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Data-driven reaction coordinate discovery in
overdamped and non-conservative systems:
application to optical matter structural
isomerization
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Norbert F. Scherer 1,2✉

Optical matter (OM) systems consist of (nano-)particle constituents in solution that can self-

organize into ordered arrays that are bound by electrodynamic interactions. They also

manifest non-conservative forces, and the motions of the nano-particles are overdamped; i.e.,

they exhibit diffusive trajectories. We propose a data-driven approach based on principal

components analysis (PCA) to determine the collective modes of non-conservative over-

damped systems, such as OM structures, and harmonic linear discriminant analysis (HLDA)

of time trajectories to estimate the reaction coordinate for structural transitions. We

demonstrate the approach via electrodynamics-Langevin dynamics simulations of six

electrodynamically-bound nanoparticles in an incident laser beam. The reaction coordinate

we discover is in excellent accord with a rigorous committor analysis, and the identified

mechanism for structural isomerization is in very good agreement with the experimental

observations. The PCA-HLDA approach to data-driven discovery of reaction coordinates

can aid in understanding and eventually controlling non-conservative and overdamped sys-

tems including optical and active matter systems.
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A major goal of chemical research is the determination of
the details of atomic rearrangements, bonding, and reac-
tion pathways of molecules1. Contrary to the simplified

“general chemistry” perspective, true molecular reaction pathways
are multi-dimensional and challenging to represent and visualize.
The committor probability for a two-state system – the statistical
probability that a particular configuration will transition into the
product basin before the reactant basin – is the optimal reaction
coordinate in that it is perfectly correlated with, and indeed
defines, the extent of reaction2. As a purely statistical measure, the
committor does not provide any configurational or physical
understanding of the reaction mechanism, however simplified,
dimensionally reduced, configuration-based reaction coordinates
are valuable in defining and quantifying the important collective
motions driving transitions between metastable configurations3.
A traditional approach to quantifying the important dynamical
fluctuations of a system in a metastable configuration is to project
them onto the leading (vibrational) normal modes of the system
as a basis set that allows characterization of the soft collective
fluctuations4. Alternatively, transition path sampling (TPS) and
related methods5,6 can determine reaction paths in high dimen-
sional systems by identifying high-probability reactive paths.

In addition to the aforementioned methods for molecular
systems, atomic and molecular Van der Waals clusters made in
molecular beams, and colloidal clusters in solution represent
classes of materials that form close-packed configurations that are
held together by Van der Waals (i.e., dispersion) interactions7,
depletion forces8–10, or Casimir type interactions11. Their con-
figurations are well-determined by repulsive “hard-sphere”
interactions as described by Weeks, Chandler, and Anderson
(WCA) theory12. Since the interactions are typically short ranged,
the transitions between different structural isomers are often
single particle moves9,11 or correlated few particle moves13 that
are often interpretable in terms of broken ‘bonds’ and involve a
small number of degrees of freedom. Although the transition state
configurations are a challenge to study in atomic clusters due to
their small spatial scale and short lifetime, the size of colloidal
systems readily allow conventional optical microscopy and fast
imaging to be used for visualization of particle trajectories.

Optical matter (OM) is a type of material or molecule-like
structure in which the constituents (e.g. nanoparticles (NPs) or
micron-scale particles) are bound together by electrodynamic
interactions14,15. A fundamental aspect of OM structures is that
they tend to occupy inter-particle distances that are integer mul-
tiples of the wavelength of the incident optical field. This is par-
ticularly clear when the constituents are NPs that are smaller than
the wavelength of light15,16. This interaction, known as optical
binding14,17,18, allows formation of regular OM configurations
(e.g. 2D arrays with trigonal symmetry or anisotropic arrays with
rectangular lattice configurations) with minimal optical informa-
tion, generally only the overall shape, polarization, phase, and
power of the optical beam17 and the resulting particle configura-
tions are readily visualized by optical microscopy15,19–21. These
systems are of particular interest in optical physics due to their
manifestation of non-reciprocal forces, collective (correlated)
interactions, and many-body effects in their electrodynamic
interactions22–26 and can also serve as useful mesoscale analogs
with which to study atomic-level chemical processes27.

It is known that long range interactions manifest structural and
dynamic correlations in driven dense colloidal solutions due to
hydrodynamic interactions28, and in quantum-dot perturbed
molten salt solutions29. OM configurations self-organize in
optical traps in solution and achieve new collective properties due
to their electrodynamic interactions and long range (periodic)
potentials14,15,17,18. The long range interactions create a new
richness for understanding isomerizations of OM configurations

as they affect the energetics globally and imbue OM systems with
many-body interactions and physics. Rational control of the
configuration of optical matter requires solving a many-body
problem by effective and practical methods.

