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A hierarchical 3D-motion learning framework for
animal spontaneous behavior mapping
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Siyuan Liu3, Pengfei Wei 1,2✉ & Liping Wang 1,2✉

Animal behavior usually has a hierarchical structure and dynamics. Therefore, to understand

how the neural system coordinates with behaviors, neuroscientists need a quantitative

description of the hierarchical dynamics of different behaviors. However, the recent end-to-

end machine-learning-based methods for behavior analysis mostly focus on recognizing

behavioral identities on a static timescale or based on limited observations. These approa-

ches usually lose rich dynamic information on cross-scale behaviors. Here, inspired by the

natural structure of animal behaviors, we address this challenge by proposing a parallel and

multi-layered framework to learn the hierarchical dynamics and generate an objective metric

to map the behavior into the feature space. In addition, we characterize the animal 3D

kinematics with our low-cost and efficient multi-view 3D animal motion-capture system.

Finally, we demonstrate that this framework can monitor spontaneous behavior and auto-

matically identify the behavioral phenotypes of the transgenic animal disease model. The

extensive experiment results suggest that our framework has a wide range of applications,

including animal disease model phenotyping and the relationships modeling between the

neural circuits and behavior.

https://doi.org/10.1038/s41467-021-22970-y OPEN

1 Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain
Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI),
Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy
of Sciences, Shenzhen, China. 2 University of Chinese Academy of Sciences, Beijing, China. 3 Pennsylvania State University, University Park, PA, USA. 4These
authors contributed equally: Kang Huang, Yaning Han. ✉email: pf.wei@siat.ac.cn; lp.wang@siat.ac.cn

NATURE COMMUNICATIONS |         (2021) 12:2784 | https://doi.org/10.1038/s41467-021-22970-y | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22970-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22970-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22970-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22970-y&domain=pdf
http://orcid.org/0000-0001-9233-8110
http://orcid.org/0000-0001-9233-8110
http://orcid.org/0000-0001-9233-8110
http://orcid.org/0000-0001-9233-8110
http://orcid.org/0000-0001-9233-8110
http://orcid.org/0000-0003-2096-0183
http://orcid.org/0000-0003-2096-0183
http://orcid.org/0000-0003-2096-0183
http://orcid.org/0000-0003-2096-0183
http://orcid.org/0000-0003-2096-0183
http://orcid.org/0000-0003-1845-8856
http://orcid.org/0000-0003-1845-8856
http://orcid.org/0000-0003-1845-8856
http://orcid.org/0000-0003-1845-8856
http://orcid.org/0000-0003-1845-8856
http://orcid.org/0000-0001-6893-3809
http://orcid.org/0000-0001-6893-3809
http://orcid.org/0000-0001-6893-3809
http://orcid.org/0000-0001-6893-3809
http://orcid.org/0000-0001-6893-3809
mailto:pf.wei@siat.ac.cn
mailto:lp.wang@siat.ac.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The structure of animal behavior follows a bottom-up
hierarchy constructed by time-varying posture dynamics,
which has been demonstrated to be classical in ethological

theory1,2 and recent animal studies3–6. Such behavioral organi-
zation is considered to coordinate with neural activities7,8. Pre-
vious studies9–11 using large-scale neuronal recordings have
provided preliminary evidence from the neural implementation
perspective. As the central goal of modern neuroscience, fully
decoding this cross-scale dynamic relationship requires compre-
hensive quantification of neural activity and behavior. Over the
past few decades, scientists have been working on improving the
accuracy and throughput of neural dynamics manipulation
and capturing. Meanwhile, for behavior quantification, there
has been a revolution from simple behavioral parameters
extraction to machine-learning (ML)-based behavior sequence
recognition12,13. However, most previous methods14,15 often
emphasized feature engineering and pattern recognition for
mapping raw data to behavioral identities. These black-box
approaches lack the interpretability of cross-scale behavioral
dynamics. Thus, it is a challenging task, but with a strong
demand, to develop a general-purpose framework for the
dynamic decomposition of animal spontaneous behavior.

Previous researchers addressed this challenge mainly from two
aspects. The first aspect is behavioral feature capturing. Con-
ventional animal behavior experiments usually use a single-
camera top-view recording to capture the motion signal of
behaving animals, leading to occlusions of the key body parts
(e.g., paws), and these are very sensitive to viewpoint
differences16. Thus, it is very challenging for the single-camera
technology to capture the three-dimensional (3D) motion and
then map the spontaneous behavior in a dynamic way. The recent
emergence of ML toolboxes17–19 has dramatically facilitated the
animal pose estimation with multiple body parts. Thus, it enables
us to study the animal kinematics more comprehensively and
provides potential applications for capturing 3D animal move-
ments. The second aspect is decomposing continuous time-series
data into understandable behavioral modules. Previous studies on
lower animals such as flies10,20–22, zebrafishes4,23–25, and Cae-
norhabditis elegans26–28 utilized ML strategies and multivariate
analysis to detect action sequences. However, mammalian beha-
vior is highly complicated. Besides locomotion, animals demon-
strate non-locomotor movement (NM) with their limbs (e.g.,
grooming, rearing, turning), and their organs have high
dimensional29–31 and variable spatiotemporal characteristics.
Even for similar behaviors, the duration and composition of
postural sequences vary. To define the start and end boundaries
to segment continuous data into behavioral sequences, many ML-
based open-source toolboxes21 and commercial software do
excellent work in feature engineering. They usually compute per-
frame features that refer to position, velocity, or appearance-
based features. The sliding windows technology then converts
them into window features to reflect the temporal context14,15.
Although these approaches effectively identify specific behaviors,
behavior recognition becomes problematic when the dynamics of
particular behaviors cannot be represented by the window
features.

The present study proposes a hierarchical 3D-motion learning
framework to address our contribution to these challenges. First, we
acquired the 3D markerless animal skeleton with tens of body parts
by the developed flexible and low-cost system. Through the sys-
tematic validations, we proved that our system could solve the
critical challenges of body occlusion and view disappearance in
animal behavior experiments. Second, aiming at the parallel and
hierarchical dynamic properties of spontaneous behavior, we pro-
posed a decomposition strategy preserving the behavior’s natural
structure. With this strategy, the high-dimensional, time-varying,

and continuous behavioral series can be represented as various
quantifiable movement parameters and low-dimensional behavior
map. Third, we obtained a large sample of the Shank3B−/− mouse
disease model data resources with our efficient framework. The
results showed that our framework could detect behavioral bio-
markers that have been identified previously and discover potential
new behavioral biomarkers. Finally, together with the further group
analysis of the behavioral monitoring under different experimental
apparatus, lighting conditions, ages, and sexes, we demonstrated
our framework could contribute to the hierarchical behavior ana-
lysis, including postural kinematics characterization, movement
phenotyping, and group level behavioral patterns profiling.

