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Kramers nodal line metals
Ying-Ming Xie 1,3, Xue-Jian Gao 1,3, Xiao Yan Xu 2, Cheng-Ping Zhang1, Jin-Xin Hu1, Jason Z. Gao1 &

K. T. Law 1✉

Recently, it was pointed out that all chiral crystals with spin-orbit coupling (SOC) can be

Kramers Weyl semimetals (KWSs) which possess Weyl points pinned at time-reversal

invariant momenta. In this work, we show that all achiral non-centrosymmetric materials with

SOC can be a new class of topological materials, which we term Kramers nodal line metals

(KNLMs). In KNLMs, there are doubly degenerate lines, which we call Kramers nodal lines

(KNLs), connecting time-reversal invariant momenta. The KNLs create two types of Fermi

surfaces, namely, the spindle torus type and the octdong type. Interestingly, all the electrons

on octdong Fermi surfaces are described by two-dimensional massless Dirac Hamiltonians.

These materials support quantized optical conductance in thin films. We further show that

KNLMs can be regarded as parent states of KWSs. Therefore, we conclude that all non-

centrosymmetric metals with SOC are topological, as they can be either KWSs or KNLMs.
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The discovery of topological insulators1–7 that possess bulk
insulating gap and massless Dirac surface states have
inspired intense theoretical and experimental studies in the

symmetry and topological properties of electronic band struc-
tures. In recent years, a large number of topological insulators
and topological semimetals, such as topological crystalline
insulators8, higher-order topological insulators9–13, Dirac
semimetals14–24, Weyl semimetals25–37, nodal line38–42, nodal
chain43, and multifold chiral44–53 topological semimetals, have
been discovered. Moreover, systematic ways to diagnose non-
trivial band topology based on topological quantum chemistry
and symmetry-based indicators have been developed and a large
number of topological materials have been found54–58.

Recently, the study of Kramers Weyl semimetals (KWSs) has
significantly expanded the family of topological materials59. It has
been stated that in all chiral crystals (crystals that lack mirror or
roto-inversion symmetries) with spin–orbit coupling (SOC), each
twofold degenerate time-reversal invariant momentum (TRIM)
point is a Weyl point called Kramers Weyl point. Around a
Kramers Weyl point, the degeneracy near the TRIM is split along
all directions in momentum space by SOC60. Consequently, the
Fermi pockets enclosing Kramers Weyl points are split by SOC,
and each Fermi pocket possesses nontrivial and opposite Chern
numbers, as depicted in Fig. 1a59. These KWSs exhibit several
novel properties, such as the monopole-like spin texture59,61,
longitudinal magnetoelectric responses62,63, and the quantized
circular photogalvanic effect52,59,64–67.

In this work, we point out that all non-centrosymmetric achiral
crystals (crystals that possess mirror or roto-inversion symme-
tries) with SOC possess doubly degenerate lines, which connect
TRIM points with achiral little group symmetry across the Bril-
louin zone. The double degeneracy is protected by time-reversal
and achiral point group symmetries of the crystal. We call these
doubly degenerate lines, Kramers nodal lines (KNLs). It is shown
that these KNLs exist in all non-centrosymmetric achiral crystals
with SOC. When the Fermi surfaces of materials enclose TRIM
points connected by KNLs, we call these materials Kramers nodal

lines metals (KNLMs). In Table 1, all the symmorphic space
groups (SGs) supporting KNLs are listed, and certain material
realizations are identified.

Importantly, as long as the Fermi surfaces enclose TRIMs that
are connected by KNLs, the KNLs force spin-split Fermi surfaces
to touch on the KNLs and create two types of Fermi surfaces,
namely, the spindle torus type and the octdong (or hourglass)
type as shown in Fig. 1b, d, respectively. The band touching
points of the Fermi surfaces are described by two-dimensional
massless Dirac or higher-order Dirac Hamiltonians20,50,68,69, with
the Dirac points pinned at the Fermi energy. In the case of
octdong-type Fermi surfaces, all the states on the Fermi surfaces
are described as two-dimensional massless Dirac fermions.
Materials with octdong-type Fermi surfaces exhibit linear optical
conductivity in the bulk and, in the thin film limit, quantized
optical conductivity similar to monolayer graphene due to the
massless Dirac fermions70,71.

Furthermore, KNLMs can be regarded as the parent states of
KWSs. When the mirror or roto-inversion symmetries are bro-
ken, the degeneracies of the KNLs are lifted, and the touching
points of the Fermi surface will generally be gapped out and a
KNLM becomes a KWS. More specifically, breaking achiral
crystal symmetries causes a spindle Fermi surface (Fig. 1b) to split
into two Fermi pockets as shown in Fig. 1a, and each Fermi
pocket carries a net Chern number. In the case of an octdong
Fermi surface (Fig. 1b), the two Fermi pockets detach from each
other and Kramers Weyl points are generated in both pockets, as
shown in Fig. 1c. For illustration, we demonstrate how an isolated
Kramers Weyl point near the Fermi energy can be created by
breaking the mirror symmetry through strain in BiTeI with a
spindle Fermi surface, and how this Kramers Weyl point can be
detected through the quantized circular photogalvanic effect64.