Figure 1 demonstrates the similarities between molecular and
optical matter systems. The probability distribution of a mole-
cular configuration in the neighborhood of the potential mini-
mum can be well approximated by a multivariate Gaussian
distribution with a covariance matrix governed by the Hessian
matrix H at the minimum of the potential defined as:

Hij ¼
∂UðrÞ
∂ri∂rj

ð1Þ

where r represents the Cartesian coordinates of the molecular
configuration and U is the potential function. When the potential
is harmonic, the normal modes of the system can be determined
from the covariance matrix4 (a detailed derivation is provided in
Supplementary Discussion). Consider the asymmetric stretching
mode of a water molecule shown in Fig. 1a–d as a simple
example. The coordinate displacement exemplified in this mode
is involved in the dissociation and autoionization reactions of
water30. A second example is boat-to-chair isomerization of
cyclohexane in which particular normal modes dominate others
in effecting the isomerization transition31. Optical matter systems
in optical traps in solution can undergo structural transitions. For
example, Fig. 1e–g illustrate a transition in a 6-particle OM

Fig. 1 An analogy between molecular normal modes and the collective
modes of optical matter systems. a–d The antisymmetric stretching mode
of the water (H2O) molecule. e–g Experimentally measured “instantaneous”
OM configurations associated with a transition between triangle (e) and
chevron (g) via and intermediate higher energy transition configuration (f)
in the 6-particle optical matter system that forms and fluctuates in a
converging Gaussian optical beam that is circularly polarized.
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system from a “triangle” to a “chevron” configuration through a
transition state. (Experimental details for creating the OM system
and optical microscopy visualization are given in Methods sec-
tion) However, compared to molecular systems, besides friction,
the external electrodynamic forces of the OM system in solution
are non-conservative and overdamped32. Is it possible, then, to
find an analog of normal mode analysis for OM systems in
solution? In answer, we propose that this transition can be
described by the collective modes of the OM system. The primary
goal of this paper is to develop a collective coordinate analysis for
non-conservative, overdamped systems, and demonstrate the
approach in defining a reaction coordinate and transition
mechanism in an OM system’s structural isomerization.

Normal modes are orthogonal collective motions of particles
that carry independent contributions to the system energy. The
conventional definition of normal modes is valid only for
harmonic particle–particle interactions. There is no formal
mechanical definition of normal modes for overdamped and
non-conservative systems. Consider the following Langevin
equation:

m
d2r
dt2

¼ Fextðr; tÞ � ξ
dr
dt

þ η ð2Þ

where r is the position, m is the mass, Fext is the external force
field, ξ is the friction coefficient, and η is the random force. Only
when ξ= 0 and

∂Fext;x

∂y ¼ ∂Fext;y

∂x can normal modes be well-defined.
It should be emphasized that the non-conservative nature of the
OM system refers to the non-conservative (external) electro-
dynamic force field Fext32. Renson and Kerschen have defined
nonlinear normal modes in underdamped systems (where ξ is not
zero but not large enough to neglect the acceleration term)33.
David and Jacobs have used principal component analysis (PCA)
to study the large-scale fluctuations in molecular and colloidal
systems34. Zaccone, et al. and co-workers have used instanta-
neous normal modes (INM) and the vibrational density of states
in liquids to analyze none-affine dynamics of amorphous mate-
rials such as glassy polymers35–38. These two types of systems can
be overdamped but conservative (ξ is large enough to neglect the
acceleration term;

∂Fext;x
∂y ¼ ∂Fext;y

∂x ). See Supplementary Informa-
tion for further discussion. Chattoraj et al.39 have analyzed the
eigenvalues and eigenvectors of the J-matrix, the first derivative
matrix of the external force field, and found oscillatory solutions
of motion that are particularly useful for studies of underdamped
non-conservative systems (ξ is not large enough to neglect the
acceleration term;

∂Fext;x

∂y ≠
∂Fext;y
∂x ).

In overdamped cases, however, there exists no oscillatory
solution while the non-orthogonal eigenvectors of the J-matrix
lead to intrinsically coupled collective modes that are complicated
to analyze. See the Supplementary Discussion for additional
discussion. In our approach we define collective modes in over-
damped and non-conservative systems (ξ is large enough to
neglect the acceleration term;

∂Fext;x
∂y ≠

∂Fext;y

∂x ) by carrying out PCA
on the configurational trajectories based on the deviations of the
OM constituent particles from a reference configuration. PCA
diagonalizes the covariance matrix of the OM particle coordinates
to define a linear transformation into a basis of non-local col-
lective modes (principal components, PCs) ordered by the degree
of configurational variance they contain40. The leading PCs cor-
respond to collective degrees of freedom with large variance that
typically characterize large-scale global rearrangements of the
system, whereas the trailing PCs correspond to small-variance
fluctuations around particular metastable configurations. The
leading PCs are therefore anticipated to serve as good descriptors
for transitions between metastable system configurations. The

PCs may further be formally converted into reaction coordinates
using harmonic linear discriminant analysis (HLDA)4.

In this work, we demonstrate this PCA-HLDA approach
described above in an application to trajectories of the triangle-to-
chevron transition, like the measured result of Fig. 1e–g, using
combined electrodynamics-Langevin dynamics simulations23,41

of a 6-particle OM system. We note that the local fluctuation
trajectory required for our PCA-HLDA approach must be ade-
quately long with sufficiently fine time steps. Although this
analysis could in principle be done by particle tracking analysis of
experimental data42, the transitions are rare and must be sampled
at rates that are higher than can be readily obtained even in
relatively high speed (100’s fps) video measurements. We deter-
mine the contributions of each PCA collective mode to the
transition, employ HLDA to formulate a reaction coordinate
from these modes, validate the reaction coordinate using com-
mittor probability analysis, and use our results to define the
transition state ensemble and reaction mechanism. This PCA-
HLDA approach is analogous to those used to describe molecular
reaction dynamics, but it is herein applied to an overdamped and
non-conservative OM system4.

