the spins, i.e. consider J ≠ 0.
First, we note that the spin operators appear only in

HJ ¼ ∑
hiji
~J ijðSi � Sj þ βðSi � SjÞ2Þ; ð8Þ

where ~Jij ¼ JP
γij
i P

γij
j , which, when considered as a 1d problem with

constant ~Jij > 0 and −1 ≤ β ≤ 1, realizes the Haldane phase (and in
particular the AKLT state described in the introduction at β= 1/3).
Notably, the spin exchange is “modulated” by the operator P

γij
i P

γij
j ,

and vanishes when P
γij
i P

γij
j ¼ 0. Therefore, when the system forms

orbital loops, the problem in spin space reduces to a collection of
purely one-dimensional periodic S= 1 Hamiltonians, which are
minimized by entering the Haldane phase. This leads to the
appearance of new structures, namely Haldane-decorated loops,
where each orbital loop subtends a Haldane chain,
jL̂i ¼ Lj i � ψHaldane

�� �
, where Lj i is an orbital loop, and ψHaldane

�� �
the Haldane spin ground state of the spins on the loop. Interest-
ingly, the decoration in general introduces a length-dependent
energy density. Indeed, away from β= 1/3, where the energy den-
sity (the energy per site, or bond) of periodic AKLT chains is
independent of their length, the energy density of length-six loops is

always smaller than that of longer loops (see Supplementary Fig. 2
for results obtained using density matrix renormalization group
(DMRG)). In turn, this has consequences on the energetics of the
loop coverings, which may become inequivalent.

Static coverings: υ= 0. In the absence of orbital fluctuations, i.e.
when υ= 0, the ground state manifold of the pure orbital model
is that of all loop coverings, as discussed above. In particular, all
loop coverings are degenerate in energy, regardless of the dis-
tribution of their loop lengths. If we now consider J > 0 and J≪ ζ,
at first order in perturbation theory in ζ/J (HJ perturbs H0), spin
states break the degeneracy of the loop coverings, following
hĈjHJ jĈi, where the jĈi are the otherwise-degenerate decorated
loop coverings. At β= 1/3, we retain an exact degeneracy between
Haldane-decorated loop configurations, which all together form
the ground state manifold, while, away from β= 1/3, hĈjHJ jĈi is
only minimized when the system forms one of three equivalent
“hexagon crystal” states where the lattice is covered by decorated
loops of length six (see Fig. 5 for a variational phase diagram of
the spin model on the non-uniform honeycomb lattice). This
static-orbital regime corresponds to the infinite J/t limit on Fig. 4.

We now introduce the orbital kinetic terms, distinguishing
between different J/υ regimes.

Large J/υ limit. In the large J/t limit, we first consider the
Hamiltonian

Hstat ¼ ∑
hiji

P
γij
i P

γij
j ð�ζ þ JðSi � Sj þ βðSi � SjÞ2ÞÞ; ð9Þ

and introduce the kinetic terms υ in perturbation theory. Even
with J ≠ 0 (and possibly J ~ ζ), the eigenstates of Hstat are still
eigenstates of the Pμ

i ¼ n̂μi , and as discussed above ~J ij ¼ JP
γij
i P

γij
j is

only non-zero when n̂
γij
i ¼ n̂

γij
j ¼ 1. Therefore, ground states of

Hstat belong to the set of decorated loop covering, so long as −ζ+
ϵHald cov < 0, where ϵHald cov is the energy density of the collection
of all pure Haldane chains in the covering. For example, for β= 0
(resp. β= 1/3), this is true for any ζ > ϵL=∞(0) ≈−1.40J (resp. ζ >
ϵL=∞(1/3)=−2/3J).