From this work, together with the discovery of KWSs, we
conclude that all non-centrosymmetric crystals with SOC are
topological in nature. They can be either KWSs or KNLMs.

Results
Emergence of Kramers nodal lines from TRIMs with achiral
little group symmetry. In this section, we demonstrate how
nodal lines emerge out of a TRIM with achiral little group
symmetry (which contains mirror or roto-inversion). According
to Kramers theorem, each electronic band is at least doubly
degenerate at a TRIM k0, where k0=−k0+Gi, and Gi denotes a
reciprocal lattice vector. We first focus on the cases that the
energy bands are twofold degenerate at TRIM points, and the
cases with fourfold degeneracy are discussed in the “Methods”
section. In general, the energy bands near the TRIM k0 with little
group symmetry (Supplementary Note 2) Gk0

can be described by
a Hamiltonian

HðkÞ ¼ f 0ðkÞ þ f ðkÞ � σ; ð1Þ
where k is measured from the TRIM k0, σ are Pauli matrices
operating on the spin space, f(k) ⋅ σ denotes the SOC and the
eigenvalues of H(k) can be written as E ± (k)= f0(k) ± ∣f(k)∣.

As H(k) respects the time-reversal symmetry T ¼ iσyK (K is
the complex conjugate operation) and the little group symmetry
Gk0

, f(k) satisfies the symmetry constraints

f ðkÞ ¼ �f ð�kÞ; f ðkÞ ¼ Det ðRÞR�1f ðRkÞ; ð2Þ
where R 2 Gk0

.
For illustration, we analyze the case where f(k) is linear in k,

i.e., f ðkÞ ¼ M̂k, where M̂ is a matrix. A more general proof is
provided in the Supplementary Note 2. According to Eq. (2), M̂
satisfies M̂ ¼ Det ðRÞR�1M̂R. Denoting nj and ϵj as the
eigenstates and the eigenvalues of matrices M̂ satisfying
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Fig. 1 Schematic plot of Fermi surfaces of KWSs and KNLMs. a The Fermi
surface of a KWS where two Fermi pockets enclose one TRIM. b Spindle
torus-type Fermi surface in a KNLM induced by a KNL (the dashed black
line). c The Fermi surface of a KWS where each pocket encloses a different
TRIM. d Octdong-type Fermi surface in KNLMs induced by a KNL. The gray
dots in a–d indicate the position of TRIMs Γ1, Γ2. The touching points of the
Fermi surfaces are circled by red dashed lines.
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M̂nj ¼ ϵjnj, and decomposing the momentum k with the new
basis as k=∑jpjnj, one finds

f ðkÞ ¼ ∑
j
pjϵjnj: ð3Þ

In general, for a TRIM with a little group symmetry that is
chiral, Det ðM̂Þ≠ 0, namely ϵj are all finite. In this case, ∣ f(k)∣ > 0
as long as k is not at the TRIM, which results in a fully split Fermi
surface as shown in Fig. 1a and makes the TRIM a Kramers Weyl
point as pointed out in ref. 59. In contrast, for a TRIM with an
achiral little group, there exists at least one mirror or roto-
inversion operation ~R with Det ð~RÞ ¼ �1 such that Det ðM̂Þ ¼ 0,
implying that at least one of ϵj is zero. Without loss of generality,
taking ϵ3= 0, one obtains

f ðkÞ ¼ p1ϵ1n1 þ p2ϵ2n2: ð4Þ
f(k) vanishes when the momentum k is fixed to be along the

direction of null vector n3, where p1= p2= 0 and k= p3n3. In
this case, E+(k) and E−(k) are degenerate along the n3-direction.
The line k= p3n3 is an example of a degenerate line coming out
of TRIMs. The degeneracy is protected by time-reversal
symmetry and the achiral little group symmetry. We called these
lines, KNLs. It is important to note that KNLs create touching
points on the Fermi surface at any Fermi energy as long as the
Fermi surface enclose TRIMs with achiral little groups, as
depicted schematically in Fig. 1. Interestingly, these touching
points, which are always pinned at the Fermi energy, are two-
dimensional Dirac points or higher-order Dirac points20,50,68,69

with nontrivial topological properties (Supplementary Note 3).
The general form of the k ⋅ p Hamiltonians of all non-
centrosymmetric achiral point groups and the directions of
KNLs, emerging out of the TRIM are summarized in the
“Methods” section. Beyond the k ⋅ p analysis, we showed in the

Supplementary Note 2 that for a general f(k), the KNLs are
guaranteed to lie within the mirror planes or along the roto-
inversion axis of S3, S4 symmetry. It is further shown that a KNL
emerging from one TRIM has to connect with another TRIM,
with an achiral little group (Supplementary Note 2).

Kramers nodal lines in achiral crystals. In the previous section,
we demonstrated how KNLs emerge out of TRIMs. In this sec-
tion, we study how KNLs connect different TRIMs in non-
centrosymmetric achiral crystals. While most KNLs connect
TRIMs along high symmetry lines, some KNLs connect TRIMs
through general points in the mirror plane (such as for TRIMs
with C1v little groups).