Results
We demonstrate our methodology on an OM system, which is an
open system; an assembly of particles subject to a persistent flux
of an external electromagnetic field that induces the inter-particle
interactions. The OM system is also overdamped owing to
the size and mass of the 150-nm diameter silver nanoparticles
such that the acceleration term in the Langevin equation
becomes negligible. The primary data are from electrodynamics-
Langevin dynamics (EDLD) simulations of a 6-particle optical
matter system (see Methods section), and the results are corro-
borated with experimental data. We first describe the observed
collective motions of the 150-nm diameter silver nanoparticles in
a focusing (converging) optical trapping beam of this non-
conservative system. Then we apply PCA to the deviations from
the triangle (reactant) configuration obtained from EDLD simu-
lation trajectories to estimate the collective modes to serve as a
basis to describe the transition to the chevron (product) config-
uration. Finally, we apply HLDA to the collective modes pro-
jected from a trajectory to obtain reaction coordinates to study
the triangle-to-chevron configurational transition.

Large-scale collective modes. The OM system consists of six
silver nanoparticles of 150 nm diameter confined to a 2D plane
and optically trapped by a circularly polarized focused laser beam,
which makes the interactions isotropic in 2D23,25. The NPs tend
to form metastable configurations that, to a first approximation,
maximize the number of optical binding electrodynamic inter-
actions, analogous to chemical bonds, with an inter-particle
spacing of approximately one optical wavelength43. The particles
therefore tend to adopt configurations based on a hexagonal
lattice. While the optical binding energies can be several (2-10)
kBT units of thermal energy15,42,43, the OM configurations
undergo spontaneous configurational transitions between these
metastable configurations driven by both thermal fluctuations
and by non-conservative optical forces. The two most probable
configurations for six particles under a circularly polarized laser
beam are a "triangle” (Fig. 1e) and a “chevron” (Fig. 1g). Because
energy is not well defined in the OM system, by saying a con-
figuration is more stable we mean that it is more probable (more
commonly observed in trajectories obtained from both simulation
and experiment).

The EDLD simulations are relatively inexpensive to conduct,
allowing us to obtain long trajectories of the OM system to obtain
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good statistical sampling of configurations with high (~1 μs) time
resolution. A representative video of the 6-particle system
undergoing a structural transition is shown in Supplementary
Movie 1. The representative instantaneous configuration and
deviations of the positions of the NPs from the stable triangle
configuration shown in Fig. 2a–c indicates correlated motion of
the particles over the course of the triangle-to-chevron reconfi-
guration. In Fig. 2a–c we mark the positions of the NPs in the
stable triangle configuration with red crosses and the instanta-
neous location of the particles (i.e., at a particular point in a
trajectory) over the course of a representative transition from the
triangle to the chevron configuration by black circles. Each
configuration is rotated so that the sum of its squared deviations
to the triangle reference configuration (red crosses) is minimized.
Figure 2d–f shows shows histograms of the particle positions
collected in structural epochs during which the simulated 150-nm
diameter silver nanoparticles transition from the triangle
(reactant) configuration (Fig. 2d) to the chevron (products)
configuration (Fig. 2f) via a transition state (Fig. 2e). The
simulations performed here generate long trajectories of the 6-
particle OM system that undergo many transitions between
triangle and chevron. This transition conserves a mirror axis of
symmetry in the OM structures. Therefore, a primitive and
intuitive reaction coordinate to characterize the transition is the
distance between the two particles on this mirror axis labeled “2”
and “6” in Fig. 2a. By binning frames in the trajectories
into 20 nm increments of this distance we define 22 windows
spanning the transition from the triangle to the chevron

configuration. The empirical probability densities computed from
histograms over all frames in each window are presented for the
first, middle, and last window in Fig. 2d–f, respectively. The tight
probability distributions in these probability density functions
suggest that there are well-defined collective motions among the
NPs as they execute the triangle to chevron transition. However,
the “smearing” of some of the sites at the transition state and for
the chevron make it ambiguous whether the reaction really
proceeds along a simple 1D path, which motivates the PCA-
HLDA approach. Supplementary Figure 1 shows the experi-
mental counterpart of Fig. 2d–f obtained from microscopy
measurements of a 6-particle OM system undergoing the
analogous structural transition.

