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Breast cancer is a heterogeneous pathology, but the genomic basis of its variability remains

poorly understood in populations other than Caucasians. Here, through DNA and RNA

portraits we explored the molecular features of breast cancers in a set of Hispanic-Mexican

(HM) women and compared them to public multi-ancestry datasets. HM patients present an

earlier onset of the disease, particularly in aggressive clinical subtypes, compared to non-

Hispanic women. The age-related COSMIC signature 1 was more frequent in HM women

than in those from other ancestries. We found the AKT1E17K hotspot mutation in 8% of the

HM women and identify the AKT1/PIK3CA axis as a potentially druggable target. Also, HM

luminal breast tumors present an enhanced immunogenic phenotype compared to Asiatic

and Caucasian tumors. This study is an initial effort to include patients from Hispanic

populations in the research of breast cancer etiology and biology to further understand breast

cancer disparities.
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Breast cancer (BC) is the most common neoplasia in women
around the globe and it represents an increasingly urgent
health problem worldwide. Out of 19.7 million cases over

the next 10 years, 10.6 million will occur in low-and middle-
income countries1. In Mexico, breast tumors represent the main
cause of cancer in women and epidemiological projections esti-
mate the number of new cases and the mortality rates will
increase in the next years2.

BC is a heterogeneous disease, both at clinical and molecular
levels, as evidenced by the various therapeutic rate responses and
by the identification of intrinsic biological and molecular subtypes
that present unique features, which may enhance cancer cell fit-
ness and increase clinical risk and therapeutic resistance3. In the
clinical practice, the inmunohistochemical markers estrogen (ER);
progesterone (PR) and human epidermal growth factor receptor 2
(HER2) are used to guide diagnosis and treatment decisions4.
Molecular classification of breast tumors based on gene expres-
sion patterns has also been successfully translated into tests to
support clinical decisions. Gene expression profiling, particularly
the PAM50 intrinsic subtyping signature, has identified at least
five categories of breast tumors: luminal A (LumA), luminal B
(LumB), HER2-enriched (HER2), basal-like (basal) and claudin-
low tumors3, each one with distinctive oncogenic features. Fur-
ther, increased genomic instability is a relevant feature of breast
tumors, both at point mutation and at somatic DNA copy-
number alterations (SCNA) levels. These two processes play an
important role in activating oncogenes or in inactivating tumor
suppressors genes5, and they can also provide important infor-
mation about BC biology.

Latin America represents a particular segment of western
countries with emerging economies, which in the last years has
shown an important rise in cancer diagnosis, especially BC.
Recently, Hispanic/Latino populations has been the largest and
fastest growing minority population in the United States, where
in 2017 was equivalent to 18.1% of the total population and is
expected that this number will rise to 35% by 20506. Here, we
refer as ancestry to women’s origin background measured
through ancestry-informative markers or self-reported informa-
tion. Likewise, Hispanic/Latino population refers to BC patients
from Mexico, Caribbean, Central and South America that share
similar admixtures of Native American (Mexican and Mesoa-
merican indigenous population), European, and African
ancestries7. In particular, Mexico represents the largest source of
Hispanic/Latino diversity, therefore, Hispanic-Mexican (HM)
patients make up an important proportion of Latino BC cases8.

Mexico is experiencing a demographic, epidemiological and
nutritional transition, favoring the exposure to risk factors for
cancer, such as aging, smoking, alcohol consumption, and high
prevalence of obesity and diabetes. Indeed, landmark epidemio-
logical and clinical studies revealed a significant higher mortality/
incidence ratio in low-income and middle-income countries than
in high-income countries9, showing a relevant geographic dis-
parities. Poor outcomes in Mexican patients may be explained by
late detection and limited access to health care10. Nevertheless,
other biological factors, specific to the Mexican population, such
as tumor biology dictated by genomic alterations and molecular
factors might impact cancer development. Thus, these features
need to be addressed as an important source of tumor etiology
and evolution. However, despite the fact that different large
efforts in cancer genomics has been conducted in the past years,
the genomic alterations of BC in HM and Latino populations
remain poorly characterized, since most of these discoveries and
exploratory studies have focused on data obtained almost pre-
dominantly from Caucasian populations11. Given this scenario, a
more detailed description of the biological landscape of breast
tumors in HM women is still warranted to gain major

understanding on the genetics and molecular factors operating at
the basis of BC, especially, among under-represented populations.
In this study, we evaluated somatic mutations, SCNA and gene
expression patterns on 204 tumors from HM women and we
comparatively describe their genomic context in contrast to
patients with African, African-American (AA), Asian and Cau-
casian (European descent) ancestry. To the best of our knowl-
edge, this dataset represents the largest breast cancer genomics
characterization of breast tumors in HM women, and, the results
from this work highlights unique molecular features of HM breast
cancers, as well as, characteristics common to all BC cases.

Results
Overview of the HM-profiled tumors. A comprehensive mole-
cular analysis of HM tumors was performed as following: whole-
exome sequencing (WES, n= 134) to define the somatic mutation
landscape, messenger RNA (mRNA) high-throughput microarray
profiling (n= 109) to evaluate molecular intrinsic subtypes and
gene expression portraits, and finally DNA copy-number profil-
ing through genome-wide arrays (SNP6 Affymetrix arrays) (n=
78 tumors and matched normal blood sample) (Fig. 1a and
Supplementary Fig. 1a). Clinical information of analyzed patients
is shown in Supplementary Data 1. Mexican ancestry hetero-
geneity is the consequence of the admixture of Native-Mexican
(Mexican indigenous population), European and African
populations7. As expected, among patients with genotyping
information in our dataset, Native-Mexican genetic ancestry was
the leading component with 60% contribution, while the Eur-
opean component contributes 34% and just a small contribution
of African and Asian genetic ancestry was determined ranging
from 5% to 1%, respectively, (Supplementary Fig. 1b, c and
Supplementary Data 1).