When β= 1/3, the manifold of decorated loop coverings
(which are ground states of Hstat) is highly degenerate, and we call
P the projector onto this manifold. In perturbation theory in
small υ/∣− ζ+ ϵHald cov∣, our analysis of the pure orbital model
informs us that the lowest-order contribution arises at third
order, provided H0 ¼ PðHflip � 1SÞP does not identically vanish.
Indeed, Hflip is the lowest-order orbital-space Hamiltonian to take
one orbital loop covering into another, and one must check that
the corresponding Haldane loop coverings have non-zero overlap.
Remarkably, we find that the overlap between two AKLT loop
coverings (cov), which differ by a single plaquette flip is always
equal to 1/4, up to exponentially small corrections in the lengths

Fig. 6 The three different hexagon loop crystals. The thicker bonds show the length-six hexagons loops, which form a triangular lattice.
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of the (rearranged) loops, i.e.

hĈ1jðHflip � 1SÞjĈ2i / hAKLTcov1jAKLTcov2i �
1
4
; ð10Þ

if C1 and C2 differ by a single plaquette flip, but regardless of how
many loops are connected by this plaquette flip. [Also note that
on a bipartite lattice, like the honeycomb, the sign of singlets
across bonds can be unambiguously systematically chosen, in
contrast to e.g. in ref. 10.] An exact result is obtained using the
matrix product state (MPS) formalism (see “Methods”). In fact,
Eq. (10) is a special case of h�AKLT1j � AKLT2i � 1=2ncuts�1,
where ncuts is the number of loop cuts needed to connect j �
AKLT1;2i (see Fig. 7c). This momentous result is a consequence
of the ultra-short-range entanglement of the AKLT state, which is
“close” to being a product of single-site states.

Away from β= 1/3, but within the Haldane phase (∣β∣ ≤ 1), we
expect the same results to hold since entanglement properties are
characteristic of a phase. Therefore, at large J/t, and for β= 1/3
and V/t= 1/4 (decorated RK point), the system is “close to” [The
overlap Eq. (10) is only approximately equal to 1/4, and depends
—albeit exponentially—on loop length; this could, in fact, bear
additional interesting consequences43.] a U(1) phase with spinful
fractional excitations, in the sense that it contains large
fluctuating Haldane-decorated loops. This is a state our model
Eq. (1) was designed to achieve. The lowest-energy excitations are
either loop cuts (necessarily accompanied by a Haldane chain cut)
or pure Haldane chain excitations, depending on the distribution
of loop length and values of ζ and β (see Supplementary Table I).
Local loop cuts generate two orbital chain ends, which are
decorated by spin-1/2. In three dimensions, where the orbital U
(1) deconfined phase survives away from the RK point, these
chain ends are deconfined spinons.

Small J/υ limit. In the small J/t limit, the orbital-only model, i.e.
Horb from Eq. (8), is solved first and spin exchange (J) is then
introduced perturbatively. This results in an effective exchange
pattern for the spins. More precisely, when J= 0, spin space is
completely degenerate, but the orbital ground state is a priori
unique (or discretely degenerate due to symmetry-related states).
Therefore, upon introducing J, in degenerate perturbation theory,
we have, at first order,

H00
eff ¼ ∑

hiji
p½JPγij

i P
γij
j ðSi � Sj þ βðSi � SjÞ2Þ�p

¼ ∑
hiji
hPγij

i P
γij
j iJðSi � Sj þ βðSi � SjÞ2Þ;

ð11Þ

where p is the projector onto the J= 0 ground state, and :h i is the
expectation value taken in this ground state. We obtain the phase

diagram Fig. 4 in the small J/υ limit within the pure loop model
by (i) solving the non-uniform bilinear-biquadratic model Eq.
(11) within a simple variational approach (see Fig. 5b) and
“Methods” text for a detailed derivation and (ii) using the results
from ref. 38. Notably, the Haldane loop decoration in the exten-
ded phase at large V/t > 0 gives way to a two-dimensional weak
SPT phase, with neutral Kramers doublet (time-reversal sym-
metry is also preserved in that phase) edge states (the edge
orbitals decorated by spin-1/2 degrees of freedom) protected by
translational symmetry, provided the boundaries are appro-
priately chosen (and, strictly speaking, provided a weak coupling
at the boundary exists). It is noteworthy that this phase is realized
spontaneously, i.e. this is not an explicit chain-stacking con-
struction. To our knowledge, this is the first such example in the
literature.