Note that the initial perfect triangle structure corresponds to a
trigonal lattice, which is taken as the reference structure for
quantitative analysis of the particle fluctuations and deviations
from the lattice sites. The distribution of squared deviations from
the reference lattice shown in Fig. 3 also suggest the existence of
collective modes in the OM system. Figure 3a shows the
cumulative density function (CDF) of lattice fitting deviation as
the sum of squares of particle position deviations from the ideal
triangle lattice sites (i.e., the red crosses in Fig. 2a) accumulated
for 2087 simulation data points of the (local) fluctuations of the
OM system in the triangle configuration at 20 mW laser power,
14,982 at 40 mW, 24,168 at 60 mW, and 39,172 at 100 mW. The
simulation conditions are calibrated to actual laboratory experi-
ments; e.g. corresponding to an incident optical power of
100 mW of the trapping laser. The squares of particle position

Fig. 2 Particle positions and collective dynamics over the course of a triangle-to-chevron configurational isomerization. a–c Mean deviations of particle
position(s) (black circles) from the triangle configuration (red crosses) to the chevron configuration obtained over the course of a representative transition.
d–f Empirical probability densities of particle positions compiled from 21,186 configurations at an optical power of 70mW. The color scheme describes the
number of configurations that contains a particle centered at a specific pixel. Configurations are binned into 22 windows of 20 nm in the distance between
particles “2” and “6” (see panel a) and empirical probability density functions estimated by histogramming all configurations in each bin under a rotational
and translational alignment to the mean particle positions (red crosses). The position probability density plots associated with a–c are presented in panels
d–f, respectively.
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deviations were calculated after minimizing all possible transla-
tions, rotations, and lattice parameters such that four of the 12
degrees of freedom are eliminated during the lattice fitting. (There
are a total of 6 × 2= 12 degrees of freedom for the 6-particle
system constrained to a 2D plane.) If the particle motions of a
system are uncorrelated and described by independent identical
Gaussian distributions (i.i.d. Gaussian), then the CDF of squared
translationally and rotationally minimized deviations should
follow a χ2 distribution with (12−4)= 8 degrees of freedom
(black curve). Calculations in which we impose i.i.d. Gaussian
fluctuations upon the six particles (red diamonds, inset) do
indeed follow exactly this trend. On the other hand, the dynamics
and CDF obtained from EDLD simulation (colored lines, main
figure) exhibit significant deviations from this trend with
increasing beam power. This result suggests the inference that
the particle fluctuations around the metastable triangle config-
uration are not independent but are coupled into one or more
collective mechanical modes by the electrodynamic interactions
induced by the incident laser and coherent field.

In Fig. 3b, we compute the deviation of the fitting displacement
over 55,000 simulation data points harvested from the complete
configurational space explored by the EDLD simulations (i.e., not
just restricted to the local vicinity of the triangle configuration).
Again, the fitting displacement distribution shows increasing
deviations from the 8 degree of freedom χ2 distribution as the
intensity of the optical field increases. This further supports the
result that the extent of correlated motion of the particles
increases with the intensity of the optical trapping beam. We note
that deviations about the lattice sites are, of course, partially due
to random uncorrelated fluctuations and partially due to
correlated motions along collective coordinates and as the power
increases the former become dominated by the latter.

Principal component analysis and definition of collective
modes. Having confirmed the existence of collective motions in

the OM systems, we wish to study them quantitatively. We per-
form PCA on a single simulation trajectory that kept the lattice
fitting displacement from the ideal triangle lattice to <250 nm to
quantify the local collective fluctuations of the OM system around
the triangle (reactant) configuration. Before PCA is carried out,
each configuration is rotated according to the center of the field
(i.e., the focused laser beam in the experiment) so that its fitting
displacement with respect to the ideal triangular lattice is mini-
mized. If this is not done the leading PCs will be contaminated by
trivial rotations. The data set is then centered to a common origin
by subtracting from the particle positions, the location of the
center of the stable triangle configuration. The reason why other
degrees of freedom such as translations are preserved is that the
symmetry of the field is such that it is only invariant with rotation.
However, with respect to the analogy with molecular systems that
discard translations, even if unimportant degrees of freedom are
taken into account, the result will not be harmed. Therefore, to be
safe, only rotation is eliminated in data preprocessing.

The PCA identifies a linear transformation of the 12 degrees of
freedom of the 6-particle system constrained to a 2D plane into a
new basis of 12 orthogonal PCs arranged in order of decreasing
configurational variance. The 12 PCs illustrated in Fig. 4 are ranked
in order of largest to the smallest eigenvalues. PCs 1, 2, and 12
correspond to rigid body transformations: PC 1 and 2 correspond
to global translations in directions indicated by the black arrows
and PC 12 to global rotation. The remaining PCs correspond to the
collective fluctuations around the (metastable) triangle configura-
tion. Some modes, such as PC 3, are nearly symmetric, while
others, such as PC 4, are nearly antisymmetric. The symmetry axes
of symmetric modes are indicated by dashed lines.