Distribution of intrinsic BC subtypes in HM and Hispanics
non-Mexican BC samples. To explore potential differences
related with ancestry in tumor biology, we set out to analyze
molecular subtypes in tumors collected in different populations.
We interrogated molecular architecture based on immu-
nochemistry (IHC) markers information and intrinsic molecular
subtypes in order to understand the composition of BC at clini-
cally and RNA-based subtypes levels in the HM, Hispanic and
non-Hispanic women. In tumor samples for which there is
available IHC information we only observed a difference in the
enrichment of triple-negative (TN) subtype with respect to AA
(38% vs. 14% HM-pooling our profiled samples with those
deposited in GSE75678 dataset from Monterrey, Mexico; and 25%
in Hispanic non-Mexican, BH p < 0.05) and Nigerian (43%, BH p
< 0.05) patients (Fig. 1b and Supplementary Data 2), as previously
described in the literature12. Classification of tumors based on
gene expression data by the Pam50 molecular subtypes are not
conventionally reported for Mexican patients with breast cancer.
Thus, we then assessed PAM50 subtypes by defining the intrinsic
clusters as described by Perou and Parker13 for BC samples in our
in-house-profiled dataset and other publicly available gene
expression data (Fig. 1c). PAM50 classification identified four
different tumor subtypes (Supplementary Fig. 2a) and normal-
like samples, which were discarded due to possible normal cell
majority content. By assessing the concordance between the two
methods employed to classify samples, we found high (~70%)
overlapping between IHC-defined subtypes (based on St. Gallen
guidelines14) and RNA-based PAM50 centroids intrinsic subtypes
(Supplementary Data 2 and Supplementary Fig. 2b, c).

Of note, when integrating our HM women with independent
HM patients from Monterrey, Mexico (GSE75678, n= 53) into a
single dataset (N= 162) we observed that HM series contained
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43% LumA tumors, 27% LumB, 16% HER2-enriched and 15%
Basal-like (Fig. 1d). Compared to other biospecimen collections
including Hispanic patients (N= 313) from M.D. Anderson
Cancer Center (GSE16716, N= 41, Basal-like: 23%), Instituto
Nacional de Enfermedades Neoplasicas in Lima, Peru together
with the Centro Medico Nacional de Occidente in Guadalajara,
Mexico (GSE20271, N= 81, Basal-like: 29%), Hospital San Jose

Tec de Monterrey, Mexico (GSE75678, N= 53, Basal-like: 22%)
and LACE and Pathways cohorts from USA (N= 138, Basal-
like:27%), our dataset presented a smaller proportion of Basal-like
tumors (12% vs. 26% -media proportions of other studies-,
Fisher’s exact Benjamini–Hochberg, BH, p= 0.041) (Fig. 1c and
Supplementary Data 2) and a significant reduced odds of having
this subtype (OR HM dataset vs. Hispanics: 0.522, 95% CI:
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0.315–0.866). This differences in subtypes frequency among
different Hispanic groups could be partly ascribable to differences
in the number of tumors evaluated, batch effects of the collection
or to different admixture patterns within these cases.

As expected, we find some particular differences at
PAM50 subtype level among population groups evaluated (Fig. 1c,
d). LumA subtype has a higher prevalence among HM women
than in AA and Nigerians (HM vs. AA: 43% vs. 26% Fisher’s
exact BH p= 0.041, HM vs. Nigerian: 43% vs. 17%. BH p= <
0.001). Further, basal-like subtype is clearly less represented in
HM patients with respect to AA and Nigerian (OR AA vs. HM:
3.6, 95% CI: 2.2–5.8, BH p= 0.001; Nigerian vs. HM: 3.3, 95% CI:
1.8–6 BH p= 0.002) (Fig. 1d and Supplementary Data 2). Among
the other subtypes, there was a substantial overlap in the
frequencies between HM, Hispanic non-Mexican and non-
Hispanic patients and differences did not reach statistical
significance (Fig. 1d).

Recently, diverse studies have reported a higher proportion of
women diagnosed with BC under 45 years in Latin America
(20%) compared with their counterparts in USA and Europe
(12%). Further, incidence rates in Mexico show that women with
breast cancer are diagnosed on average 11 years earlier than in
Caucasian women (51 years vs. 62 years)15. Thus, we interrogated
if age at diagnosis was associated with ancestry background and
BC subtypes in our dataset. We identified that HM (integrated
set) and Hispanic non-Mexican women, had a significantly higher
probability to present BC at a younger age (<45 years of age) than
their Caucasian counterpart (OR HM vs. Caucasian: 1.5, 95% CI:
1–2.2, BH p= 0.045; Hispanic vs. Caucasian: 2, 95% CI: 1.4–2.9).
Similarly, a higher rate of younger HM and Hispanic women with
BC was found in comparison to Caucasian patients (HM: 28%,
Hispanic non-Mexican 39% and 17% in Caucasian, Fisher BH
p < 0.1) (Fig. 2a, Supplementary Fig. 3a, and Supplementary
Data 2). Regarding the comparison among all Hispanic patients,
we did not detect any significant difference between HM,
Peruvian and US-Latinas women (Fig. 2a). Aggressive hormone
receptor (HR)+ /Her2+ and TN subtypes are significantly
enriched in Hispanic young women (≤45 years of age) in
comparison with AA, Asian and/or Caucasian patients analyzed
(BH Fisher p < 0.05) (Fig. 2b and Supplementary Fig. 3b). In line
with our findings, in a different sample collection from our group
(N= 97, GSE86948), we had similarly observed an early-onsets in
37% of Mexican patients with triple-negative tumors (BH vs.
non-Hispanic datasets p < 0.05). Moreover, in samples with
available gene expression and age at diagnosis information, we
observed an age-related disparity on the LumB and the aggressive
Basal-like molecular subtypes, with an enrichment of HM and
Hispanic non-Mexican women diagnosed at early-age (Fisher BH
p= <0.05), compared with patients from non-Hispanic ancestries
(Fig. 2c, Supplementary Fig. 3c, and Supplementary Data 2).