To identify the KNLs joining TRIMs along high symmetry
lines, we make use of the compatibility relations of double-valued
SGs72,73, which are defined by

χ DðΓ1Þ
G1

ðRÞ
� �

¼ ∑
j
χ D

ðΓjÞ
G2

ðRÞ
� �

; ð5Þ

where χ is the character of a symmetry operation R in a specific
representation, G1 and G2 are the little groups of the TRIM and a

high symmetry line, respectively, and D
ðΓjÞ
Gi

ðRÞ is the jth irreducible
representation of the symmetry operation R 2 Gi. For example,
for the well-studied 3D Rashba material BiTeI (SG no. 156,
P3m1), the little groups of the TRIM Γ, A and the high symmetry
line Δ connecting these two TRIMs are all C3v. By identifying the
irreducible representations of the unitary symmetry operations
m010 and C3 at Γ, A, and Δ (see Supplementary Note 4 for details),
we show that the two-dimensional double-valued irreducible
representations Γ6–Δ6–A6 are compatible. This explains all the
KNLs Γ–A observed in the band structure of BiTeI shown in
Fig. 2c (labeled with blue color). This result is also consistent with

Table 1 Kramers nodal line metals (KNLMs) with symmorphic space groupsa.

Type SG no. Point group KNLs KW points Material

Type I 6, Pm C1v (Γ, B, Y, A, Z, C, D, E)b – CsIO3

8, Cm C1v (Γ, Y, A, M) – BiPd2Pb
25, Pmm2 C2v Γ–Z, Y–T, X–U, S–R – CdTe, Bi4Te2Br2O9

38, Amm2 C2v Γ–Y, T–Z – NbS2
42, Fmm2 C2v Γ–Z, Y–T – –
99, P4mm C4v Γ–Z, X–R, A–M – PbCsCl3
107, I4mm C4v Γ–M, X–X, (N) – In2Te3
115, P�4m2 D2d Γ–Z, M–A, X–R – PbF2O
156, P3m1 C3v Γ–A, (M, L) – BiTeI
157, P31m C3v Γ–A, (M, L) – Bi2Pt
160, R3m C3v Γ–T, (L, FA) – Bi2Te3
174, P6 C3h Γ–A, (M, L) – –
183, P6mm C6v Γ–A, M–L – AuCN
187, P�6m2 D3h Γ–M, A–L, Γ–A – GeI2, TaN
189, P�62m D3h Γ–K–M, A–H–L, Γ–A – Sn5(BIr3)2
215, P�43m Td Γ–X, Γ–R, R–M – Cu3TaTe4
216, F�43m Td Γ–L, Γ–X – HgSe, HgTe
217, I�43m Td Γ–H – TaTl3Se4

Type II 35, Cmm2 C2v Γ–Z, Y–T S, R MnCs2V2Br2O6

44, Imm2 C2v Γ–X, (S, R) T AgNO2

81, P�4 S4 Γ–Z, M–A X, R GeSe2
82, I�4 S4 Γ–M N, X CdGa2Te4, Cr2AgBiO8

111, P�42m D2d Γ–Z, M–A X, R Ag2HgI4
119, I�4m2 D2d Γ–M, (N) X TlAgTe2
121, I�42m D2d Γ–M, X–X N Cu3SbS4

aHere, we enumerate symmetry allowed KNLs in symmorphic space groups. The definitions of TRIMs follow the conventions given in Bilbao Crystallographic Server73. Some of the representative
materials hosting KNLs are identified with the assistance of the Materials Project90 and the Topological Material Database58.
bThe TRIMs in the parentheses are connected by the KNLs that are not along the high symmetry lines, such as (Γ, A), (Y, M) in SG no. 8 (Pm) and (M, L) in SG no. 156 (P3m1).
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the k ⋅ p Hamiltonian analysis that a KNL emerges out of the Γ
point along the z-direction (see the “Methods” section).

Based on the compatibility relations, we identified all the KNLs
that are along the high symmetry lines in non-centrosymmetric
crystals with symmorphic SGs. The results are summarized in
Table 1. We found non-centrosymmetric achiral crystals with
point groups C2v, S4, C4v, D2d, C3v, C3h, C6v, D3h, Td support KNLs
along high symmetry directions. These lines are contained within
the mirror plane or along the roto-inversion axis. Some
representative materials with KNLs are listed in Table 1. For
example, for SG 216, there are KNLs along the high symmetry
lines between Γ and L points, as well as between Γ and X points.
These KNLs are labeled as Γ–L and Γ–X, respectively, in Table 1.
Materials with this property include semimetals HgTe and HgSe.
For further illustration, the band structures of BiTeI (SG no. 156,
P3m1) and Cr2AgBiO8 (SG no. 82, I�4) are shown in Fig. 2.
Evidently, there are KNLs (labeled with blue color) along the high
symmetry lines.

Although most KNLs reside on high symmetry lines, there are
exceptions if the little group of the TRIM is C1v. As shown in the
previous section, C1v is achiral so that there must be KNLs
emerging from TRIMs. For example, the little groups of TRIMs
M and L in BiTeI are the achiral C1v, yet there are no KNLs along
high symmetry lines coming out from M or L, as shown in
Table 1. However, by carefully checking the energy bands on the
whole mirror plane, as shown in Fig. 2d (and schematically
shown in Fig. 2b), we indeed found a KNL that connects M, L
within the mirror plane that is denoted as (M, L) in Table 1.
Therefore, all TRIMs in BiTeI are connected by KNLs as
expected.