Results
Framework of hierarchical 3D-motion learning. In our frame-
work, first we collect the animal postural feature data (Fig. 1a).
These data can be continuous body parts trajectories that com-
prehensively capture the motion of the animal’s limbs and torso,
and they inform the natural characteristics of locomotion and
NM. Locomotion can be represented by velocity-based para-
meters. NM is manifested by movement of the limbs or organs
without movement of the torso and is controlled by dozens of
degrees of freedom32. Hence, we adopted a parallel motion
decomposition strategy to extract features from these time-series
data independently (Fig. 1b, c). A two-stage dynamic temporal
decomposition algorithm was applied to the centralized animal
skeleton postural data to obtain the NM space. Finally, together
with the additional velocity-based locomotion dimension, unsu-
pervised clustering was used to reveal the structure of the rodent’s
behavior.

Our framework has two main advantages. First, it addresses the
multi-timescale of animal behavior33. Animal behavior is self-
organized into a multi-scale hierarchical structure from the
bottom up, including poses, movements, and ethograms34,35. The
poses and movements are low- and intermediate-level elements36,
while higher-level ethograms are stereotyped patterns composed
of movements that adhere to inherent transfer rules in certain
semantic environments37. Our two-stage pose and movement
decomposition focuses on extracting the NM features of the first
two layers. Second, our framework emphasizes the dynamic and
temporal variability of behavior. The most critical aspect of
unsupervised approaches is to define an appropriate metric for
quantifying the relationship between samples. However, the
duration and speed of NM segments of the same cluster may
differ. To address this, we used a model-free approach called
dynamic time alignment kernel (DTAK) as a metric to measure
the similarity between the NM segments and thus equip the
model to automatically search repeatable NM sequences. We then
apply the uniform manifold approximation and projection
(UMAP)38 algorithm to visualize high-dimensional NM repre-
sentations. After combining the locomotion dimension with NM
space (Fig. 1c), we adopted hierarchical clustering to re-cluster
the components and map the behavior’s spatial structure
(Fig. 1d).

Collecting mouse motion data with a 3D multi-view motion-
capture system. To efficiently and comprehensively characterize
the kinematics of free-moving animals, we developed a 3D multi-
view motion-capture system (Fig. 2a, b) based on recent advances
in techniques for pose estimation17 and 3D skeletal
reconstruction39. The most critical issues in 3D animal motion
capture are efficient camera calibration, body occlusion, and
viewpoint disappearance, which have not been optimized or
verified12. To address these issues, we developed a multi-view
video capture device (Supplementary Fig. 2a). This device
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integrates the behavioral apparatus, an auto-calibration module
(Supplementary Fig. 2b, d), and synchronous acquisition of
multi-view video streams (Supplementary Fig. 2c). While the
conventional manual method requires half an hour to produce
the required checkerboard for calibration, the auto-calibration
module can be completed in 1 min.

We collected the naturalistic behavioral data of free-moving
mice in a featureless circular open field (Supplementary Fig. 2a
and Supplementary Movie M1). We analyzed the mouse skeleton
as 16 parts (Fig. 2c) to capture the movements of the rodent’s
head, torso, paws, and tail. The following motion quantification
did not involve the motion features of two parts of the tail. The
data obtained from tracking representative mouse poses tracking
(Fig. 2c) include the 3D coordinates (x, y, and z) of the body parts,
which reveal that the high-dimensional trajectory series exhibits
periodic patterns within a specific timescale. We next investigated
whether the 3D motion-capture system could reliably track the
animal in cases of body-part occlusion and viewpoint disappear-
ance. We checked the DeepLabCut (DLC) tracking likelihood in
the collated videos (0.9807 ± 0.1224, Supplementary Fig. 4a) and
evaluated the error between the estimated two-dimensional (2D)
body parts of every training set frame and the ground truth (0.534
± 0.005%, Supplementary Fig. 5b). These results indicated that in
most cases, four cameras were available for 2D pose tracking.
Since 3D reconstruction can be achieved as long as any two
cameras obtain the 2D coordinates of the same point in 3D space
from different views, the reconstruction failure rate caused by
body occlusion and viewpoint disappearances is determined by the
number of available cameras. Therefore, we evaluated the average
proportion of available cameras in situations of body part
occlusion and viewpoint disappearance. The validation results
for body-part occlusion show an average reconstruction failure
rate of only 0.042% due to body occlusion or inaccurate body-part
estimation (Supplementary Fig. 5c). While for viewpoint dis-
appearances, both tests (Supplementary Fig. 6 and Supplementary
Movies M4 and M5) proved that our system has a high
reconstruction rate for animal body parts. Moreover, the artifact
detection and correction features can recover the body parts that
failed to be reconstructed. We calculated an overall reconstruction
quality (0.9981 ± 0.0010, Fig. 2d) to ensure that the data were
qualified for downstream analysis.

Decomposing non-locomotor movements with dynamic time
alignment kernel. Conceptually, behavior adheres to a bottom-
up hierarchical architecture (Fig. 3a)34,35, and research has
focused on elucidating behavioral component sequences con-
tained in stimuli-related ethograms40. The purpose of the
two-stage NM decomposition is to bridge the low-level vision
features (postural time-series) to high-level behavioral features
(ethograms). The first stage of the decomposition involves
extracting postural representations from postural feature data.
Since the definition of NM does not involve the animal’s
location or orientation, we pre-processed these data through
center alignment and rotation transformation (Supplementary
Fig. 7). Animal movement is continuous, and due to the high
dimensionality of the mammalian skeleton, the behaviorally
relevant posture variables are potentially infinite in number12.
However, adjacent poses are usually highly correlated and
redundant for behavior quantification and analysis1, which is
particularly evident in long-term recording. Therefore, for
computational efficiency, we adopted a temporal reduction
algorithm to merge adjacent, similar poses as postural repre-
sentations in a local time range.