In this regime (ζ > 0, ζ≫ J > υ) low-energy excitations are
expected to occur in the spin sector. In the antiferromagnetic
(AFM) phase, those are simply the conventional spin flips. In the
decorated chain phases, the elementary excitations are those of
the (gapped) Haldane chains. Remarkably, in the length-six loop
state, which is a product state of decorated hexagon loops, the
excitations are local, but a weak coupling between the hexagons
(e.g. when υ ≠ 0) will lead to slightly dispersive “Haldane-gap
waves” observable, e.g. in neutron scattering.

The results derived above are summarized in the phase
diagram in Fig. 4.

DISCUSSION
In summary, we have exposed a physical mechanism for the
realization of fluctuating Haldane chains in spin-orbital models in
two dimensions. To do so, we presented a realistic and analyti-
cally tractable spin-orbital Hamiltonian on the honeycomb lattice,
with a rich phase diagram, featuring exotic phases built out of
Haldane chains. Among those is a translational SPT phase, with
spin-1/2 edge excitations, a Haldane hexagon loop “crystal”, with
“Haldane-gap wave” excitations, and a regime with fluctuating
Haldane chains coupled to underlying “orbital loops”. On the
three-dimensional hyperhoneycomb lattice, the latter becomes a
Coulombic quantum spin-orbital liquid, a unique example in the
spin-orbital literature of a controllable model where both the spin
and orbital sectors are “disordered”. Moreover, supplementing
the model with additional terms is likely to allow accessing more
phases and possibly interesting phase transitions. In fact, many
more avenues—in several different fields—will be worth explor-
ing further. For example, the QSL can be induced not only by
taking the model to three dimensions but also by turning it into a
Z2 liquid. The variation of the parameter ζ or the number of
electrons per site may also lead to interesting problems and phase

Fig. 7 Pictorial representation of the AKLT chains and overlaps. a Open and b closed (periodic) AKLT chains, and c MPS representation of the transfer
matrices for the overlap between different AKLT chains coverings.
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transitions. In general, the highlighted mechanism will hopefully
be an important stepping stone for future studies to realize
Haldane chains and other low-dimensional structures in higher
dimensions.

Most exciting would certainly be the discovery in real materials
of some of the phenomena described here. The model presented
here is relevant to insulating honeycomb materials with two
electrons in degenerate t2g orbitals and large Hund’s coupling to
enforce S= 1. In practice, materials need to have (at least
approximate) cubic symmetry, weak spin–orbit coupling and
large direct orbital overlap. Therefore, materials based on Ru, Ni,
V, etc. naively appear as potential candidates. Regardless, it will
be important and interesting to study the breaking of any of these
constraints, through, e.g. spin–orbit coupling or symmetry low-
ering, inevitable at some level in real materials. Magneto-elastic
coupling should also be investigated. It might well play a role
similar to the V term in stabilizing the “extended” or “flippable”
phases.

Methods
Effective orbital operators
Construction of the states and operators. Let us consider two electrons per site, and
degenerate t2g (dxy, dxz and dyz) orbitals at each site, and a very large intra-orbital U,
so that there is only one electron per orbital, a large Hund’s coupling JH so that S=
1, and no spin–orbit coupling. We define the states of the three-dimensional orbital
space to be xj i, jyi and zj i, such that, if 0j i is the Fock space vacuum at a given site
for spinless electrons and cyμν creates a spinless electron in orbital dμν:

γ
�� � ¼ cγþ1;γþ2ðcyyzcyxzcyxy 0j iÞ: ð12Þ

The normalization is chosen such that hγjγ0i ¼ δγ;γ0 . Note that an unimportant
(convention-dependent) choice of phase was made.