On the other hand, there exist TRIMs with chiral little group
symmetry, such as the X and N points in achiral KNLM
Cr2AgBiO8. Therefore, the Bloch states for each band near X and

N points in Cr2AgBiO8 are described by Kramers Weyl fermions,
as highlighted in Fig. 2g. As demonstrated in the Supplementary
Note 7, Fermi arcs originating from these Kramers Weyl points
emerge on (001) surfaces of Cr2AgBiO8. As summarized in
Table 1, among the 25 non-centrosymmetric achiral symmorphic
SGs, 18 of them are classified as type I achiral crystals, in which
all the TRIMs are connected by KNLs. In contrast, the remaining
seven SGs further support Kramers Weyl points, and they are
classified as type II achiral crystals.

One interesting example of KNLs can be found in BiPd2Pb (SG
no. 8, Cm, point group C1v), which exhibits large SOC-induced
band splitting ~100 meV (see Supplementary Note 7 for the band
structure). The lattice structure and the Brillouin zone is shown in
Fig. 2h, i, respectively. In Fig. 2j, we select two bands that are
degenerate on the TRIMs and plot the energy difference with
respect to momentum k in the mirror plane (see the detail band
structure in Supplementary Note 7). Remarkably, there are two
KNLs, (Γ–A) and (Y–M), lying on this mirror plane as expected.
The schematic plot of the KNLs on the mirror plane is depicted in
Fig. 2i. While KNLs along high symmetry lines can easily be
found in standard band structure calculations, this kind of
irregular KNLs coming out of TRIM with C1v little groups can
easily be missed.

Spindle torus-type and octdong-type Fermi surfaces. In this
section, we point out an important physical consequence of the
KNLs, namely, KNLs force SOC-split Fermi surface to touch.
Interestingly, there are two kinds of Fermi surface touchings,
which can satisfy the doubly degenerate requirement of KNLs.
The first type is the spindle torus Fermi surface formed by the
touching of two electron Fermi pockets, as illustrated schemati-
cally in Fig. 1b, in which the KNL forces the two SOC split Fermi
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Fig. 2 Representative materials with KNLs. a–j The crystal structure, the first Brillouin zone, and KNLs of BiTeI (SG no. 156, P3m1), Cr2AgBiO8 (SG no. 82,
I�4), and BiPd2Pb (SG no. 8, Cm). c, g The band structures of BiTeI and Cr2AgBiO8, respectively, where the KNLs are highlighted as blue lines, and the
crossing points within the red circles of f are KW points. These KNLs are also marked out by solid blue lines in the 3D first Brillouin zone. d, j The DFT-
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pockets to touch. The spindle torus Fermi surfaces are rather
common in achiral crystals with strong SOC. It is well-known
that BiTeI possesses this kind of Fermi surface74, and we explain
here that the origin of the Fermi surface touching is indeed
enforced by the Γ–A KNL, as illustrated in Fig. 3a. To understand
the properties of the electrons on spindle Fermi surfaces, we use
BiTeI as an example and note that with a fixed kz, the electrons on
the Fermi surface are described by a two-dimensional Rashba
Hamiltonian as illustrated in Fig. 3b75,76. In this work, we point
out that almost all non-centrosymmetric achiral crystals with
strong SOC have similar properties even though the Fermi sur-
faces can be more complicated. In the case of hole-doped HgTe
and HeSe, for example, three KNLs come out of the Γ point and
result in six Fermi surface touching points, as illustrated in the
Supplementary Note 7.

The second type of Fermi surface touchings that satisfies the
degeneracy requirement on the KNLs is the octdong-type Fermi
surface. In this case, one electron Fermi pocket and one hole
Fermi pocket touch along the KNL, as illustrated in Fig. 1b
schematically and in Fig. 3c, using the realistic band structures of
Bi4Te2Br2O9 (SG no. 25, Pmm2, point group C2v). In
Bi4Te2Br2O9, there is an octdong Fermi surface near the Γ point,
and the KNL is along the Γ–Z direction. It is important to note
that this Fermi surface touching is not accidental, but forced by
the KNL. As the chemical potential changes, the relative size of
the electron and hole pockets changes and the band touching
point moves along the KNL. Importantly, for a fixed kz along
the nodal line direction, the electrons on the octdong Fermi
surface are described by two-dimensional massless Dirac
fermions on the whole Fermi surface.

The octdong Fermi surface as well as the trivial Fermi sheet of
Bi4Te2Br2O9 in Fig. 3c can be captured by a simple tight-binding
Hamiltonian, which satisfies the SG symmetry SG no. 25 (Pmm2).
The effective Hamiltonian can be written as

H0ðkÞ ¼ ∑
j
mj cosðkjÞ þ vx sin kxσx þ vy sin kyσy; ð6Þ

where j= x, y, z, σ are Pauli spin matrices. As illustrated in
Fig. 3d, it is interesting to note that symmetry allows the crystal to
possess pure octdong Fermi surfaces, when SOC is further
enhanced. Unfortunately, we have yet to identify realistic
materials with pure octdong Fermi surfaces.