In the second stage, NM modules are detected from temporal
reduced postural representations. Unlike the static property of
poses, mammalian movements have high dimensionality and
large temporal variability41: e.g., the contents, phases, and
durations of the three pose sequences were not the same (Fig. 3a).
Hence, we adopted a model-free approach to dynamically
perform temporal aligning and cluster the temporally reduced
postural representation data (Fig. 3b)42. This problem is
equivalent to providing a d-dimensional time-series X 2 Rd ´ n

of animal postural representations with n frames. Our task
decomposes X into m NM segments, each of which belongs to
one of the corresponding k behavioral clusters. This method
detects the change point by minimizing the error across segments;
therefore, dynamic temporal segmentation becomes a problem of
energy minimization. An appropriate distance metric is critical
for modeling the temporal variability and optimizing the NM
segmentation of a continuous postural time-varying series.
Although dynamic time warping has commonly been applied in
aligning time-series data, it does not satisfy the triangle
inequality43. Thus, we used the improved DTAK method to
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measure the similarity between time sequences and construct an
energy equation (objective function) for optimization. The
relationship between each pair of segments was calculated with
the kernel similarity matrix K (Fig. 3c). DTAK was used to
compute the normalized similarity value of K and generate the
paired-wise segment kernel matrix T (Fig. 3d).

Because dynamic temporal segmentation is a non-convex
optimization problem whose solution is very sensitive to initial
conditions, this approach begins with a coarse segmentation
process based on the spectral clustering method, which combines
the kernel k-means clustering algorithms. To define the timescale
of segmentation, the algorithm sets the maximum and minimum
lengths wmin;wmax

� �
to constrain the length of the behavioral

component. For the optimization process, a dynamic program-
ming (DP)-based algorithm is employed to perform coordinate
descent and minimize energy. For each iteration, the algorithm
updates the segmentation boundary and segment kernel matrix
until the decomposition reaches the optimal value (Fig. 3e, f). The
final segment kernel matrix represents the optimal spatial
relationship between these NM segments, which can be further
mapped into its feature space in tandem with dimensionality
reduction (DR).

We demonstrate the pipeline of this two-stage behavior
decomposition (Fig. 3h) in a representative 300-s sample of
mouse skeletal data. The raw skeletal traces were segmented into
NM slices of an average duration of 0.89 ± 0.29 s. In these
segments, a few long-lasting movements occurred continuously,
while most others were intermittent (Fig. 3g). The trajectories of
these movement slices can reflect the actual kinematics of the
behaving animal. For instance, when the animal is immobile, all
of its body parts are still; when the animal is walking, its limbs
show rapid periodic oscillations. Consistent with our observa-
tions, the movements corresponding to the other two opposite
NMs, left and right turning, tended to follow opposite trajectories.

These preliminary results demonstrated that DTAK could be used
for the decomposition and mapping of NMs.

Mapping mouse movements with low-dimensional embeddings
and unsupervised clustering. We validated our framework in a
single-session experiment with free-moving mouse behavioral
data collected with the 3D motion-capture system. First, the two-
stage behavioral decomposition strategy decomposed the 15-min
experimental data into 936 NM bouts (Supplementary
Movie M2). A 936 × 936 segment kernel matrix was then con-
structed using the DTAK metric. This segment kernel matrix
could flexibly represent the relationship and provide insight into
the relationships between each behavioral component sequence in
their feature space. However, since the 936-D matrix cannot
provide an informative visualization of behavioral structure, it is
necessary to perform DR on this data. Various DR algorithms
have been designed either to preserve the global representation of
original data or to focus on local neighborhoods for recognition
or clustering44,45. Thus, in animal behavior quantification, we
face a trade-off between discretizing behavior to provide a more
quantitative analysis and maintaining a global representation of
behavior to characterize the potential manifolds of neural-
behavioral relationships46. Therefore, we first evaluated the
commonly used DR algorithms from the standpoints of preser-
ving either the global or the local structure. The evaluation results
show that UMAP can balance both aspects for our data (Sup-
plementary Fig. 8) and provide 2D embeddings of these NM
segments. In addition, in our parallel feature fusion framework,
the factor of an animal’s interaction with the environment—i.e.,
velocity—is considered an independent dimension. Together with
2D NM embedding, they construct a spatiotemporal representa-
tion of movements (Fig. 4a).

We used an unsupervised clustering algorithm to investigate
the behavior’s spatiotemporal representation and identify the

Fig. 2 Collecting animal behavior trajectories via a 3D motion-capture system. a Pipeline of 3D animal skeletal reconstruction. b Center, schematic
diagram of recording animal behavior with four synchronized cameras; corners, frames captured by the cameras with the DLC labels (left) and the
corresponding reconstructed skeletons (right). c Left: 16 key body parts include the nose, left ear, right ear, neck, left front limb, right front limb, left hind
limb, right hind limb, left front claw, right front claw, left hind claw, right hind claw, back, root tail, middle tail, and tip tail. Right: representative mouse body
tracking trace data collected over 100 s showing 48 data vectors obtained by DLC for each body part (indicated with a color-coded dot) encoded by x, y,
and z coordinates. For visualization purposes, mean normalization is applied to each trace. d 3D reconstruction quality assessment: 1—best quality,
0—worst quality. The quality of the data obtained from the 12 mice averaged at 0.9981 ± 0.001. Source data are provided as a Source Data file.
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movement phenotypes. Most unsupervised clustering require a
pre-specified number of clusters, and the number chosen can be
data-driven or refer to the context of the practical biological
problem47. In the single experimental data shown in Fig. 4a, the
data-driven Bayesian Information Criterion48 in the R package
mclust was adopted to determine that the optimal cluster number
was 11 (Supplementary Fig. 10). We then recalculated the
similarity matrices in the new feature space (Fig. 4b) and
aggregated them using a hierarchical clustering method. Finally,
we cut the original video into clips of 0.963 ± 0.497 s (Fig. 4f) and
manually labeled them according to the behavior of the rodents in
the clip: running, trotting, stepping, diving, sniffing, rising, right
turning, up stretching, falling, left turning, and walking

(Supplementary Table 1). The locomotion types of running,
trotting, stepping, and walking accounted for 20.6% of the total
activities, indicating that animals spent most of the time in the
NM stage (Fig. 4c).