We verified that the discovered PCs represent stable collective
modes by showing that they are preserved upon analyzing long
simulation trajectories. Figure 5a presents a heatmap reporting
the inner product norms between the PCs computed from a 2-
million-frame data set from a shorter trajectory and those

Fig. 3 Cumulative density function (CDF) representation of distributions of lattice fitting displacement of the 6-particle system. Cumulative density
function (CDF) representation of distributions of lattice fitting of the 6-particle system in the local vicinity of the triangle configuration (a) and over the
complete configuration space (b). The lattice fitting displacement is the sum of squares of particle position deviations of a configuration from the stable
triangle lattice sites minimized over all possible translations, rotations, and the lattice parameter. a The fitting displacement computed from EDLD
simulation trajectories of local fluctuations in the vicinity of the triangle configuration deviates from the 8 degree of freedom χ2 distribution that would be
expected for particles executing uncorrelated i.i.d. Gaussian fluctuations (black curve) indicating the presence of collective structural modes. The inset
shows a control simulation in which i.i.d. Gaussian fluctuations are imposed upon the particles (red diamonds) exactly follows the 8 DOF χ2 distribution.
The magnitude of the deviation of the CDF fitting displacement distribution from the 8 DOF χ2 distribution (solid black curve) increases with optical
trapping power in simulations conducted over the range 20–100mW, indicating that the collective motions become more significant (and increase in
magnitude) at higher optical powers. The corresponding probability density functions are shown in Supplementary Fig. 2. b The fitting displacement
computed from EDLD simulation trajectories over the whole configuration space (i.e., not just local fluctuations) of the 6-particle OM system deviates from
the 8 degree of freedom χ2 distribution. The magnitude of the deviation of the CDF fitting displacement distribution from the 8 DOF χ2 distribution (solid
black curve) increases with optical trapping power in simulations conducted over the range 20–100mW (solid colored curves) and experimental data
gathered at an optical power of 50mW (dashed black curve), indicating that the collective motions become more significant (and increase in magnitude)
at higher optical powers.
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computed from a 5-million-frame data set from a longer
simulation. The matrix element (i,j) represents the norm of the
inner product between the ith PC of the 2-million-frame
trajectory and the jth PC of the 5-million-frame trajectory. If
the PCs computed over the two data sets are identical, we would
observe the identity matrix with elements (i,j)= 1 for i= j, and 0
otherwise. Therefore, the closer to the identity matrix Fig. 5a is
the better converged we may assess the modes to be and therefore
stable with increasing trajectory length. The matrix in Fig. 5a is
close to identity with the exception of large off-diagonal elements
between four pairs of PCs: (1,2), (3,4), (5,6), and (10,11). These

deviations from the identity matrix arise from the degenerate
character of these four pairs (see Fig. 4) so that the corresponding
PCs are resolved only up to an arbitrary angle within the
eigenspace. The off-diagonal couplings we observe in Fig. 5a are
due to linear mixing within this degenerate subspace. As such, the
four degenerate pairs are robust between the 2-million-frame and
5-million-frame data sets, although the individual modes within
these pairs are not, due to the arbitrary breaking of the
degeneracy induced by PCA.

Figure 5b shows how the eigenvalues of the PCA converge as
the size of the data set increases from 10,000 to 5 million frames.

Fig. 4 Principal components of the 6-particle triangle configuration. Panels a–l correspond to PC 1 to 12, respectively. The colored solid lines depict the
directions and magnitudes of the collective particle motions, and the color defines the sense (i.e. phase) of the motion; i.e., particles simultaneously move
in the indicated directions for the same color. PCs 1 and 2 correspond to rigid translation and PC 12 to rigid rotation. For the non-rigid transformations, PCs
3–11, the length of the solid lines is proportional to the PCA eigenvalues, λi, which are reported in the bottom right of each panel. The value of the 12th

eigenvalue is exactly zero due to elimination of rotational motion in application of PCA. Dashed black lines represent axes of symmetry. Black arrows
indicate global translational or rotational motions.

Fig. 5 Convergence test of the PCs. a The norm of the inner product between right singular vectors from PCA performed on a 2-million-frame (rows) and
a 5-million-frame (columns) trajectory. b The eigenvalues λi of the PCs i= 1–11 plotted against the number of frames in the analyzed data set.
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We observe convergence of all eigenvalues {λi} to stable values by
around 2 million frames, indicating that our 2 million frame data
set is sufficiently large to obtain converged and stable PCs. We
also observe that the eigenvalues of the four degenerate PC pairs
(1,2), (3,4), (5,6), and (10,11) converge to identical values within
4% error. Therefore, in light of the results in Fig. 5, we assert that
the convergence test is successful, and that we have demonstrated
that the PCs are indeed well-defined collective modes of the
system.

HLDA definition of reaction coordinates. Having validated the
PCs as proper collective modes, we seek to convert them into
reaction coordinates for the triangle to chevron configurational
isomerization using harmonic linear discriminant analysis
(HLDA)4. The reaction coordinate is valuable in illuminating the
transition mechanism, identifying the transition state ensemble,
and providing a physically motivated measure of reaction pro-
gress that is vastly cheaper to compute than the committor
probability and more configurationally informative.