To understand the novel properties of octdong Fermi surfaces,
we first study the optical properties of a system with the octdong
Fermi surface only as depicted in Fig. 3d. The cases with
additional trivial Fermi surfaces will be discussed later. We note
that in the case of Fig. 3d, all the electrons on the Fermi surface
are described by two-dimensional massless Dirac fermions with
Dirac points located on the KNLs. The massless Dirac energy
dispersions at kz= 0 and kz= π are depicted in Fig. 3e. It is clear
from Fig. 3e that the energy bands cross at Γ and Y points, which
are Dirac points. Dirac points corresponding to general kz lie
along the dashed lines in Fig. 3e between the two Dirac points
highlighted by circles. In other words, all the states on the
octdong Fermi surface can be described by two-dimensional
massless Dirac Hamiltonians, and the energy of the Dirac points
is determined by kz. We expect the large number of Dirac
electrons on octdong surfaces possess novel physical properties.

To illustrate this, we calculate the optical conductivity σR(ω)≡
Re(σxx(ω)) for a thin film of material with the octdong Fermi
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(orange) and outer (purple) Fermi pockets (FP) together form a spindle torus. The energy dispersion at a fixed kz indicated by the dashed line is shown in b.
b The Rashba-like energy dispersion for a fixed kz. c The Fermi surface of Bi4Te2Br2O9 (SG no. 25, Pmm2) with Fermi energy EF= 0.05 eV, which cuts
through the KNL Γ–Z. The labeled hole and the electron Fermi pockets together form an octdong-type Fermi surface. d The Fermi surface from the two-
band tight-binding modelH0ðkÞ with mx= 0.05t, my= 0.05t, mz= 0.5t, vx= t, vy= t, EF= 0, and t= 1 as the unit of the hybridization energy. The positions
of TRIMs depicted are all connected by four KNLs in the kz-direction. e The energy dispersion for a fixed kz= 0 (purple) and kz= π (red) in d. f Schematic
plot of optical excitations that contribute to the optical conductivity for the hole-type (electron-type) Dirac fermions with onset frequency ω1 (ω2). The
horizontal dashed line denotes the position of Fermi energy. g The optical conductivity σR (left axis) and estimated optical conductivity NDσ0/4 (right axis)
versus frequency ω for a three-layer slab, where the number of Dirac points ND ¼ 1

2∑Γ;nθð_ω� j2EΓ;njÞ with θ as the Heaviside step function, n as band
index, and Γ labeling four TRIMs. The inset figure in g shows the band structure of this trilayer slab. h The bulk optical conductivity for the model material
with octdong Fermi surface at EF= 0, 0.2t with η= 0.002t and temperature T= 0.01t. Here, l�1 ¼ 2π

~a cm−1 with ~a ¼ a=Å and a as the lattice constant. i The
bulk optical conductivity for Bi4Te2Br2O9 with η= 1 meV and temperature T= 10 K. The slight deviation from linear dependence (red dashed line) for
Bi4Te2Br2O9 is due to the presence of the extra trivial pockets (blue pockets in c).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22903-9 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3064 | https://doi.org/10.1038/s41467-021-22903-9 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


surface, using a tight-binding version of the effective Hamiltonian
(Eq. (6)). The energy spectrum of such a trilayer thin film is
shown in the insert of Fig. 3g, which can be effectively described
by multiple massless Dirac Hamiltonians. Applying the Kubo
formula, the optical conductivity can be written as

σRðωÞ ¼
e2

_V
∑
k
∑
i≠j

f ðϵiðkÞÞ � f ðϵjðkÞÞ
ϵiðkÞ � ϵjðkÞ

�

j i; kjv̂xjj; k
� �j2 Im 1

_ωþ iηþ ϵiðkÞ � ϵjðkÞ

 !
;

ð7Þ

where ω is the frequency of the incident light, V is the volume
(area) for a bulk (thin film) sample, i, j are the band indices, f is
the Fermi–Dirac distribution function, η originating from the
effect of carrier damping is assumed to be a constant, and v̂x ¼
∂H0=∂kx is the velocity operator. As shown in Fig. 3g,
remarkably, the optical conductivity is quantized and shows
plateau structures. The quantization is similar to monolayer
graphene that exhibits quantized optical conductivity of σ0= πe2/
2h in the frequency range ω > 2∣μ∣, with μ being the chemical
potential measured from the Dirac point70,77,78. To understand
the plateau structure, we note that different Dirac points of the
thin film have different activation frequencies at which light can
excite occupied states into empty states, as depicted in Fig. 3f. As
the optical frequency increases, more and more optically activated
Dirac points contribute to quantized optical conductivity and
result in the plateau structure. By counting the number of Dirac
points ND within half of the optical frequency ω, we obtain the
quantized plateaus (blue dashed line in Fig. 3g) that is consistent
with the one calculated with the Kubo formula (Eq. (7)). This
clearly demonstrates the novel properties of materials with
octdong Fermi surfaces. The deviation from the quantization
values at higher frequencies is due to the deviation from the Dirac
energy spectrum at energy far from the Dirac points.