Although we phenotyped all the clips of the entire video, it was
difficult to label the behaviors of the rodents with only 11
definitions. Further, there are various heterogeneous transition
stages between bouts of stereotyped movements20,31,49. Therefore,
we evaluated them by calculating the intra-cluster and inter-
cluster correlation coefficients (intra-CC and inter-CC, respec-
tively; Figs. 4d and 5b). Our results showed that running, up
stretching, and left turning have higher intra-CC and lower inter-
CC, while walking and sniffing have both higher intra-CC and

Fig. 4 Identify movement phenotypes on single experimental data. a Spatiotemporal feature space of behavioral components. Each dot on the 3D scatter
plot represents a movement bout (n= 935 bouts). The 11 different colors indicate the corresponding to 11 movement types. b Upper, recalculated paired-
wise similarity matrix, and they were rearranged with a dendrogram (lower). Each pixel on the matrix represents the normalized similarity value of a pair of
movement bouts at the ith row and the jth column. The color-coded bars indicate the labels of clustered movement (middle). c Fractions of movement
bouts number. For each subject, the behavior fractions are defined as the bouts number of each behavioral phenotype divide by the total number of
behavior bouts the animal occurred during the experiment. d Intra-CC (color-coded) and inter-CC (gray dots) of each movement group. The dots on each
violin plot represents their intra-CC or inter-CC, and dots number in a pair of violin plot in each group are the same (Intra-CC: 0.91 ± 0.07; Inter-CC: 0.29 ±
0.19). e Cumulative Distribution Function (CDF) of CQI of the movement clusters. The clusters represented by the curves on the right side have better
clustering qualities, and their corresponding movements are more stereotyped. f The histogram of the duration of all movements (0.963 ± 0.497 s). CC
correlation coefficient, CDF cumulative distribution function, CQI Clustering Quality Index. Source data are provided as a Source Data file.
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higher inter-CC. This is because walking and sniffing co-occur
with other movements13, such as diving and turning, respectively.
Finally, to evaluate the overall clustering quality, we integrated
these two parameters and defined the Clustering Quality Index
(CQI, Fig. 4e), which helped to determine the stereotyped/non-
stereotyped movements.

Kinematic validation of mouse behavioral phenotypes. DTAK
is an abstract extraction of animal motions that aims to simplify
the complex temporal dynamics of behavior. Hence, we further
elucidated whether the spatial kinematics of the original postural
time-series of the behavioral phenotypes (e.g., running, rearing,
sniffing, turning) identified with this framework were homo-
geneous. Manually inspecting the position, moving, bending, and
other characteristics of the mouse limbs and trunk in the video
clips of each phenotype group (Supplementary Movie M3), we

found reliable homogeneity for clips with high CQIs (>0.75). To
provide a kinematic validation of the identified behavioral phe-
notypes from the perspectives of visualization and quantification,
we first visualized the average skeleton, which was averaged over
all frames in each movement cluster (Fig. 5a). While some
movements could be clearly recognized (e.g., left and right
turning, and up stretching), the differences between movements
with similar postures (running, trotting, walking, etc.) were not.
The detailed kinematic parameters, especially the velocity of each
body part, could provide greater sensitive differences than the
unclear visually based assessments50. Therefore, we defined
movement intensity (MI) as a metric for characterizing the
kinematics of each body part in each behavioral phenotype (see
Supplementary Information for further details). MI is related to
velocity, and it contains both horizontal and vertical components.
The data show that the horizontal MI components of running
and trotting are the highest, followed by stepping and walking.
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Fig. 5 Visualization and quantification of behavioral kinematics. a Average skeleton of all frames within each movement phenotype. The skeletons are
shown with solid lines and calculated by averaging poses of body parts across time. The heatmaps overlaid on the average skeleton are the distribution and
movement intensity (MI; see Supplementary Information for further details) corresponding to each movement phenotype. The MIs are scaled with 0–1
normalization method and shown in arbitrary unit (a.u.). b Correlation and linear regression plot of movement phenotypes. The horizontal axis represents
the target, and the vertical axis represents the reference (see Supplementary Information for further details). The color-coded and gray dots correspond to
the intra- and inter-cluster correlation coefficients, respectively. c The comparison of MI between different movement phenotypes. Each movement
segment has two MI components (red boxes, horizontal; blue boxes, vertical). The boxes’ values for each group contain the MIs of n behavioral modules (n
is the number of behavioral modules of each group). In box plots, the lower and upper edges of the box are the 25th and 75th percentiles of the MIs, the
central marks indicate the median, the whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually
using the dot symbol. d, e Horizontal and vertical MI of each body part in different movement phenotypes. The values on each line are the MIs of all
behavior modules corresponding to the phenotype, shown by body parts separately and presented as mean ± standard deviation (SD). Source data are
provided as a Source Data file.
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Vertical MI components (e.g., up stretching, rising, and falling)
feature richer details; we attribute their high overall vertical MI to
the movement of the nose and front claws (Fig. 5a, c–e). This
approach of creating portraits for each type of movement pro-
vides further support for the efficacy of our framework in the
decomposition of animal behavior. The dendrogram of the
movements (Fig. 5a) revealed that similar movements were
arranged closely, such as running and trotting. Interestingly,
falling and left turning were on close clades. Review of the video
clips of these two groups demonstrated that 37.18% of the
movements in this group occurred simultaneously with left
turning (28.85% for right turning). A similar phenomenon
occurred in the clades of diving and sniffing due to the co-
occurrence of these behaviors. The correlation and linear
regression analysis of these two pairs of clades showed that both
intra-CC and inter-CC were relatively high (Fig. 5b), suggesting
several concomitant descriptions of animal behavior. These
clustering results occurred because these movements show more
characteristics of the current class.

Identification of the behavioral signatures of the mouse disease
model. Animal disease models play an increasingly critical role in
expanding understanding of the mechanisms of human diseases
and novel therapeutic development51–53. Behavioral phenotyping
provides a noninvasive approach to the assessment of neu-
ropsychiatric disorders in animal models. By only evaluating
spontaneous behavior without any induced conditions, we
demonstrate the usability and unbiased character of our frame-
work for animal phenotyping. We collected data from 20 mice
(Fig. 6a and Supplementary Fig. 9h, i, nKO= 10, nWT= 10) with
our 3D motion-capture system and subjected them to routine
velocity and anxiety index analyses (Fig. 6b–e). In agreement with
prior research, we found a significant difference between the
average velocities of the two groups.