We now define the operators Lc, c= x, y, z according to

Lc ¼ �i
2
∑
a;b

ϵabcð aj i bj � jbh i ah jÞ; ð13Þ

which may be rewritten as:

Lγ ¼ �i γþ 1
�� �

γ� 1j � jγ� 1
� �

γþ 1
� ��� �

: ð14Þ
These operators obey Lγ γ

�� � ¼ 0 and L2= 2. One may check that these operators
obey the angular momentum algebra commutation relations. To form a complete
basis of Hermitian operators acting in our three-dimensional space, we need six
more Hermitian operators, which we choose to be ðLaÞ2 ¼ Pa and {La, Lb}= Tc,
a ≠ b. Note that

Pγ ¼ ðLγÞ2
¼ γþ 1

�� �
γþ 1j þ jγ� 1
� �

γ� 1j ¼ 1� jγ� �
γ
� �� ð15Þ

and

Tγ ¼ fLγþ1; Lγ�1g ¼ � γþ 1
�� �

γ� 1j þ jγ� 1
� �

γþ 1
� ��	 


: ð16Þ
Effective operators as rotation and projection operators. Lγ γ

�� � ¼ 0 so the projection
operator onto the γ

�� �
component is Pγ ¼ 1� ðLγÞ2. The projection operator in Eq.

(1) of the main text is Pγ ¼ 1� Pγ ¼ ðLγÞ2. In particular,

Pγ γ
�� � ¼ 0; Pγ γ± 1

�� � ¼ γ± 1
�� �

: ð17Þ
Disregarding phase factors:

Lγ γ
�� � ¼ 0

Tγ γ
�� � ¼ 0

(
;

Lγ γ± 1
�� � / γ� 1

�� �
Tγ γ± 1

�� � / γ� 1
�� �

(
: ð18Þ

Haldane covering overlaps at the AKLT point: MPS formalism. The AKLT loop
covering overlaps are calculated with the MPS formalism. An exact representation
of the AKLT wavefunction is given as an MPS:

ψ
�� �

AKLT
¼ ∑

fσ i¼0;± 1g
Tr Mðσ1Þ � � �MðσN Þ
� �

σ1 � � � σN
�� �

; ð19Þ

when the chain is a closed loop of length N (we use the notations from ref. 44) with
the following matrices M:

Mðσ ¼ 0Þ ¼ �
ffiffi
1
3

q
σz

Mðσ ¼ ±1Þ ¼ �
ffiffi
2
3

q
σ ±

8><
>: ; ð20Þ

with σμ the Pauli matrices, and with the norm ∣ψ∣2:

hψjψi ¼ TrTN ; where T ¼ ∑
σ¼± 1;0

M�ðσÞ �MðσÞ: ð21Þ

We then compute the overlap between different types of coverings connected by a

Fig. 8 Transfer matrix overlap representation in the matrix product state formalism. a Overlap between three loops and one loop, b overlap between
two sets of two loops and c overlap between one loop and two loops, emphasizing the role of the fractional degrees of freedom near the cuts.
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single plaquette flip. The difference between those configurations lies purely in the
number and lengths of the loops “touching” the flippable plaquette of interest,
before and after the plaquette flip. Within the MPS formalism, these overlaps are
given by:

Case 1 Three loops connected to one:

hAKLT0jAKLT1;AKLT2;AKLT3i

¼ Tr½Tn1
1 T

n2
2 T

n3
3 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tr½Tn0 �Tr½~Tn1
1
~T
n2
2
~T
n3
3 �

q
¼ ð3þ 3n3 Þð13þ 2

ffiffiffi
2

p
3n1 þ 3n2 ð3� ffiffiffi

2
p þ 2 � 3n1 ÞÞ

4
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5þ 3n2 ð1þ 2 � 3n1 ÞÞð3þ 3n3 Þð3þ 3n0 Þ