The number of two-dimensional massless Dirac fermions are
expected to scale with the system size. In the bulk limit, the
optical conductivity with octdong Fermi surfaces is linearly
proportional to the optical frequency due to the large number of
two-dimensional massless Dirac fermions, as denoted by the
linear line in Fig. 3h. Importantly, the onset frequency for this
linear line is pinned at zero, regardless of chemical potential
(Fig. 3h). The underlying reason is that those touching points on
the octdong Fermi surface always manifest as massless Dirac
points right at Fermi energy. This is substantially different from
the linear optical conductivity shown in Weyl79,80, Dirac
semimetals81–83, and multi-fermions84, where the onset fre-
quency depends on how far the chemical potential is away from
the Weyl or Dirac points. Moreover, as shown in Fig. 3i, in the
case of the coexistence of an octdong Fermi surface and trivial

Fermi surfaces in Bi2Te2Br2O9, the optical conductivity, which is
calculated from realistic tight-binding models constructed with
Wannier orbitals from DFT calculations (Supplementary Note 7),
also shows such linear increase, although it is limited to a
relatively smaller frequency range. When the optical frequency is
high, transitions appear between states that are far from the Dirac
points, and the linear behavior of the optical conductivity is lost.
To experimentally demonstrate this linear optical conductivity in
KNLMs, the incident direction of light should be parallel to the
KNLs, and the Drude response that gives a peak near-zero
frequency needs to be subtracted85.

KNLMs as the parent states of Kramers Weyl materials. In this
section, we point out that KNLMs are parent states of KWSs, and
one can obtain KWSs from KNLMs through lattice symmetry
breaking. To understand the relation between KNLMs and KWSs,
we note that the KNLs are doubly degenerate lines connecting
TRIMs. A plane in the Brillouin zone intercepting a KNL can be
described by a two-dimensional massless Dirac Hamiltonian with
Berry curvature concentrated at the Dirac point. When a Bloch
electron moves around a KNL adiabatically, it acquires a quan-
tized Berry phase ofmπmod 2π (Supplementary Note 3), and one
can regard a KNL carrying Berry curvature flux of π as a Dirac
solenoid, as illustrated in Fig. 4a. It is important to note that
the Berry curvature on the opposite sides of a TRIM should have
opposite signs because of time-reversal symmetry such that the
Dirac solenoids86 manifested by KNLs do not have classical
analogs. When the symmetries (such as the mirror or the roto-
inversion) of a crystal are broken, the degeneracy of the KNLs is
lifted, and it is possible to define a nondegenerate Fermi surface
enclosing a TRIM. As depicted in Fig. 4b, the Berry flux coming
out of a TRIM is quantized. Therefore, the nondegenerate Fermi
surface enclosing a TRIM has a finite Chern number on each
pocket and the TRIM becomes a Kramers Weyl point.

For illustration, we apply strain on BiTeI to break all the mirror
symmetries of the crystal. The compressive strain is achieved by
reducing the lattice constant a1 of the crystal as shown in Fig. 2a.
The evolution for the band structures along Γ–A under 1%, 3%,
and 5% strain strengths is summarized in Fig. 4c–e, respectively.
(Note that the KNL Γ–A in the case without strain is shown in
Fig. 2c.) Impressively, we found the KNL Γ–A in BiTeI can be
split sizably (~ order of tens of meV) by <3% strain, and the Γ and
A points become Kramers Weyl points with opposite chirality. As
A is the only Weyl point that is close to the Fermi energy, while
other Weyl points are at least 200 meV above, a single Weyl point
near the Fermi energy is generated. Although there is only a
single Weyl point near the Fermi energy, the Nielsen–Ninomiya
theorem is not violated because there are two Fermi pockets
carrying opposite chiral charges, which enclose this Weyl point.

Fig. 4 Strain-induced Kramers Weyl fermions. a Schematic plot of a KNL (solid line) carrying Berry flux π. b The Berry flux emerges from TRIMs when the
degeneracy of the KNL is lifted. The total flux through a sphere (in green) that enclose the TRIM is 2π. c–e The splitting along Γ–A with 1%, 3%, and 5%
strain strengths, respectively. f The chiral charge C versus light frequency ω, calculated at four different strain strengths: no strain (in black), 1% strain (in
blue), 3% strain (in red), and 5% strain (in purple).
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Therefore, straining achiral crystals provides a new way to create
KWSs. In Fig. 4f, we demonstrate how the chiral charge C of this
strain-induced Kramer Weyl point can be measured by the
circular photogalvanic effect64. It is clear that when a Kramers
Weyl point is created, the system shows the quantized circular
photogalvanic effect. The details are given in the Supplementary
Note 6.

Discussion
In this work, we point out that all non-centrosymmetric achiral
crystals possess KNLs, which connect TRIMs across the whole
Brillouin zone. It is important to note that the KNLs are very
different from nodal lines generated by band inversions, which
can only be accessed in a very small range of energy window38–41.
As illustrated in the band structure calculation of Fig. 2d, j, KNLs
appear in all the bands connecting some TRIMs. These KNLs
create the spindle torus-type and the octdong-type Fermi surface
as long as the Fermi surfaces enclose TRIMs at an arbitrary Fermi
energy. As listed in Table 1, a large number of existing materials
are indeed KNLMs. Moreover, generic nodal lines formed by
band inversion87 can be removed without breaking any symme-
tries. In sharp contrast, the KNLs are enforced and protected by a
combination of the time-reversal symmetry and achiral crystal
symmetries. The KNLs cannot be removed unless these symme-
tries are broken.