We clustered the behavioral components of the 20 animals and
obtained 41 behavioral phenotypes (Fig. 6f and Supplementary
Fig. 10). Compared with the single-session experiment, the group
analysis revealed diverse behavioral types. We found that
Shank3B knockout (KO, Shank3B−/−) mice spent a significantly
higher proportion of their time engaging in four of the
movements (Fig. 6g and Supplementary Table 3). By manually
reviewing the video clips of these four types, we annotated the
38th movement (M38 in Fig. 6g) as hunching; we also found that
three of the movements were very similar (closely arranged on the
behavioral dendrogram, Fig. 6g). Therefore, we grouped them and
annotated them as self-grooming. In previous studies54–56, self-
grooming has been widely reported in Shank3B−/− mice. This is
partly attributable to self-grooming being a long-lasting move-
ment (4.48 ± 7.84 s, mean ± standard deviation [SD]) and thus
easily recognized by human observation or software (Fig. 6i).
Interestingly, although hunching has only previously been
reported in a few related studies57–59, our framework frequently
detected hunching movements in KO mice. This novel finding can
be attributed to the duration of a single continuous hunching
movement being too short to be noticed (1.29 ± 1.00 s, mean ± SD)
as well as to the similarity between the kinematics of hunching
and rearing (M31). We proved that these two types of movements
belong to distinct behavioral phenotypes. Specifically, during
hunching, mice maintain an arcuate spine angle, while rearing is
characterized by a stronger, wider range of necks and head
motions (Fig. 6j–n). This ability to identify short-term and fine
behavioral modules is one of the advantages of our framework.
Besides the four phenotypes that KO mice preferred more than the
WT mice did, the KO mice also showed four additional deficit
behavioral phenotypes, namely stepping (M5), walking (M14),

and two types of rising (M21 and M22). This result indicates that
the locomotion intensity and vertical movement of KO mice were
lower than those of WT mice. The locomotion result is consistent
with the average velocity comparison shown in Fig. 6b.

Finally, we demonstrated that by modeling the time spent of
multi-behavioral parameters, our framework could identify the
animal types. We used UMAP to perform DR of the 41-
dimensional behavioral proportion data of all movement types.
As expected, the two genotypes of animals were well separated in
the low-dimensional space (Fig. 6h), even though there were large
amounts of baseline movements with no significant difference.
We defined these two types as “autistic-like behavior space.”
Recent reviews suggest that most previous methods60,61, which
usually only consider a few behavioral parameters and may lose
critical insights, have been challenged in the animal phenotypes’
identification. Hence, these findings indicate the potential
advantages of our framework to automatically identify disease
models.

Discussion
Inspired by the natural structure of animal behavior, the current
study presents a framework for discovering quantifiable beha-
vioral modules from high-dimensional postural time-series by
combining dynamic temporal decomposition and unsupervised
clustering. Behavior decomposition adopts a parallel, two-stage
approach to extract animal motion features in accordance with
the natural structure of animal behavior. We used DTAK to
measure the similarity between behavioral modules and applied
further low-dimensionality embedding to represent the behavior’s
underlying feature space. The unsupervised clustering identified
behavioral phenotypes from the feature space and helped to
automatically assess the behavioral experiment data. In addition,
the clustering step could quickly generate large amounts of dis-
tinct unlabeled behavior groups. By manually assigning annota-
tions to each group, our framework will potentially facilitate
semi-supervised behavior recognition.

Our framework has two main advantages. First, our approach
of tracking multiple body parts and acquiring 3D reconstruction
data achieves better performance than similar recently reported
rodent behavioral recognition frameworks14,62. The multi-view
motion-capture system can avoid animal body occlusion and
view-angle bias and estimate the pose optimally by flexibly
selecting the view to use according to the tracking reliabilities of
the different views. We also confirmed the necessity of using
multi-view cameras in complex experimental scenes, whereas in
the simple experimental scenes, only three or even two cameras
were needed (Supplementary Fig. 4). Currently, we are working
on conducting a comprehensive comparison between our fra-
mework and traditional behavior analysis approach for evaluating
the anxiety-like mouse models’ behavior. The preliminary results
showed that compared with the single-camera solution, our
approach could significantly identify the behavioral differences of
the anxiety-like mice, whereas the traditional method could not
detect the significance. More importantly, our behavior decom-
position framework emphasizes the extraction of the temporal
dynamics of movements. Without making model assumptions,
similar movements with various time durations and temporal
variability can be efficiently represented by the self-similarity
matrix. We proved that this similarity matrix is a reliable objec-
tive metric by evaluating the consistency of clustered behavior
phenotypes. We further performed DR to visualize the behavioral
map, which facilitates exploring the evolution of movement
sequences of higher-order behavior and behavioral state transi-
tion caused by neural activity. For example, to study animal
circadian rhythms, previous researchers have used behavioral
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recording approaches to characterize different brain states63–65.
We used our framework to perform a continuous 24-h behavioral
recording, and the preliminary analysis proved that our frame-
work could provide more comprehensive behavioral parameters
and detailed quantification of behavior states (Supplementary
Fig. 13). In addition, innate defensive behavior is considered to

consist of three specific movement phases37,66, but data sup-
porting this idea are lacking. Hence, our future work will focus on
modeling the transition patterns of innate behavior based on the
behavioral map.