TMB and cancer driver mutations across BC patients from
multi-ancestry profiles. Mutational load defined as the tumor
mutational burden (TMB, mutation/Mb) is related with mutation
rates stablished by intrinsic and non-intrinsic factors required for
cancer development and might differ among subtypes or indivi-
duals from different ancestries, hence, TMB was computed for
samples with available exome sequencing data in each sample
collection, including 134 HM, 119 AA, 684 Caucasian, 185 Asian
(Kan et al.16), 57 Asian-TCGA and 250 Japanese (Hatakeyama
et al.17). Median TMB of tumors from HM-sequenced patients
(median TMB:0.99, range:0.18–16.10) was significantly higher
than those from Caucasian patients in TCGA (median TMB: 0.72,
range:0–115.32, FDR, p= <0.001) and those samples from AA
(median TMB of 0.86 mut/Mb, range: 0.06–3.67, FDR p= 0.04),
but showed no significant difference with Asian patients in TCGA
(median TMB: 0.92, range: 0.32–13.66) nor with Japanese
patients (median TMB 1.08, range:0.06–18.16) (Fig. 3a and
Supplementary Data 3). In contrast, HM women had a lower
TMB than tumors from young Asian women (Kan et al.16 median
TMB: 1.39794, range: 0.47712–2.49969 FDR p= 0.0021), which
exhibit higher mutation rates (Fig. 3a and Supplementary Data 3).
After stratifying for HR and HER2 status, we only observed dif-
ferences in median TMB on HR+ /HER2- HM tumors (adj p <
0.05), which had higher values than Asian and Caucasian indi-
viduals included in TCGA (Supplementary Fig. 4a–d and Sup-
plementary Data 3). Hypermutated tumors having a TMB value
equal or higher to 4 occurred in 4% of all breast cancer samples
evaluated (Supplementary Fig. 4e). The frequency of hypermu-
tation was higher in HM women compared to AA and Asian
Kan16 women (8% vs. AA, BH p < 0.05). Additionally, although
not significant, HM individuals were enriched in hypermutated
phenotype in comparison to other groups (8% in HM
patients, 5% in Asian Japanese carcinomas, 4% in Caucasian and
3% in Asian TCGA). Differences in the number of hypermutated
tumors might be ascribed to different mutational process
(Fig. 3a).

Of note, when samples are grouped by age, HM patients
analyzed did not present statistically significant difference in
median TMB values between younger (<45 years old) and older
patients, as occurs in tumors from Caucasian and Asian ancestry
(TCGA and Japanese dataset) (Fig. 3b) (adjusted p < 0.05). Nor
we observed a significant correlation between somatic mutation
burden and age in our HM tumor series (Supplementary Fig. 4f).

Deciphering mutational signatures. Although TMB is one of the
main factors that characterizes cancer genomes and a potential
marker of risk assessment, there are also particular mutational
processes that generate unique signatures and, along with TMB,
constitute emergent informative features of cancer. Therefore, we
investigated which mutational signatures operate in HM tumors

Fig. 1 “Omic” characterization of multi-ancestry breast cancer molecular profiles. a Graphical workflow of breast cancer molecular characterization of in-
house-profiled HM women and in-silico benchmarked data including Hispanic (Peruvian and US Latina women), African-American, African (Nigerian),
Asian and Caucasian breast cancer patients. Briefly, genomic and transcriptomic data were analyzed to get a deep biological landscape describing the
mutational and copy-number alterations, as well as gene expression profiling of breast cancer. Each molecular platform was then integrated to get a more
robust oncogenic picture of breast tumors and their similarities and differences between ancestries. b Frequency of immunohistochemistry subtypes
routinely evaluated: hormone receptors (HR-estrogen and progesterone receptor) and HER2 markers across ancestry groups. TN: Triple-negative.
c Frequency of PAM50 intrinsic molecular subtype in each breast cancer dataset (N= 5418), including in-house-profiled Mexican patients (GSE87049
n= 109) and public available data. d Median frequency of PAM50 intrinsic molecular subtypes among ancestries. HM: our profiled tumors GSE87049
integrated with GSE75678 Mexican tumors. Hispanic non-Mexican: Hispanic tumors from GSE16716, GSE20271, GSE78958 and LACE and Pathways
cohorts from USA. Hispanics: average value between HM and Hispanics non-Mexican. Two-sided Fisher’s exact test p-values with Benjamini–Hochberg
(BH) FDR correction were computed for statistical comparisons (BH p-value <0.05 * vs. all Hispanic patients and, ✺ vs. integrated Hispanic Mexican
patients). p: BH-adjusted p-value. H: Hispanic, HM: Hispanic-Mexican, N: Nigerian, AA: African-American, Cau: Caucasian. LumA: Luminal A, LumB:
Luminal B, SCNA: Somatic Copy-Number Alteration, IHC: Immunohistochemistry.
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Fig. 2 Age distribution in BC samples from diverse human populations and within IHC and molecular intrinsic subtypes. a Frequency of younger
(≤45 years of age) and elderly (>45 years of age) BC patients among ancestries. Frequency of BC b immunochemistry subtypes, and c PAM50 intrinsic
molecular subtypes in patients from different ancestry diagnosis at early-age (≤45 years of age) or elderly-age (>45 years of age). Barplots represent
proportion of age classes in each population group, while heatmaps represent the BH-adjusted p-values computed by a two-sided Fisher’s exact test from
multiple comparisons. Corresponding p-values are reported on Supplementary Data 2. HM: our profiled tumors integrated with GSE75678 Mexican
tumors. Hispanic non-Mexican (H nM): Hispanic tumors from GSE16716, GSE78958, and GSE20271. **adjusted p-value < 0.05, *<0.1. HM: Hispanic-
Mexican, H nM: Hispanic non-Mexican, AA: African-American, HR: Hormonal receptors (ER and PR).
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and their association with age and subtype prevalence. To gain
further insights into these operative mutational processes, the
contribution of mutational signatures were delineated using
deconstructSigs18 and SigFit19 tools based on single nucleotide
variations (SNV) in tumors harboring a TMB above the median
value for each tumor collection (n=HM 69, 52 AA, 30 Asian,
323 Caucasian, Asian Kan 94). The mutational landscape of each

signature deconstructed by the two algorithms showed a highly
concordant result (Supplementary Fig. 5a). Most individual
cancer exomes exhibit more than one mutational signature (Sig)
and many different combinations of signatures were observed
among BC tumors, across all populations (Supplementary
Fig. 5b). In general, 8 signatures were robustly detected among
BC tumors from the 30 COSMIC signatures v220, but it seems
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that some tumors have a more complex repertoire of mutational
processes than others (Supplementary Fig. 5b, Supplementary
Data 4). Top frequently mutated signatures among patients from
different ancestry deconstructed with both algorithms included:
Sig1, Sig2, Sig3, Sig13 and Sig7 (Fig. 3c, Supplementary Fig. 5c, d,
and Supplementary Data 4). Of note, 96% of the evaluated tumors
presented one of these top signatures, while the remaining 4% did
not present any of them.