Here, we briefly discuss some other possible physical con-
sequences of KNLMs, when the KNLs are gapped out. One way to
gap out the KNLs is by shining a circularly polarized light on the
material, which breaks time-reversal symmetry and in principle
can lift the degeneracy of KNLs. This can result in sizable Berry
curvature around the KNLs and lead to a light-induced anom-
alous Hall effect as in the case of graphene88, where anomalous
Hall current arises due to the finite Berry curvature from the
light-induced gapped Dirac cone. However, due to the large
number of two-dimensional massless Dirac fermions in the
material, we expect the effect is larger than that in graphene.
Another possibility is to gap out the KNL through a Zeeman field,
which can give rise to a field-induced anomalous Hall effect.

So far, we have only discussed KNLs in symmorphic crystals in
detail. Indeed, KNLs also appear in all crystals that are non-
centrosymmetric and nonsymmorphic. Particularly, there are
always KNLs coming out of the Γ points of nonsymmorphic
crystals. Therefore, we conclude that all non-centrosymmetric

achiral crystals possess KNLs, which is the central result of this
work. However, the situations in nonsymmorphic crystals are
more complicated. For example, as discussed in Supplementary
Note 7, screw symmetries can enforce nodal planes at Brillouin
boundaries that overwhelm the KNLs in these planes, while glide
mirror symmetries can enforce KNLs that are perpendicular to
the glide mirror plane at Brillouin zone boundaries. Furthermore,
bands at TRIM with higher-fold (such as fourfold and eightfold)
degeneracy are widely supported in nonsymmorphic crystals. For
example, the TRIM R in nonsymmorphic SG no. 218 (P�43n) and
the TRIM H in nonsymmorphic SG no. 220 (I�43d) allows eight-
dimensional corepresentations, which is consistent with the work
of Wieder et al.23 and Bradlyn et al.51. As excepted, in these cases,
the KNLs still emerge from these achiral TRIMs as shown in
Supplementary Note 7. Specifically, the eightfold degeneracies at
the TRIM H in SG. 220 (I�43d) split into four nondegenerate
bands and two KNLs along H–P directions, or four KNLs along
H–N and H–Γ directions. However, a complete understanding of
how the KNLs appear in nonsymmorphic achiral crystals requires
more study in the future.

Methods
k ⋅ p Hamiltonians near TRIMs with achiral little group symmetry. In this
section, we provide the general forms of the k ⋅ p Hamiltonians near the TRIM
points of symmorphic crystals, with achiral little group symmetry to help to
understand how KNLs emerge from TRIMs, as listed in Table 2. It is important to
note that these k ⋅ p Hamiltonians can also describe the Γ point of nonsymmorphic
crystals.

In Table 2, we enumerate all allowed irreducible corepresentations of the ten
non-centrosymmetric achiral point groups, the corresponding k ⋅ p Hamiltonians,
as well as directions of KNLs. Here, we use the convention given in ref. 72, where
the irreducible representations of AGs are introduced, to label the time-reversal
invariant corepresentations. To summarize, we note that (1) there are doubly
degenerate KNLs emerging from all TRIM points with achiral little group
symmetry. (2) KNLs lie along high symmetry directions in most point groups
except certain irreducible corepresentations in C1v, C3v, and C3h, in which cases the
KNLs can be pinned along some generic directions within mirror-invariant planes
as denoted by the symbol ∈ m. (3) All the irreducible corepresentations are two-
dimensional except for the Td point group that allows a four-dimensional
corepresentation. The general form of this four-dimensional Hamiltonian is
expressed with Ji, which is the angular momentum operators of J= 3/2 states, with
i= x, y, z. It is important to note that there are doubly degenerate KNLs emerging
from TRIMs with four-dimensional corepresentations.

Next, we apply Table 2 to understand the KNLs in the band structure of some
realistic materials. In BiTeI, the TRIMs Γ and A respect C3v symmetry, which
allows time-reversal invariant corepresentations G4

12 : R3R4 and G4
12 : R6. For

energy bands at TRIMs described by corepresentations R6, the k ⋅ p Hamiltonian of

Table 2 The k ⋅ p Hamiltonians at TRIMs with non-centrosymmetric achiral little groups.