The reaction coordinate generated by HLDA, for the transition
from the triangle configuration to the chevron configuration, is

defined as4,

sHLDAðRÞ ¼ ðμA � μBÞT ðΣ�1
A þ Σ�1

B ÞdðRÞ ð3Þ
where d is the 12-by-12 linear transformation matrix that

converts particle positions R into the collective mode basis
defined by the collective modes, and μ and Σ are the mean and
the covariance matrices of the collective modes. The subscripts A
and B represent the triangle (reactant) and chevron (product)
configurations, respectively. This expression can be considered as
the projection of the coordinate in the collective mode basis onto
the vector W* that maximizes the Rayleigh ratio:

W� ¼ argmax
W

WTSbW

WTSwW
¼ ðΣ�1

A þ Σ�1
B ÞðμA � μBÞ ð4Þ

where Sb ¼ ðμA � μBÞðμA � μBÞT is the between class scatter
matrix, and Sw ¼ ðΣ�1

A þ Σ�1
B Þ�1 is the within class scatter

matrix4. The vector W* can therefore be interpreted as the
direction along which the two classes are best separated4.

Figure 6a shows the HLDA reaction coordinate, sHLDA(R), and
the square of the projection of position deviation vector
(projected variance) onto each of the collective modes for one

Fig. 6 Validation and analysis of the PCA-HLDA reaction coordinate. a Comparison of the HLDA reaction coordinate sHLDA and the variance of particle
deviations along each of the 12 PCs over the course of a single triangle to chevron isomerization transition. b Calibration plot of the committor probability
against the HLDA reaction coordinate for 250 selected configurations. The high rank-order correlation (ρspearman= 0.95) and low scatter validates the
PCA-HLDA reaction coordinate as a good measure of reaction progress. c Distribution of particle deviations from the metastable triangle configuration
projected onto all 11 non-trivial (omitting rigid rotation) PCs over the course of the transition for configurations with committor values 0.1–0.9 (red) and in
the metastable triangle configuration with committor values <0.1 (blue). Means of each distribution are indicated by colored dots. PC 3 changes most
markedly in moving from the metastable reactant basin of the triangle configuration to executing the isomerization transition. d Probability distribution of
aligned particle positions computed over 395,860 configurations in the transition region with 300 nm < sHLDA(R) < 500 nm (committor probabilities in the
range 0.1–0.9); the white cross indicates the average center of mass of these configurations. The color scheme describes the number of configurations that
contains a particle centered at a specific pixel.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22794-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2548 | https://doi.org/10.1038/s41467-021-22794-w |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


specific transition trajectory. Analogous plots for other repre-
sentative trajectories and transitions are presented in Supple-
mentary Fig. 3. The presented trajectory, which is typical of the
majority of the transitions observed in simulations of the triangle-
to-chevron transition, reveals a strong correlation between the
HLDA coordinate (black curve) and PC 3 (blue curve) with
Spearman correlation coefficient 0.93 and p-value < 10−10,
implying that PC 3 is the dominant collective mode that
contributes to the HLDA reaction coordinate characterizing the
triangle to chevron isomerization. This is intuitively reasonable
considering the motions embodied in PC 3 (see Figs. 4 and 2d–f).

The committor probability associated with a particular config-
uration is calculated by computing the probability that a trajectory
initialized from that specific configuration arrives at the chevron
configuration (product) before arriving at the triangle
configuration (reactant)2,44. A committor of zero indicates that
the configuration is bound to arrive in the reactant basin before the
product, a committor of unity means that it will first arrive in the
product basin, and a committor of 0.5 that it has equal chance of
first arriving in the reactant or product basin and is, by definition, a
member of the transition state ensemble (TSE). We estimated the
value of the committor for each OM structural configuration by
initializing 420 trajectories at each of 250 configurations in a
triangle-to-chevron transition trajectory, spanning the range of the
HLDA reaction coordinate and computing the fraction that arrive
in the chevron before the triangle. Figure 6b shows that the
committor agrees well with the HLDA reaction coordinate because
the committor changes monotonically with the HLDA reaction
coordinate and the scatter in the plot has small variance. We
identify from the plot, for example, that configurations with a
sHLDA(R) < 300 nm in the vicinity of reactant, sHLDA(R) > 500 nm in
the vicinity of product, and 300 nm < sHLDA(R) < 500 nm as in the
transition region. This committor analysis validates the HLDA
reaction coordinate as a reliable structural measure of reaction
progress, a useful means to identify the TSE, and as a tool to
understand the isomerization mechanism.

We use the committor probability to perform two additional
analyses of the configurational mechanism of the isomerization
transition. First, to further quantify and illuminate the signifi-
cance of PC 3 within the HLDA reaction coordinate, we extracted
1000 transition trajectories from the EDLD simulation trajec-
tories and extracted configurations with committor probabilities
in the range 0.1–0.9. Since the PCs form a complete basis set of
the space of position deviation vectors, the position deviation
vector of each configuration can be written as a linear
combination of the PCs, in which the coefficients can be obtained
by the following orthogonal projection:

r� r0 ¼ ∑½vTi ðr� r0Þ�vi ð5Þ
where, the vi’s are the principal components obtained from