p
ð22Þ

using the configuration from “Methods” and Fig. 8a, where n0= n1+ n2+ n3,

T1 ¼ ∑
σ¼0; ± 1

M�ðσÞ �MðσÞ � 1� 1

T2 ¼ ∑
σ¼0; ± 1

M�ðσÞ � 1�MðσÞ � 1

T3 ¼ ∑
σ¼0; ± 1

M�ðσÞ � 1� 1�MðσÞ
ð23Þ

and

~T1 ¼ ∑
σ¼0;± 1

M�ðσÞ � 1� 1�MðσÞ � 1� 1

~T2 ¼ ∑
σ¼0;± 1

1�M�ðσÞ � 1� 1�MðσÞ � 1

~T3 ¼ ∑
σ¼0;± 1

1� 1�M�ðσÞ � 1� 1�MðσÞ
ð24Þ

Case 2 Two loops connected to another two loops:

AKLT1;AKLT2 AKLT3

�� ;ALKT4

� �
¼ Tr½T0n03

1 T0n01�n0
3

2 T0n02
3 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tr½~T0n01
1
~T
0n02
2 x�Tr½~T0n03

1
~T
0n04
2 �

q

¼ 3þ 3n
0
2

	 

13þ 2

ffiffiffi
2

p
3n

0
3 þ 3n

0
1�n03 3� ffiffiffi

2
p þ 2 � 3n03	 
	 


8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 3n

0
3

	 

3þ 3n

0
2

	 

3þ 3n

0
1

	 

3þ 3n

0
1þn02�n03

	 
q
ð25Þ

using the configuration from “Methods” and Fig. 8b, with n01 þ n02 ¼ n03 þ n04, and
where

T0
1 ¼ ∑

σ¼0; ± 1
M�ðσÞ �MðσÞ � 1� 1

T0
2 ¼ ∑

σ¼0; ± 1
M�ðσÞ � 1�MðσÞ � 1

T0
3 ¼ ∑

σ¼0; ± 1
1� 1�MðσÞ �M�ðσÞ

ð26Þ

and

~T
0
1 ¼ ∑

σ¼0; ± 1
M�ðσÞ � 1�MðσÞ � 1

~T
0
2 ¼ ∑

σ¼0; ± 1
1�M�ðσÞ � 1�MðσÞ:

ð27Þ

The overlaps in “Methods” and Eqs. (22) and (25) take the form of a dominant 1/4
contribution and exponentially decaying terms. This (dominating) length-
independent contribution is simply equal to the overlap of “neighboring” S= 1/
2 spins from different chains (see “Methods” and Fig. 8c), without the S= 1 on-site
projections, and may be empirically understood from the very short-range
entanglement in the AKLT wavefunction. In fact, 1/4 is a special case of a more
general formula according to which the overlap of two coverings where ncuts loop
cuts are needed to reconnect them is equal to 1=2ncuts�1. For example, if ψ1

�� �
and

ψ2

�� �
are as depicted in “Methods” and Fig. 8c, then

ψ1

�� � ¼ 1
2

"1#2

�� �� #1"2

�� �	 
 "3#4

�� �� #3"4

�� �	 

¼ 1

2
"1#2"3#4

�� �þ #1"2#3"4

�� �� "1#2#3"4

�� �� #1"2"3#4

�� �� � ð28Þ

and

ψ2

� �� ¼ 1
2

"1#4

� ��� #1"4

� ��	 
 "3#2

� ��� #3"2

� ��	 

¼ 1

2
"1#2"3#4

� ��þ #1"2#3"4

� ��� "1"2#3#4

� ��� #1#2"3"4

� ��� � ð29Þ

and so

hψ2jψ1i ¼
1
2
; ð30Þ

consistent with the fact that two loop cuts are needed to go from the upper to the
lower MPS, and vice versa.