The signature with the highest mutational probability was
considered as the predominant driving signature in each sample
(Fig. 3c and Supplementary Data 4). Overall, in our HM
dataset, Signature 1, associated with cytosine deamination
mutational processes and clock-like properties, was the most
common predominant mutational signature contributing in
average with 49% of the top mutational signatures (Fig. 3c).
Sig1 is characterized by prominence of C > T changes
(Supplementary Fig. 6a) and enriched distribution of hormone
receptors markers (Supplementary Fig. 6b). HM tumors from
young patients presented a higher Sig 1 prevalence than AA
TCGA and Asian Kan individuals (HM 25% vs. 0% in AA and
3% in Asian Kan BH p < 0.005) (Fig. 3d). Moreover, mutations
contributed by signature 1 showed a greater rate in HM older
patients (>45 years old), which accounted for the highest
frequency in comparison with other patients with different
ancestries (HM 51% vs. 20% in AA, 28% in Caucasian, 31 in
Asian TCGA and 14% in Asian Kan BH p < 0.05) (Fig. 3d).
Overall, these data suggest the possibility that the chronological
age does not completely recapitulate the biological age of
tumors in the evaluated HM patients. Signature 2 was the next
most common predominant mutational signature (31%)
(Fig. 3c). Since etiologies of signature 2 and 13 are attributed
to a common activity of the AID/APOBEC family, we collapsed
these signatures into a single one (Signature 2/13)21. Signature
2/13 is characterized primarily by C > T and C > G mutations
(Supplementary Fig. 6a) and is enriched in HR+ /HER2−
phenotype, while in the other populations evaluated a smaller
percentage of this phenotype was observed in APOBEC-related
signatures (Supplementary Fig. 6b). Tumors belonging to this
signature present an overwhelming number of mutations in
contrast to the other signatures (Supplementary Fig. 6c). On
detail, HM tumors with high contribution of this signature were
the most mutated tumors among AA, Caucasian and Asian Kan
evaluated breast cancer cases (Wilcoxon BH p < 0.05) (Supple-
mentary Fig. 6c). Signature 3, characterized by a BRCAness
phenotype, was the third most frequent processes in our tumor
collection (18%). This signature was preferentially enriched in
triple-negative phenotype (Supplementary Fig. 6b). Finally,
signature 7, resulting from DNA adducts formed by the action
of UV light, were observed in 1% of HM patients. Overall, these
results suggest that the studied HM population, shows

distinctive spectrum of mutational signatures contributions
that make up their mutational landscape.

Mutational landscape in HM BC tumors. We have observed that
specific mutational signatures are particularly enriched among
the analyzed HM tumors with specific molecular and demo-
graphic features and mutational burdens. Therefore, we hypo-
thesized that some known somatic mutations in BC might be
present in HM tumors but at a different frequency. To under-
stand somatic mutations prevalence among HM women, we
analyzed the non-silent mutations affecting protein-coding genes
in these samples (N= 134) by computing MutSigCV22 and
compared them against patients from non-Hispanic ancestry. The
significantly mutated cancer genes (q-value= <0.1) presented in
more than 5% of HM individuals are PIK3CA (28%), TP53 (20%),
AKT (8%), and MAP3K1 (5%) (Fig. 4a) (Supplementary Data 5).
These genes have been reported by other studies as mutated in
BC16, 23, 24 (Supplementary Fig. 7a). Nonetheless, mutations in
CDH1 (2%) occur at a much lower frequency, while AKT1
mutations have a higher occurrence (8%) in evaluated HM
women (Supplementary Fig. 7a).

Of note, the Glu17Lys (E17K) mutation within the PHb
domain of AKT1, was present in 10 out of the 11 tumors (8%)
harboring AKT1mutations (Fig. 4a, b and Supplementary Data 5)
and are predominantly HR+ tumors (Fig. 4c). We found no
evidence for AKT1E17K significant mutation (MutSigCV, Q < 0.1
and frequency >5%) in 4464 samples of non-Hispanic ancestry
(Supplementary Fig. 7a–c), except for a group of young Korean
patients (ICGC, breast cancer - very young women, BRCA-KR)
where 8% of cases (N= 4/50) were mutated. E17K mutation
results in a pathogenic activating mutation according to OncoKb,
which in turn promotes an active PI3K/AKT/mTOR pathway
signaling (Fig. 4d and Supplementary Fig. 7d). As a member of
the PI3K/AKT/mTOR axis, only one AKT1E17k mutant sample
(10%) is co-mutated in PIK3CA, thus the altered activation of this
oncogenic signaling generally occur by any one of these means in
an exclusively manner. Additionally, 40% of AKT1E17k mutant
patients had no additional driver cancer mutations. While 60%
had further alterations, other than AKT1 mutation, which likely
contribute to cancer development (e.g., truncating mutation in
tumor suppressor or gain of oncogenic mutations) (Fig. 4d).

Other potentially novel mutated genes in the HM tumors
exhibiting significant mutation prevalence (≥3.0%), non-previously
reported in other datasets (Supplementary Data 5), includes
MRPL37 and SLC16A8 (q-value= 2.72E-02 and 1.36E-02, respec-
tively). Although, these novel mutations are predicted to be
passenger alterations, most of them have a high deleterious
oncogenic capacity and a functional consequence of missense or
nonsense change (Supplementary Fig. 7e).