Comprehensive and unbiased behavioral phenotyping is
becoming a powerful approach to the study of behavioral
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abnormalities in animal models of neuropsychiatric disorders. In
this study, we demonstrate its application to the monitoring of
Shank3B mutant mice that show autistic-like behaviors. Our
framework helped to reveal that Shank3B−/− engage in eight
types of spontaneous behaviors significantly more often than WT
mice; while grooming has been extensively observed in murine
models of restricted, repetitive behavior, short-term hunching
behavior has not. Previous studies54,55 mentioned that the rearing
behavior of Shank3B KO mice also differs from that of WT mice;
however, because hunching is kinematically similar to rearing, it
is difficult to distinguish these two types by human observation or
algorithms. Our 3D and sub-second methods will help to identify
new behavioral biomarkers and advance understanding of the
neural circuit mechanisms underlying behavioral changes caused
by genetic mutations. Moreover, we further investigated the dif-
ferences in the behavior patterns of Shank3B KO and WT mice at
the group level. In addition to the data that had already been
analyzed (collected under the condition: male mice, 5–6 weeks,
white light, and circular open field), we extended the group
behavioral pattern analysis to include data collected under dif-
ferent conditions (i.e., different experimental apparatus, lighting,
age, and sex; Supplementary Table 2). We calculated the cross-
correlation coefficient matrix (CCCM) of all samples based on the
movement fractions and used principal component analysis to
extract the main variance factors of the CCCM (Supplementary
Fig. 12a, b). We found that when only a single condition was
changed for male mice, there was no significant difference in
population behavior patterns in mice with the same genotype
(Supplementary Fig. 12c). We also found that although some
female KO mice had a weak tendency for autistic-like behavior,
there was no significant difference between 5–6 week male and
female KO mice at the group level when tested under the white-
light circular open-field condition (Supplementary Fig. 12c, d).
Finally, we compared the behavior patterns when all conditions
were the same except for the genotypes. The results showed that
only the female group showed no significant difference between
KO and WT genotypes, while significant differences in behavioral
patterns were found between KO and WT male mice under all
other conditions. These findings are consistent with previous
reports that Shank3B KO male mice display more severe

impairments than females do in motor coordination67. Accord-
ingly, the behavior phenotyping on mouse disease model can be
generalized to large animals such as non-human primates, dogs,
and pigs which recently emerged as valuable models for studying
neurological dysfunctions52,53. Our general-purpose framework
further benefits from the significant advantage of being able to
capture and analyze large animal movements, which have more
complex 3D characteristics and temporal dynamics.

The dynamic, high-dimensional, and multi-scale characteristics
of behavior can be attributed to similar properties of the nervous
system that produces it. While the most advanced large-scale
neuroimaging and high spatiotemporal resolution electro-
physiological techniques allow researchers to elucidate the details
of the firing timing of all neurons and neurofunctional connec-
tions at all scales, they cannot inform the mapping of the neural-
behavioral relationship without quantifying behavior at the cor-
responding level. In other words, to understand the encoding/
decoding relationship rules of the neural activity generating
behavior and behavior’s neural representation, synchronization of
large population activities and accurate measurement and iden-
tification of naturalistic, complex behavior are required. In the
future, we will focus on combining our framework with free-
moving two-photon microscopy and electrophysiological
recording to link the neural activity patterns and functional brain
connections with the cross-scale behavioral dynamics and timing
patterns. Therefore, with further technical optimization and the
open source of a large sample, well-annotated disease model
behavior database open source, our framework may contribute to
resolving the relationships between complex neural circuitry and
behavior, as well as to revealing the mechanisms of sensorimotor
processing.

Lastly, we would like to discuss the limitations of our frame-
work. When extending our framework to social behavior analysis,
such as the analysis of mating, social hierarchy, predation, and
defense behaviors, it is challenging to track multiple, visually
indistinguishable (markerless) animals without identity-swapping
errors (Supplementary Movies M6 and M7). Alternative methods
mainly focus on tracking and identifying social behaviors at the
population level, which only requires the identification of features
unrelated to the animals’ identities such as the positional

Fig. 6 Spontaneous behavior analysis reveals autistic-like behaviors in Shank3B knockout mice. a PCR genotyping for Shank3B+/+ (wild type, WT),
Shank3B−/− (Shank3B knockout, KO) mice. The full scans of all the sample can be found in Supplementary Fig. 9. b–e Box plots of mean velocity, mean
anxiety index, maximum velocity, and locomotion of the two groups of animals (purple: KO, n= 10, green: WT, n= 10; statistics: two-sided Mann–Whitney
test for maximum velocity; two-sided unpaired T-test for others, ****P= 9.0549 × 10−8, t= 8171, DF= 18), values are represented as mean ± SD. f Top:
recalculated paired-wise similarity matrix. The movement bouts of all 20 mice involved were grouped (n= 16607) and rearranged in a dendrogram (g).
Each pixel on the matrix represents the normalized similarity value of a pair of movement bouts at the ith row and the jth column. The color-coded bars (41
clusters) indicate the movements being clustered (bottom). g Comparison of the fraction of movement types between KO mice and WT mice. The bold
traces and shadows indicate the mean ± s.e.m. Fractions of each group and light color traces are the fractions of all 20 mice (purple, KO, n= 10; green, WT,
n= 10). Middle color-coded labels and dendrogram indicate the movement types. Eight movements have significant differences between the two groups,
and the fractions of the four movements that KO mice prefer are hunching (M38, KO= 3.00 ± 0.56%, WT= 0.94 ± 0.15%) and self-grooming groups
(M39, K= 7.65 ± 1.21%, W= 2.34 ± 0.33%; M40, K= 3.73 ± 0.72%, W= 0.75 ± 0.19%; M41, K= 7.23 ± 1.88%, W= 0.90 ± 0.18%). Statistics: two-way
ANOVA followed by Holm–Sidak post hoc multiple comparisons test, **M5, P= 0.0065; *M14, P= 0.0392; **M21, P= 0.0012; **M22, P= 0.0030; *M38,
P= 0.0456; ****M39, P < 0.0001; ***M40, P= 0.0001; ****M41, P < 0.0001. h Low-dimensional representation of the two animal groups (purple, KO, n=
10; green, WT, n= 10). The 20 dots in 3D space were dimensionally reduced from 41-dimensional movement fractions, and they are well separated. i
Ethograms of the eight significant movements. j–n Kinematic comparison of rearing and hunching (upper row refers to hunching; lower row refers to
rearing). j Average skeletons of all frames and normalized moving intensity (side view) of rearing and hunching. k Spine lines (the lines connecting the
neck, back, and tail root) extracted from all frames (rearing, 16,834 frames; hunching, 10,037 frames) in movement types. For visualization purposes, only
1% of spine lines are shown in the figure (rearing, 168/16,834; hunching, 100/10,037). Black lines refer to the averaged spine line of the hunching and
rearing phenotypes; l histograms of the spine angles (angle between three body parts). During rearing, the spine angles of the animals swing, and the
average spine angle is straight (181.34 ± 15.63°). By contrast, the spine angles of the rodents during hunching are consistently arcuate (162.88 ± 10.08°).m,
n Box plot of spine angles of the two movement types. n Box plot of normalized MI of the three body parts involved. Statistics for m, n: two-sided
Mann–Whitney test. ****P < 0.0001. In box plots, the lower and upper edges of the box are the 25th and 75th percentiles of the values, the central marks
indicate the median, and the lower and upper whiskers are the minima and maxima values. Source data are provided as a Source Data file.
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differences between animals’ body parts68. However, this
approach is limited to specific behaviors and does not apply to
interaction behaviors between social subjects of unequal status.
Recent cutting-edge toolboxes such as DLC for multi-animal pose
estimation17, SLEAP69, and AlphaTracker70 have addressed the
multi-animal tracking problem, but once animals with similar
appearances are touching or even body-occluded, the inaccurate
pose estimation of these toolboxes leads to off-tracking and
identity-swapping errors. This is because when estimating mul-
tiple body parts of several animals in a single frame, the combi-
nation of the poses of these animals is more complex and diverse,
and identity-swapping in different views may happen at different
times. Our 3D multi-view motion-capture system promises to
solve this problem by effectively reducing body-occlusion prob-
ability. As a next step, we are considering using computer vision
technology (e.g., point cloud reconstruction) to fuse images from
multiple views, then segment each animal’s body, and estimate
the body parts based on the reconstructed 3D animal. Solving
these problems will extend the applicability of our framework to
the benefit of the animal behavioral research community.