Details of the spin model phase diagram on the non-uniform honeycomb
lattice. Here, we take a simple variational approach and calculate the energy of
three kinds of states, for varying β and λp for the pattern depicted in “Methods” and
Fig. 5a. The three types of states are the simple antiferromagnet, a valence bond
solid where identical singlets or “nematic valence bonds” (see below) lie on λd
bonds, and a Haldane hexagon crystal where length-six Haldane chains form along
λp bonds. We consider the Hamiltonian

H ¼ λpJ ∑
hiji2p

ðSi � Sj þ βðSi � SjÞ2Þ

þ λdJ ∑
hiji2d

ðSi � Sj þ βðSi � SjÞ2Þ:
ð31Þ

The approach could be readily refined to the next simplest level of variational
approach by considering more general MPS network states (e.g. non-uniform along
a plaquette, still with bond dimension 2 to keep it simple), but we deem it
unnecessary for our purpose, as we see below.

The energy per bond in the simple antiferromagnet, where the state of a bond is
of the form AFMj i ¼ 1� 1j i, is given by

ϵAFMðλp; βÞ ¼
J
3
ð2λp þ λdÞð�1þ 2βÞ ¼ 2J

3
ð2β� 1Þ: ð32Þ

The energies of length-six Haldane chains at various β’s obtained with
exact diagonalization are given in Supplementary Table I. To obtain the energy
of the λd bonds, we use the eigenvectors, and find that it is simply proportional
to β,

ϵHaldaneðλp; βÞ ¼
J
3

2λpϵ6ðβÞ þ βλd
4
3

� 

¼ 2J
3

4β
3
þ λp ϵ6ðβÞ �

4β
3

� � 
:

ð33Þ

The last phases we consider are the product states of (identical) λd-bond states,
which would minimize the energy of the Hamiltonian on a single isolated bond. For
β ≤ 1/3, these λd bond states are S= 0 states, VBj i ¼ 1ffiffi

3
p ð 1� 1j i � 00j i þ �11j iÞ, in

which case the energy density of their product states on the lattice is

ϵVBðλp; βÞ ¼
J
3

2λd 2β� 1
	 
þ 3β

8
λp

� 

¼ 4J
9

�3þ 3λp þ 6β� 4βλp
� �

:

ð34Þ

For β ≥ 1/3, the ground states are the three S= 1 states, whose degeneracy is partially
lifted by considering the λp couplings. The minimal accessible energy density is
realized in the product states where the valence bonds are “nematic”, i.e. do not break
time-reversal symmetry, but break rotation symmetry, such as n�VB0

�� � ¼
1ffiffi
2

p ð 1� 1j i þ �11j iÞ (which is the S= 1, Sz= 0 two-spin state, sometimes called zj i
in the spin nematic literature), and the energy density is

ϵn�VBðλp; βÞ ¼
J
3

λdðβ� 1Þ þ 3βλp
� �

¼ J
3
ð�2þ 2λp þ 2βþ βλpÞ:

ð35Þ

When λp ≠ 0, which is always the case in our problem, by equating ϵVB and ϵn-VB, we
see immediately that the boundary between VBj i and the n�VBj i states shifts away
from β= 1/3.

Finally, within this simple variational approach, and for 1/2 ≤ λp ≤ 1, we find
that the system is never in the singlet VBS phase, but that the system is in the AFM
phase if

λp ≥
4β�1
2þβ

λp ≤
3�2β

4β�3ϵ6 ðβÞ

8<
: ; ð36Þ

the system is in the n-VBS phase if

λp ≤
4β�1
2þβ

λp ≤
2ð1þβÞ

2þ5β�3ϵ6 ðβÞ

8<
: ; ð37Þ

and the system is in the Haldane crystal phase if

λp ≥
3�2β

4β�3ϵ6 ðβÞ

λp ≥
2ð1þβÞ

2þ5β�3ϵ6 ðβÞ

8<
: : ð38Þ

Using these relations, we draw the approximate phase diagram shown in
“Methods” and Fig. 5b. The results are consistent with those obtained for the
uniform exchange bilinear–biquadratic model in refs. 45,46.

Data availability
Source data are provided with this paper.
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