Fig. 3 Tumor mutational burden and tumors and mutational signatures identified in human breast cancers across ancestries. a Violin plots showing the
TMB (mut/Mb) distribution in each ancestry-group considering point non-silent mutation. Dot line represents hypermutated threshold (4mut/Mb) and
the number indicate the percentage of hypermutated tumors in each dataset. Inserted barplots represent the median value, gray dots represent individual
patient data. b Boxplot of TMB described in the evaluated datasets dividing patients population in younger (≤45 years of age) and older (>45 years of age).
c Normalized proportions of the five most frequent COSMIC v2 trinucleotide mutational signatures in tumors from HM, AA, Caucasian, Asian TCGA and
Asian Kan harboring a TMB equal or over the median in each dataset. Mutational signatures contributions to each individual sample were depicted by
DeconstructSigs algorithm. d Donut plot reports the percentage of tumor samples harboring a particular predominant driving signature in younger (≤45
years of age–Inner donut chart) and elderly patients (>45 years of age outer donut chart). Bottom panel described statistical analysis of mutational
signatures prevalence in each of the interrogated datasets. On panel a and b, boxplots represent median ± IQR (25th and 75th percentile) and whiskers
correspond to maximum and minimum values. Statistical comparisons were assessed with a two-tailed Wilcoxon test considering HM dataset as
reference. On panel b p-values are indicated near the corresponding asterisks. On panel c and d a two-sided Fisher’s exact test was computed. p-values
with BH FDR correction were computed for statistical comparisons. *(BH-adjusted p-value < 0.05). Corresponding p-values are reported on Supplementary
Data 4. HM: Hispanic-Mexican, AA: African-American, S: signature.
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Driver and clinically actionable genomic alterations in HM
population. Up to 78% of all HM tumors contain at least one
driver point mutation, with an average of 2.65 driver mutation, in
agreement to the rates computed for other ancestries25 (Fig. 5a
and Supplementary Data 6). The numbers of point driver
mutations remain remarkably stable, even in highly mutated
tumors (>1 mut/Mb) (Fig. 5b). Moreover, an important fraction
of identified driver mutations is annotated as oncogenic (19%) or
tumor suppressor alterations (21%) in HM tumors (Fig. 5c).
Finally, the frequency of the top mutated cancer driver genes
(>5%) in HM breast tumors varies among the evaluated ances-
tries, with PIK3CA, MAP3K1 and PTEN having the highest
similarities (Fig. 5d and Supplementary Data 6).

Subsequently, we analyzed the potential clinical implications of
the mutation profiles, thus, we evaluated the frequency of
clinically actionable mutations by retrieving annotations of
targetable genomic alterations using the cancer hotspot
database26 and OncoKB classification system27. Forty-six percent
of the HM tumors exhibited hotspot mutations, particularly in
PICK3CA (H1047L, E542K, E545K, H1047L) and in AKT1
(E17K) genes (Fig. 5e). When including also other potentially
actionable variants other than hotspot mutations, 77% of the HM
tumors analyzed harbored oncogenic alterations in 46 genes
considered potentially targetable based on various clinical and
preclinical evidence (Fig. 5f). 25% of them have either likely
oncogenic or oncogenic status as reported by OncoKB (Fig. 5g).

Fig. 4 Mutational panorama of HM breast cancer tumors. a Oncoplot of significantly non-silent mutated genes in HM tumors computed by MutSig
(q-value < 0.1). The heatmap represents individual mutations in patient samples, color-coded by type of mutation as illustrated by the figure legend.
Percentages refers to the fraction of tumors with at least one mutation in the specified gene. p-values were determined by testing if the observed mutations
in a gene significantly exceed the expected background model. p-values were adjusted by false-discovery rates, only top 10 genes with adjusted p-value≤
0.1 were reported. b Lollipop plots of non-silent mutations detected in AKT1 gene in HM women and their distribution in the body gen. c Proportion of
tumor samples in HM dataset, separated according to their immunochemical classification, harboring E17K-AKT1 mutation. d Fraction of mutational
alterations presented in the PIK3CA/AKT/mTOR axis (left panel, % of samples co-mutated with AKT) visualized with PathwayMapper and co-mutated
driver alterations in AKT mutated tumors (right panel MS=Missense).
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Some relevant actionable mutations include activation of ERBB2
detected in four samples lacking HER2 amplification, suggesting
that these patients could benefit from anti-HER2 therapy such as
Neratinib and Ado-Trastuzumab. Similarly, we found tumors
harboring AKT1E17K driver mutation, considered actionable, that
may benefit from anti-AKT therapy (Supplementary Fig. 8).

Analysis of somatic copy-number alterations in BC. Based on
our previous findings, we identified tumors that presented low
mutated burden and did not harbor driver mutations, sig-
nificantly mutated genes or high contributions of mutational
signatures, suggesting that other events are contributing to their
cancer genomic landscape. SCNAs are relevant alterations
affecting larger fraction of the cancer genome28. In this way, to
understand how SCNAs can also account for the biological fea-
tures particularly observed in the HM women, we tested the
hypothesis that there are some SCNA with a different frequency
in HM with respect to other groups with a different ancestry
background. GISTIC analysis on HM tumors, reveled relevant
SCNA (retained as likely-significant +/−1 or significant +/−2)
for a total median number of 9381 recurrent events in 140 regions
(5075 gene amplifications and 3622 deletions were detected)