PCA, r0 is the coordinate of the triangle configuration, and r is
the coordinate of a specific configuration in the trajectory. We
then project the deviation vector of these transition configura-
tions onto the 11 non-trivial collective modes – omitting the
trivial rotation mode that was eliminated in our PCA analysis – to
identify the distribution of configurational deviations from the
triangle pattern in each of these modes over the course of the
transition (Fig. 6c, red shading). We compare these distributions
in each collective mode to those harvested from local fluctuation
around the metastable triangle (Fig. 6c, blue shading). We plot
the mean values of each distribution as a dot and present the
precision of the mean values in Supplementary Fig. 4. This
analysis clearly illustrates that PC 3 dominates the linear
combination coefficients when configurational deviations are
projected onto the PCs. In other words, configurational
deviations in PC 3 change most markedly in moving from the

metastable triangle configuration to executing the isomerization
transition relative to the other PCs. Note that the variance shown
in Fig. 4 and the projection magnitudes shown in Fig. 6c are
descriptions for two different processes. Figure 4 describes a
trajectory that contains only the triangle configuration and its
local fluctuations with no transition to another structure.
Figure 6c describes an ensemble of trajectories of a specific
transition from triangle to chevron. Therefore, the large variance
of PC 4 described in Fig. 4 (local fluctuation of triangle) has no
direct relation to whether it leads to the transition considered in
Fig. 6c (transition from triangle to chevron). In addition, Fig. 6c
only describes one specific transition starting from triangle (to
chevron), so it is possible that mode 4 may dominate transitions
to other states. Second, we collect the 395,860 configurations in
the transition region with 300 nm < sHLDA(R) < 500 nm and
present the probability density of aligned particle positions in
Fig. 6d. The transition state is identifiable as a configuration
intermediate to the triangle and chevron configurations accessed
by a collective motion along PC 3 as the dominant contributor to
the HLDA reaction coordinate (cf. Fig. 4, red arrows).

Discussion
Normal mode analysis is often used to study the statistics of the
system configurations for conservative and undamped systems.
However, this approach cannot be used for systems that are non-
conservative, overdamped, and in which the configurational
transformation involves large particle displacements. In this
paper, we report an approach based on PCA to identify important
collective fluctuations in non-conservative and overdamped sys-
tems and then use HLDA to transform these into a reaction
coordinate for a configurational transition. We show that the PCs
are stable collective modes and provide an interpretable basis for
constructing and understanding the reaction coordinate. We
demonstrate our approach in the triangle to chevron transition in
numerical simulations of a 6-particle optical matter system and
show that our results are consistent with experimental observa-
tions of the system. The HLDA reaction coordinate is shown to
be valuable in resolving the transition mechanism and is validated
as a robust reaction coordinate by committor analysis.

Data-driven discovery of reaction coordinates and kinetic tran-
sition rates is the first step in defining a kinetic network of the OM
dynamics characterizing the metastable states and inter-state tran-
sition rates for the system. A number of methods and tools have
been developed to understand the effect of incident field on con-
figurations, stability, and non-conservative dynamics of OM
arrays45–47, including the spin angular momentum of light in
optical tweezers used to introduce the driven spin of individual
NPs48–52, and inter-particle electrodynamic interactions that create
orbital rotation in OM arrays23,24,53. Therefore, determining the
kinetic network and quantifying the effect of these interventions
upon OM kinetic networks offers a new route to engineer and
control the stability and transitions of particular OM structural
isomers with applications in optical matter machines25.

In future work, we anticipate that the PCA-HLDA approach to
reaction coordinate identification can be used to understand and
quantify other configurational transitions in diverse optical
matter systems and to construct kinetic networks for the global
system dynamics. We anticipate that PCA-HLDA will prove
particularly valuable for systems containing large numbers of
particles where human intuition can often fail. There are several
challenges associated with broader implementation of the PCA-
HLDA method. The first is the magnitude of the data required.
We show in Fig. 5b that the eigenvalues of the PCs take ~2
million frames to converge for this system (with a convergence
resolution of 4%). While it is technically possible to acquire this
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number of experimental frames (i.e. images of individual con-
figurations) with the correct number of particles, a highly auto-
mated acquisition and analysis process would be required. Also,
since our current implementation of PCA-HLDA was developed
for short simulated trajectories where each particle is assigned to
a specific lattice site while the experimental data will contain
several rearrangements where lattice assignment will switch,
developing a method to consistently assign experimentally
obtained particle positions to specific lattice sites is not trivial.
Therefore, we also anticipate that PCA-HLDA may, at least in the
case of slow transitions that can be adequately characterized, be
applied directly to experimental data sets by developing a method
to consistently assign experimentally obtained particle positions
to specific lattice sites for the trajectories obtained from experi-
ments that involve rather frequent particle rearrangements.

We also anticipate a number of elaborations and improve-
ments of PCA-HLDA. First, the method requires definition of a
reference configuration to which the trajectory snapshots are
aligned prior to application of PCA. In this work, we adopt the
triangle configuration that is on hexagonal lattice sites as this
reference is defined by a local minimum in the non-conservative
force field. As the reactant configuration for the isomerization
transition, this represents a natural choice, but we could also have
adopted the product chevron configuration for this purpose.
Determination of reference configurations that do not lie on well-
defined lattice sites or exhibit high variance around a marginally
metastable mean may be challenging, so that the PCA-HLDA
approach may not be directly applicable for these configurations.
Second, we see profitable integrations of PCA-HLDA with
unsupervised nonlinear dimensionality reduction and clustering
techniques, to first learn the metastable configurations and define
which pairs are connected by configurational transitions in a
data-driven manner and then use PCA-HLDA to identify reac-
tion coordinates for transitions between each reactive pair.