Point group IR coreps72 d k ⋅ p Hamiltonian Directions of KNLs

C1v G1
4 : R2R4 2 α13kzσx+ α23kzσy+ (α31kx+ α32ky)σz ∈ m

C2v G5
8 : R5 2 α12kyσx+ α21kxσy ẑ

S4 G1
8 : R2R8; R4R6 2 (α11kx+ α12ky)σx+ (α12kx− α11ky)σy ẑ

C4v G14
16 : R6; R7 2 α12kyσx− α12kxσy ẑ

D2d G14
16 : R6; R7 2 α11kxσx− α11kyσy ẑ

C3v G4
12 : R3R4 2 iα1ðk3þ � k3�Þσx þ ðα2k3z þ α4ðk3þ þ k3�ÞÞσy þ iα5ðk3þ � k3�Þσz ∈ m

G4
12 : R6 2 α12kyσx− α12kxσy ẑ

C3h G1
12 : R4R10; R6R8 2 ðβ1k2þ þ β�1 k

2
�Þkzσx þ iðβ1k2þ � β�1 k

2
�Þkzσy þ ðβ2k3þ þ β�2k

3
�Þσz ẑ;2 m

G1
12 : R2R12 2 ðα1k3z þ α2kþk�kzÞσx þ ðα3k3z þ α4kþk�kzÞσy þ ðβ1k3þ þ β�1 k

3
�Þσz ∈ m

C6v G11
24 : R7; R8 2 α12kyσx− α12kxσy ẑ

G11
24 : R9 2 iα1ðk3þ � k3�Þσx þ α2ðk3þ þ k3�Þσy ẑ

D3h G11
24 : R7; R8 2 ðα1k3z þ α2kþk�kzÞσy þ iα3ðk3þ � k3�Þσz x̂, C3x̂,C

2
3 x̂, ẑ

G11
24 : R9 2 ðα1k3z þ α2kþk�kzÞσy þþiα3ðk3þ � k3�Þσz x̂, C3x̂,C

2
3 x̂

Td G10
48 : R4; R5 2 αðkxðk2y � k2z Þσx þ kyðk2z � k2x Þσy þ kzðk2x � k2y ÞσzÞ x̂; ŷ; ẑ; ± x̂± ŷ ± ẑ

G10
48 : R8 4 β∑ik

2
i Ĵ

2
i þ γ∑i≠jkikjĴi Ĵj þ δ∑iki ð̂Jiþ1 Ĵi Ĵiþ1 � Ĵiþ2 Ĵi Ĵiþ2Þ x̂; ŷ; ẑ; ± x̂± ŷ ± ẑ

The point group symmetry, the corresponding abstract group (AG) symbols together with time-reversal invariant irreducible corepresentations (IR coreps) are listed. The general form of the
Hamiltonians and the direction of the KNLs are listed. In general, the KNLs lie along some high symmetry directions such as the z-direction. For points groups C1v, C3v, and C3h, the KNLs lie within the
mirror planes that is denoted as ∈ m. Here, k±= kx ± iky, the Pauli matrices σx,y,z operate on the spinor basis with Jz= ±1/2 or Jz= ±3/2, and Ĵi are the angular momentum operators with J= 3/2.
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the SOC term is

HsoðkÞ ¼ α12ðkyσx � kxσyÞ; ð8Þ
which allows a degenerate line along ẑ direction as listed in Table 2, and explains
the KNL Γ–A in Fig. 2c. Similarly, in Cr2AgBiO8, the TRIMs Γ and Z respect S4
symmetry, and the corresponding time-reversal invariant irreducible
corepresentations are G1

8: R2R8 and R4R6. For energy bands at TRIMs described by
these corepresentations, the k ⋅ p Hamiltonian of SOC term is

HsoðkÞ ¼ ðα11kx þ α12kyÞσx þ ðα12kx � α11kyÞσy ; ð9Þ
which vanishes along ẑ direction and is consistent with the support of KNL Γ–Z
shown in Fig. 2g.

As shown in Fig. 2d, j, there are KNLs lying within the mirror plane when
TRIMs respect C1v symmetry. This property is also manifested by the k ⋅ p
Hamiltonian. The Hamiltonians near such TRIMs have the form

HsoðkÞ ¼ α13kzσx þ α23kzσy þ ðα31kx þ α32kyÞσz ; ð10Þ
where the mirror operation is mz: z↦−z. Evidently, the Hso(k) vanishes along
(−α32, α31, 0), which is a direction within the mirror plane.

In the previous sections, we focused on the KNLs which emerge from twofold
degenerate points at TRIMs. However, we note that the Td point group allows a
four-dimensional irreducible corepresentations G10

48 : R8. The k ⋅ p Hamiltonian in
basis spanned by states with total angular momentum J= 3/2 and azimuthal
quantum number Jz (i.e., 3=2; Jz

�� �
with Jz= ±3/2, ±1/2) can be written as89

HsoðkÞ ¼ β∑
i
k2i Ĵ

2
i þ γ∑

i≠j
kikj Ĵ i Ĵ j

þδ∑
i
ki ð̂Jiþ1 Ĵ i Ĵ iþ1 � Ĵ iþ2 Ĵ i Ĵ iþ2Þ;

ð11Þ

where i= x, y, z and i+ 1= y if i= x, etc. Ĵ i are the 4 × 4 matrices of the J= 3/2
angular momentum operators. This Hamiltonian results in KNLs along x̂; ŷ; ẑ and
± x̂ ± ŷ ± ẑ. This is consistent with the KNLs found in HgSe (SG no. 216, F�43m)
and YPtBi (SG no. 216, F�43m), as shown in the Supplementary Note 7. It can be
seen from the band structure calculations that the four-dimensional
corepresentations are decomposed into two two-dimensional irreducible
representations along Γ–X, and one two-dimensional irreducible representation
plus two one-dimensional representations along Γ–L.
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