(Fig. 6a). The overall proportion of SCNA is similar to what is
observed in the other datasets, exception made for AA tumors,
which showed significantly a greater number of SCNA events
(Wilcoxon FDR p= 0.0095) (Fig. 6a) (Supplementary Data 7). In
general, we observed much more amplifications than deletions
among all the sample sets evaluated (Supplementary Fig. 9a–c).
Similarly, the median fraction of the cancer genome with copy-
number changes, termed tumor SCNA burden (TSCB), is similar
between the HM, Caucasian and Asian ancestries (HM 23%,
Caucasian 23% and Asian 29%) and lower than the observed in
the AA tumors (35%) (Fig. 6b). Of notice, we detected not pre-
viously reported SCNA events exclusively present in HM patients.
Among the most significant, we found the amplification of the
region 16p, which harbors genes such as SNN, LITAF, ZC3H7A,
TXNDC11, RMI2 and the oncogene BCAR4, implicated in
endocrine resistance in human BC cell. Likewise, we detected the
17p amplification, where SPECC1 gene is located (Fig. 6c, d,
Supplementary Fig. 9d, and Supplementary Data 7). Additionally,
HM women harbor well-known SCNA of BC, among which gain
of chromosomic regions 8q, 11q, and 17q that contain oncogenes
such as MYC, CCND1 and ERBB2. Similarly, we detected losses
on chromosomes 7q, 8p, 13q, 17p, containing MLL3, CSMD1,

Fig. 5 Mutational driver and actionable mutations in breast cancer samples from diverse ancestries. a Violin plot showing the total number of known or
predicted cancer driver mutations in each study. b Barplot showing the fraction of oncogenes or tumor suppressor genes among the known-driver or
predicted driver-mutation in HM tumors. c Correlation between the proportion of driver mutations in tumors and their mutational burden (in logarithmic
scale) presented as a scatter plot. Correlation coefficient computed using the Spearman method. dMost recurrent driver point mutation in the HM women.
Heatmap showing the frequency mutation events in highly mutated genes across different tumor datasets. Color scale, from white to dark-blue, represents
the percentage of events, which is also indicated inside each cell. Two-sided Fisher’s exact test p-values with BH FDR correction were computed for
statistical comparisons of panel d. Corresponding BH-adjusted p-values are reported on Supplementary Data 6. e Total number of hotspots mutations in
HM breast cancer tumors. f Total number of mutations in genes annotated as actionable by OncoKb, classified on the basis of gene level evidence (i.e., 1
FDA drug approved, 2A FDA-approved standard care, 3A Compelling clinical evidence and 4 Compelling preclinical level) in HM evaluated samples. g Pie
chart represents the frequency of tumors harboring actionable mutations categorized as oncogenic or likely oncogenic. The barplot on the right shows the
frequency of oncogenic mutations, split according to their impact on protein function, that are present in the 25% of HM tumor samples. BH-adjusted
p-value *<0.05.HM: Hispanic-Mexican, AA: African-American.
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RB1 and MAP2K4 genes. Even though most of the significant
SCNA at arm level (q-value > 0.25) are also present in the other
groups, they occur at different prevalence in HM patients (Fig. 6c,
d and Supplementary Fig. 9c, d). On contrary, some amplifica-
tions (3p,11p,15q, 19q, 21q) or deletions (1q,6p,8q,12p/q and
22q) mostly detected in BC tumors from different populations
were not identified in our HM dataset (Fig. 6c, d and Supple-
mentary Data 7).

Gene-level amplification/deletion threshold values computed
by GISTIC, considering only high-level amplifications (+2) and
deep deletions (−2), were used to compare significant events
against patients from other ancestries. Collectively, the most
frequently altered genes by DNA copy-number alterations at focal
level were the amplifications of ERBB2 (17q17q12), WHSC1L1
(8p11.23), CCND1(11q13.3), ORAOV1(11q13.3) and MYC
(8q24.21) (Fig. 6e and Supplementary Data 8). Recurrent focal
copy-number losses included CSMD1 (8p23.2), SHISA6 (17p12),
and DMRT1/2/3 genes (9p24.3) (Fig. 6f and Supplementary
Data 8) (Supplementary Fig. 9d). Gained or lost regions as
identified by GISTIC2 had significant corresponding peaks within
the other ancestry groups evaluated.

Dissecting the biological impact of genomic complexity
alterations. Given that tumor biology is the result of a variety of
alterations, we focused our attention on integrating the different
genomic features that characterizes HM tumors at mutation,
SCNA and gene expression level, and combined them with
available information on tumor subtype to dissect the coordi-
nated mechanisms that would extend our comprehension on how
these somatic events may impact tumor phenotypes. In our
dataset, we confirmed a heterogeneous picture of DNA altera-
tions, represented by correlation between TMB and the tumor
altered fraction (TAF-SCNA events). Some tumors exhibited high
number of mutations (>1mutation/Mb) or high numbers of copy-
number alterations (>5% of tumor altered fraction), but not both
(Fig. 7a). Interestingly, we also found tumors that did not present
high TMB neither SCNA events, as well as cases exhibiting a
relatively high TMB and TAF (Fig. 7a, b and Supplementary
Data 9). This last molecular phenotype may be explained by
clonal diversity that enhances higher intra-tumor heterogeneity
and differences in genomic instability.

SCNAs have critical roles in activating oncogenes and in
inactivating tumor suppressors. To determine the “cis”

Fig. 6 SCNAs landscape in breast tumors across ancestries. a Boxplot shows the total number of SCNAs (including likely-significant (±1) or significant
(±2) events) per sample among patients from HM ancestry and TCGA multi-ancestry data. SCNAs analysis was performed on SNP6 Affymetrix arrays
data. Statistical comparisons based on two-tailed Wilcoxon test taking HM dataset as reference. Boxplots represent median ± IQR (25th and 75th
percentile) and whiskers correspond to maximum and minimum values. b Histogram showing the comparative tumor SCNA burden (TSCB) distribution
between ancestries. c, d Histogram showing the frequency of significant SCNAs at arm level across whole genome in different ancestries. Chromosomic
regions are arranged on the x-axis. Gains are represented in red, above horizontal line (c), while losses are represented in blue, under horizontal line d). The
comparison of HM (filled bars) and AA, Asian and Caucasian (lines bars) was calculated and plotted separately. Arrows indicate unique HM SCNA arm
events. Frequency of the top most significant e amplifications and f deletions in HM patients, compared against their frequency in other ancestries. Two-
sided Fisher’s exact test p-values with BH FDR correction were computed for statistical comparisons *(BH-adjusted p-value < 0.05). HM: Hispanic-
Mexican, AA: African-American, SCNA: Somatic Copy-Number Alteration.
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consequences of SCNAs in HM population, a correlation analysis
was computed between significant SCNA profiles and significant
differential expression of genes (logFC > 1.3, adj p-value < 0.05)
contained in the aberrant locus. A total of 184 CNA-mRNA pairs
were significantly correlated (R= > 30%, adj p-value < 0.05)
(Fig. 7c and Supplementary Data 9). Not surprisingly, genes in
amplified regions are involved in cancer pathways, such as DNA
repair mechanism, histone acetylation and chromatin remodeling
complex (Supplementary Fig. 10). Conversely, multiple deletion
events comprise genes with roles in the control of fatty-acid and
amino acid metabolic pathways, traffic and localization of
vesicles, regulation of cytoskeleton, among others (Supplementary
Fig. 10). These observations suggest a convergence of multiple
CNA targets on a common set of biological functions important
to maintain different hallmarks of cancer.