Transitions involving indirect pathways, as shown in Supple-
mentary Fig. 5, are also observed for the triangle-to-chevron
isomerization. However, they are infrequent and are also not
included in the HLDA analysis presented. Such pathways with
intermediates will be considered in detail in future work. Apart
from optical matter systems, the approaches presented here are
promising in other non-conservative and overdamped systems
such as active matter systems. Compared to optical matter, active
matter is driven out of thermal equilibrium by stored or locally
supplied free energy26. Approaches by Speck have used the work
required to deform a certain volume of active matter to derive the
dynamics of the active matter system54, and work by Takatori and
Brady has focused on an effective free energy for active
particles55. With our research, it can be expected that the
dynamics of active matter can be further explored.

Methods
Simulations. Electrodynamics-Langevin dynamics (EDLD) simulations were per-
formed with the Generalized Multiparticle Mie Theory (GMMT) using the MiePy
software developed by the Scherer Lab25,56. Silver NPs with 150 nm diameter were
used as the material constituents of the optical matter configurations. The nano-
particles were illuminated with a defocused, converging right-hand circularly (RHC)
polarized Gaussian beam with a width w= 2500 nm, power P= 50mW (except
Fig. 3, where P is varied), and defocus equal to the Rayleigh range, z= 0.5kw2, where
k= 2πnb/λ and nb is the index of refraction. These field/beam conditions allowed
formation of stable 6-nanoparticle optical matter (OM) arrays even in the presence of
thermal noise/forces. The electrodynamic forces were passed into an overdamped
Langevin equation to integrate the equation of motion for the OM array with a 5-μs
time-step using a simple first-order Euler integrator57. Two hours are required for a
one-million-time-step trajectory on a 2.4 GHz Intel E5-2680 v4 CPU.

Experiments. Experiments were conducted using a single-beam circularly polar-
ized optical tweezer in an inverted microscope setup as described in15,23. A dilute
water solution with a mixture of polyvinyl pyrrolidone (PVP)-coated 150-nm Silver

NPs was used. A continuous wave (CW) Ti-Sapphire laser beam (λ = 800 nm) was
focused near the glass cover-slip using a 60x microscope objective, pushing a small
number of NPs toward the glass surface. The laser power was 200 mW before
entering the microscope, where additional power is lost before focusing towards the
sample. A spatial light modulator (SLM) was used to slightly defocus the trapping
beam such that it was converging at the sample. Electrostatic repulsion between the
ligands on the NPs and the glass cover-slip balances the radiation pressure,
resulting in a 2D trapping envrionment.

Lattice fitting. Given a certain optical matter configuration with the number of
particles, N, we want to find the best set of N sites on a 2d hexagonal lattice pattern
that is closest to the given configuration and the positions of the particles in the
given configuration be r1, r2, ..., rN 2 R2. Let the positions of the hexagonal lattice
sites be s1, s2, ..., sN 2 R2. The formula of minimization of the fitting error is

Err� ¼ min
a2Rþ ;r02R2 ;R̂2SOð2Þ;π2Π

∑
N

j¼1
R̂ðrj þ r0Þ � asπðjÞ
�
�
�

�
�
�

2
" #1

2

ð6Þ

where Π is the set that contains all injections from 1, 2, ... N to Zþ . Here, a is
the lattice parameter, r0 is the translation vector, R̂ is the rotation matrix, and π is
the lattice assignment. Considering the symmetry of the lattice sites, the parameter
domain can be further limited by forcing π(1)= 1 and r0 within the primitive cell.
Then, the parameter space is discretized and optimized to get the best assignment
between the particles and the lattice sites, π*.

Next, with the assignment in hand, an analytical solution of the optimal
translation, rotation, and lattice parameter can be found. Let pj= rj[1]+ rj[2]i and
qj= sπ(j)[1]+ sπ(j)[2]iðj 2 1; 2; :::;Nf gÞ, so p; q 2 CN . The fitting error expression
can be transformed to the one below.

Err� ¼ min
a2Rþ ;p02C;θ2½0;2πÞ

eiθðpþ p01Þ � aq
�
�

�
�
2

" #1
2

ð7Þ

Where p0 is the translation, θ is the rotation angle, 1 is the vector of all ones,
and a is the lattice parameter. The superscript “*” indicates the optimal value. The
detailed derivation of the results below is presented in Supplementary Methods. If
translation is exempted from optimization, then p�0 ¼ 0. Otherwise:

p�0 ¼
1T

N
ðq� pÞ ð8Þ

Let p0 ¼ pþ p�01, then we have:

eiθ
� ¼ ðp0ÞHq

qHp
�
�

�
�

ð9Þ

If the lattice parameter is exempted from optimization, then a*= 1. Otherwise:

a� ¼ qHp0
�
�

�
�

q
�
�
�
�2

ð10Þ

Data availability
The data that support the findings of this study are available from the corresponding
author.

Code availability
Computation code is available from GitHub under https://github.com/johnaparker/
miepy.
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