Methods
Apparatus. The multi-view video capture device is shown in Supplementary
Fig. 1a and Supplementary Fig. 2a, b. Mice were allowed to walk freely in a circular
open field made of a transparent acrylic wall and white plastic ground, with a base
diameter of 50 cm and a height of 50 cm71. The circular open field was placed at the
center of a 90 × 90 × 75 cm3 movable, stainless-steel support framework. A black,
thick, dull-polished rubber mat was paved between the circular open field and steel
shelf to avoid light reflection. Four Intel RealSense D435 cameras were mounted
orthogonally on the four supporting pillars of the shelf72. Images were simulta-
neously recorded at 30 frames per second by a PCI-E USB-3.0 data acquisition card
and the pyrealsense2 Python camera interface package. On the top of the shelf, a
56-inch TV was placed horizontally, facing down, to provide uniform and stable
white background light. The cameras and TV were connected to a high-
performance computer (i7-9700K, 16G RAM) equipped with a 1-terabyte SSD and
12-terabyte HDD as a platform for the software and hardware required for image
acquisition.

Animals, behavioral experiments, and behavioral data collection. Adult
(5–6 weeks old or 11–13 weeks old) Shank3B knockout (KO; Shank3B−/−) and
wild-type (WT; Shank3B+/+) mice, on a C57BL/6J genetic background, were used
in the behavioral experiments (Supplementary Fig. 9 and Supplementary Table 2).
Shank3B−/− mice were obtained from the Jackson Laboratory (Jax No. 017688)
and were described previously54. The mice were housed at 4–6 mice per cage under
a 12-h light–dark cycle at 22–25 °C with 40–70% humidity, and were allowed to
access water and food ad libitum. All husbandry and experimental procedures in
this study were approved by Animal Care and Use Committees at the Shenzhen
Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS). All
behavioral experiments were performed and analyzed with experimenters blinded
to genotypes.

We designed two behavioral experiments. In the first, we collected behavioral data
under different conditions in terms of genotype, age, sex, experimental apparatus,
and lighting conditions, yielding the following 10 groups (see Supplementary Fig. 12
and Supplementary Table 2): (1) KO1: Shank3B−/−, 5–6 weeks old, male, circular
open field, white light; (2) KO2: Shank3B−/−, 5–6 weeks old, male, square open field
(50 × 50 cm), white light; (3) KO3: Shank3B−/−, 5–6 weeks old, male, circular open
field, infrared light; (4) KO4: gShank3B−/−, 11–13 weeks old, male, circular open
field, white light; (5) KO5: Shank3B−/−, 5–6 weeks, female, circular open field, white
light; (6) WT1: Shank3B+/+, 5–6 weeks old, male, circular open field, white light; (7)
WT2: Shank3B+/+, 5–6 weeks old, male, square open field, white light; (8) WT3:
Shank3B+/+, 5–6 weeks old, male, circular open field, infrared light; (9) WT4:
Shank3B+/+, 11–13 weeks, male, circular open field, white light; and (10) WT5:
Shank3B+/+, 5–6 weeks old, female, circular open field, white light. Each mouse in
each group was only used once. Mice were first acclimatized to the field for 10min
and then recorded for another 15min. We wrote Python and OpenCV programs to
obtain and record the videos of mice. The frame rate was set to 30 fps, and the frame
size was set to 640 × 480.

In the second behavioral experiment, we assessed mouse behavior in the
circular open field for 24 h (related to Supplementary Fig. 13). In this experiment,
the circular open field was covered by wood chip for padding, and mice had access
to water and regular food (chow diet). Male, 13-week-old mice with a C57BL/6J
genetic background were used. In order to change the light conditions but maintain
the circadian rhythms of the mice, we used an infrared light as the background
light and set the cameras to the infrared mode. This experiment was started at
20:20 p.m. We first turned off the light, leaving it off until 7:00 a.m. the next day,

and then turned on the white light until 19:00 p.m. Lastly, we turned off the light
until 20:20 p.m. and finished the 24-h behavioral recording. Detailed information
for the mice and experimental conditions used are presented in Supplementary
Table 2.

Evaluation of 3D reconstruction quality obtained by different camera settings.
To test the limit of reducing the number of cameras, we performed a detailed
analysis of the precision quantification by different camera settings (Supplementary
Fig. 4). For each camera, there was no significant difference in the likelihoods of 2D
pose estimation, indicating that the position of the camera had no significant
impact on the estimation result. In the 3D reconstruction procedure, it was enough
to apply only two calibrated cameras for the acquisition of 3D body points. As
such, the best two points with the highest likelihoods from all four cameras were
selected to be reconstructed in 3D space. We chose four different camera groupings
(2C180, 2C90, 3C, 4C) to confirm reconstruction accuracy (Fig. 2b). The like-
lihoods of 2C180 and 2C90 were not significantly different, indicating that, in the
case of using two cameras, the position differences do not affect the basic 3D
reconstruction of the mouse. The likelihoods of 3C and 4C were also not sig-
nificantly different, suggesting that three cameras could basically reach the preci-
sion requirement of four cameras in this case. The likelihoods of both 3C and 4C
were significantly higher than those of 2C180 and 2C90 (one-sided Kruskal–Wallis
test followed by Dunn’s multiple comparisons test, p= 0.1339, n= 16). This result
is consistent with the results of multiple previous studies, showing that the number
of cameras is positively correlated with the accuracy of pose tracking73,74. From
this point of view, the minimum number of cameras was determined to be two.
However, for less occlusion, our results and those of previous studies suggest
increasing the number of cameras when focusing on different animals.