Oncogenic networks with mutually exclusive genomic altera-
tions between somatic-mutations and SCNA were identified
through MEMo algorithm29 in the profiled HM patients. Two
significantly modules (adjusted p < 0.1), affecting a considerable
proportion of samples were detected (Fig. 7d, e). Notably, ERBB2

(HER2) amplification tend to exclude PIK3CA/AKT1 mutations
(Fig. 7e). Of relevance, HER2 amplification is highly correlated
with its expression (R= 90%, adj p-value < 0.05, Fig. 7c) and
might be able to activate PI3K/AKT signaling in a HER3
independent mechanism30, suggesting that redundant alterations
over the same pathway leads to a disadvantage for the cell.
Likewise, PIK3CA, AKT1 and CDH1 gain-of-function mutations
were mutually exclusive. Similarly, TP53 inactivation was
mutually exclusive with PIK3CA/AKT1 mutations in most of
the altered cases, nonetheless we found a 15% of co-occurrence
(Fig. 7d, e). The oncogenic amplification of CCND1, a cell cycle
regulatory molecule, was mutually exclusive with TP53 mutation.
Interestingly, amplification of CCND1 is also correlated with its
over-expression (R= 40%, adj p-value < 0.05, Fig. 7c) and
consequently enhance G1-S progression through RB/E2F31. The
observed mutual exclusivity among diverse alterations in TP53
tumor suppressor pathways indicates different manners to
dismantle cell division32. Although a small proportion of CCND1
amplified tumors co-occurred with HER2 amplification (3/12)
and PIK3CA mutations (4/12), they were generally mutually

Fig. 7 Integrative view of genomic and transcriptomic alteration in breast tumors carcinogenesis across ancestry groups. a Correlation between tumor
mutational burden (TMB) and tumor altered fraction (TAF) divided in four subclasses in accordance with the following cutoffs: high TMB > 1 and high TAF
> 5%: High-TMB and Low-TAF, Low-TMB and High-TAF, High-TMB and High-TAF, Low-TMB and Low-TAF. b Prevalence of each biological group divided
by TMB and TAF classes (above mentioned) among ancestry groups. c Cis effects of copy-number alterations on mRNA expression in HM. The heatmap
shows significant correlated genes (Pearson R= 0.5, BH-adjusted p-value < 0.05) between SCNA and robust gene expression changes (gene expression
profiles between altered and non-altered tumors, logFC:1.5, BH-adjusted p-value < 0.05) as illustrated in the sided heat map (over-expression: red, down-
expression: green). The diagonal yellow line represents over-expressed genes located in amplified regions or down-regulated ones located in deleted loci.
Genes are ordered by chromosome locations on x-axes. The lower heatmap shows the amplifications (red) and deletions (blue) events in each
chromosome. d Altered signaling pathways in breast cancer tumors. Mutual exclusivity modules (MEMo) analysis identified multiple modules
recapitulating ERBB-PI3K, PIK3-Akt-CCND1 signaling (adjusted p-value= <0.1). Heatmap showing the distribution of mutated or amplified genes that make
up MEmo modules. e Graphical representation of the top-scoring mutually exclusive modules. Nodes represents frequently altered genes in each module
and edges connect them according to their reported activity in corresponding core signaling pathways. Amplifications are shown in yellow, somatic
mutations events in red, black arrows represents activation and red arrows inhibition. Gain of function biological consequence in dot lines and loss of
function in continuous line. MEMo p-values were estimated by comparing the observed alteration frequency of each module to those expected for the
same module after randomly permuting the set of observed genomic alterations. q: FDR adjusted p-value. HM: Hispanic-Mexican, AA: African-American,
IHC: immunochemistry.
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excluded. Of interest, in addition to CCND1 amplification,
CCND1 can be up-regulated through other mechanisms such as
ERBB2 driven-activation or by the PI3K-AKT-mTOR pathway,
suggesting a functional redundancy of these alterations, and more
than one of these alterations might be disadvantageous for the
tumoral cell (Fig. 7d, e and Supplementary Data 9). These results
pointed out the relevance of PI3K/AKT and ERBB2 signaling
pathways alterations as key tumorigenic events, suggesting that
these multiple alterations should be considered prior to
determining therapy based on molecular characterization.

Immune infiltration characterization of breast tumors along
ancestries. Our observations identified that TMB was sig-
nificantly higher in HM patients than in AA and Caucasian
women profiled, which could be largely attributed to APOBEC-
related mutations. Interestingly, these phenotypes were particu-
larly enriched in the HR+ /HER2− (LumA) tumors. Further, a
high TMB and the APOBEC signature have been associated with
cytotoxic T-lymphocyte infiltration and cytolytic activity imply-
ing a stronger anti-tumor immune response. Thereafter, we
identified immune attributes based on RNA profiles on the tumor
set included in this study. No significant differences were detected
among tumors from different populations regarding cytolytic
activity (CYT), necessary for immune response33, or tumor
inflammatory signature (TIS)34 (Fig. 8a). As expected, compar-
ison across PAM50 subtypes revealed a significant enrichment of
CYT and TIS in all basal tumors and to lesser extent HER2
tumors, meaning these subtypes were the most immunogenic
tumors in all ancestries (Supplementary Fig. 11a). Even more,
grouping samples by PAM50 subtype, showed that the CYT and
TIS score were higher in LumA tumors from HM, Hispanics and
AA individuals than their counterparts from Asian (FDR=
0.007) and Caucasian (FDR= 0.04) women (Fig. 8b), suggesting a
more active immune reaction in Hispanic tumors evaluated. This
data was corroborated through calculation of the immune score
from the Estimated algorithm (FDR= < 0.05) (Supplementary
Fig. 11b).