Further, we calculated the variances in 3D behavioral trajectories obtained by
different camera settings to test the limit of reducing the number of cameras.
Variance is a representation of data information, including objective information
and noise information. When the variance is converged with more cameras, we
determined the least number of cameras to reduce the cost. Statistical analysis
showed that 2C180 was significantly higher than 2C90, and that 2C90 was
markedly higher than 3C. However, 3C and 4C were not significantly different.
According to their proportional relations, 2C180 yielded more than 30% noise
information compared with the respective noise information obtained with 2C90,
while 2C90 yielded more than 50% noise information when compared with the
respective information obtained with 3C and 4C. Thus, the most suitable and
economical number of cameras in this experiment situation was three.

Lastly, we tested the influence of accuracy of each body part by different camera
settings. We calculated the variances in accurately capturing each body part in each
X, Y, and Z coordinate of 3D poses. Different camera settings yielded similar
variances in the accuracy of capturing different body points. The variance in the
accuracy of capturing tails in 3D poses was higher than that of other body parts.
These results suggest that, for different body parts, the noise level and tracking
ability of the same camera settings are different, and that tracking specific body
parts requires balancing the number, quality, and grouping of cameras. For
example, if the movement of the tail is the main research focus, it is important to
add more cameras to improve the tracking accuracy.

Proportion of available cameras for tracking each body part. In the 3D
reconstruction step, it is possible that not all 2D body parts captured by multi-view
cameras can be used for 3D reconstruction due to tracking failure caused by
occlusion (Supplementary Figs. 5 and 6). For this reason, we evaluated the accuracy
of the 3D reconstruction based on the number of available cameras for each body
part. A threshold of the likelihood of pose estimation was used to assess whether
the tracking of specific body parts was successful or not. If the likelihood was larger
than the threshold, the camera was used. The threshold was set to 0.9, and we used
a video of 27,000 frames for calculating the proportion of the numbers of available
cameras. The number of cameras needed is shown using scaled stack bars.

Determination of clustering number. In the clustering step, selecting an appro-
priate number of clusters is critical (Supplementary Fig. 10). However, in most
cases, an appropriate number of clusters is difficult to determine because most
movements have high similarity, thus blurring the boundaries of different move-
ment clusters in the movement space. Hence, we determined the appropriate
number of clusters by Bayesian Information Criterion (BIC) in “mclust” package of
R language48. This package provides 14 different types of models to infer the best
parameters, such as the number of clusters. In our tests, the best number of clusters
in single behavioral experiments ranged from 10 to 20. Considering the dis-
crimination of different behaviors while giving them suitable labels, we chose 11 as
the most appropriate number of clusters in movement clustering. When clustering
all the movements of 10 Shank3B+/+ and 10 Shank3B−/− mice in the movement
space, we used the recommended number of clusters of BIC with manual
inspection, which was 41. We used 41 clusters because it was not possible to label
all the clusters. Most movements were not different between the two genotypes;
thus, we only labeled the different movements and some critical movements.
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Behavioral phenotypes’ definition. We defined 14 different behavioral pheno-
types (Supplementary Table 1) referring to Mouse Ethogram database (www.
mousebehavior.org) and ref. 57.

Statistics. The sample sizes of behavior tests were selected by referring to the
previous related studies54,55,67,75 and verified by power analysis76. All related data
are included in analysis. All mice were tested once, all attempts at replication were
successful, and no individual replicate was excluded. Analyses were performed
using Prism 8.0 (GraphPad Software). Before hypothesis testing, data were first
tested for normality by the Shapiro–Wilk normality test and for homoscedasticity
by the F test. For normally distributed data with homogeneous variances, para-
metric tests were used (Student’s t-test for two groups, two-way ANOVA followed
by Holm–Sidak post hoc test for more than two groups); otherwise, non-
parametric tests were used (Mann Whitney test for two groups, two-way ANOVA
with Bonferroni’s post hoc test for more than two groups).

The mean velocity data of 10 Shank3B+/+ and 10 Shank3B−/− mice (Fig. 5b)
were normally distributed and their variances were homogeneous; thus, a two-
sided unpaired t-test was used to compare the difference between the two groups.
The mean anxiety index data of these two groups (Fig. 5b) were not normally
distributed; thus, we used the two-sided Mann–Whitney test to compare the
differences between groups. The movement fractions data (Fig. 5d) were normally
distributed, with homogeneous variances; thus, two-way ANOVA followed by
Holm–Sidak post hoc multiple comparisons test was used to compare the
differences among the groups.

Autistic-like behavior space. The fraction of 41 cluster movements of each mouse
(Fig. 6g) was considered as a feature vector of the mouse behavioral space, with the
feature vector set as x ¼ ½x1; x2; :::; x41�T and the feature matrix of behavior space
set as X ¼ ½x1; x2; :::; x12�T. We then used UMAP to reduce the feature dimensions
of X from 41 to 3 dimensions, as follows:

Y ¼ f UMAPðXÞ ð1Þ
where Y ¼ ½y1; y2; y3�T; yi ¼ ½y1i ; y2i ; :::; y41i �T is a 3D feature matrix, the autistic-like
behavior space, after the dimension reduction by UMAP. f UMAPð�Þ included the
parameters n_neighbors set to 30 and min_dist set to 0.3, which are robust enough to
change across a wide range and discriminate between Shank3B+/+ and Shank3B−/−

mice in the autistic-like behavior space. To quantify the group differences, we fitted a
linear classification model to Y by the fitclinear function in MATLAB by using the
default parameters.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the raw videos and 3D skeleton trajectories associated with Shank3B−/− mice
spontaneous behavior test showing in Fig. 6 are available in the Zenodo repository77

https://doi.org/10.5281/zenodo.4629544 and Supplementary information. Any other
relevant data are available upon reasonable request. Source data are provided with
this paper.

Code availability
The codes of this framework can be accessed at https://behavioratlas.tech/ and are
available on Zenodo78: https://doi.org/10.5281/zenodo.4626951.
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