Immune-infiltrating cells portrait evaluated through ssGSEA of
immune-cell signatures35, displayed modest significant ancestry
differences. We identified relevant changes between HM tumors
vs. AA in enhancement of an immune excluded-like phenotype
where T-cells (CD4 and T-helper Type 2) are rate-limiting by the
over-representation of mast cells, macrophages and Tregs, thus
rendering ineffective T-cells capability to infiltrate the tumor
stroma (Supplementary Fig. 11c and Supplementary Data 10).
Lastly, immune-phenotypes among molecular subtypes revealed
HM LumA tumors as the most variable immune subset among
evaluated ancestries (Fig. 8c, d). These results potentially indicate
that LumA HM tumors harbors a higher cytotoxic activity that
would promote a diverse immune infiltrate context that may
impact the restriction of certain clonal tumors (Supplementary
Data 10). We reasoned that different selective pressures
represented by diverse immune-phenotypes and molecular
tumoral subtypes could result in the positive selection of distinct
immune mechanisms. These features will help to shed light on
how tumors respond to immunotherapies, as well as to provide
rationale for the development of novel therapeutic strategies. The
meaning of these demographic associations remains unclear but
provides evidence for the immune diversity based on genetic
ancestry.

Discussion
The number of samples analyzed in the literature from minorities
in BC is still relatively small, which limits the ability to detect
ancestry-specific molecular alterations36. To our best knowledge,

this study represents the largest genomic analysis of BC among
patients with HM ancestry residing in Mexico (Fig. 9). To
describe a deep biological portrait of the molecular features of
HM and Latin-Hispanic BC patients, we compared multi-omics
profiles between our set of tumors and public data from other
ancestries mainly consisting of Caucasian, Asian, African and
Afro-American women.

Recent studies have shown that breast tumors in young women
exhibit more aggressive characteristics than those occurring in
older patients37. Public systems need to face this growing health
problem, mainly in developing countries where the incidence of
BC is rising38 and a higher proportion of women debuts at
younger stages37. In our analysis, younger women (<45 years of
age) from Hispanic datasets accounted for a higher proportion
compared with Caucasian patients. In accordance with the
reported average age at diagnosis in Mexican women, that occurs
a decade less than in the Caucasian population39. Notably,
aggressive basal-like tumors, that are mainly composed by TN
tumors, and HR+ /HER2+ cancers are enriched in younger HM
and Hispanic non-Mexican patients in comparison with patients
from non-Hispanic ancestry. In accordance, it has been reported
that Mexican young patients have a larger proportion of TN
tumors than their counterparts in Europe, US and Asia40.

The heterogeneous transcriptional phenotypes observed in
women with BC belonging to different ancestries, is in part
influenced by the alterations in cancer genomes such as muta-
tions and SCNV. Even when a well concordance of SCNA profiles
were observed with other ancestries, differences exist in the fre-
quencies of these genomic alterations alongside the detection of
unique SCNA in tumors from HM women.

Moreover, we identified recurrent alterations that particularly
affect HM tumor genomes, such as the enrichment of AKT1E17K

mutation in HR+ tumors, with a prevalence of 8%. Interestingly,
although this amino acid alteration was identified as a recurrent
hotspot mutation in BC26, 41, other profiles report a lower fre-
quency, ranging from 1.4% to 5.9% in different ancestries42–44,
with a mean frequency of 3.8%. In accordance with these data,
through our in-silico analysis of large-scale sequencing studies,
we were only able to detect a similar frequency in young BC
patients (<35 years) from South Korea, with 8% (4/50), but not in
any other dataset of tumors analyzed, nor this has been previously
reported by other study, to the best of our knowledge.

The PI3K–AKT–mTOR signaling pathway is one of the most
frequently de-regulated pathways in human cancers41, with
repercussions in key cellular processes, such as metabolism,
independent cell proliferation, cell invasion, endocrine receptor
deregulation and resistance to therapy45, and consequently sup-
porting cancer cell programs. The pathway can be aberrantly
activated through multiple mechanisms, including diverse AKT
mutations46. E17K mutation activates AKT1 by recruiting it to
the membrane through a PI3K-independent mechanism, result-
ing in the activation of PI3K/AKT/mTOR signaling pathway47.
Thus, AKT1 mutations have emerged as an attractive druggable
target and there is promising clinical data in ER+ ductal BC
patients harboring AKT1E17K mutation treated with the pan-AKT
targeted inhibitors AZD5363, MK-22046, 48 and ipatasertib,
another ATP-competitive AKT inhibitor49.

It is possible that biological and environmental factors may
dictate evolutionary dynamics of a tumor. This assumption may
explain the observed mutational signatures portraits and their
differences between racial groups described in our study. Muta-
tions contributed by signature 1, which exhibits clock-like
properties generally correlated with age50, were strongly over-
represented in individuals from HM ancestry in contrast to the
other datasets analyzed, even still in younger Mexican patients.
This particular configuration may be the result of a biological
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Fig. 8 Immune landscape of breast cancer tumors. a Boxplots showing the overall distribution of CYT and TIS scores across breast cancer samples and
ancestries. b Boxplots describing the distribution of CYT and TIS score among PAM50 intrinsic subtypes in each ancestry-group. p-values are indicated
near the corresponding asterisks in accordance to color legend (Purple: CYT and pink: TIS). Barplot showing the distribution of immune-cell population
signature scores (ssGSEA) of c adaptive and d innate immune cells across PAM50 subtypes and ancestries. Statistical comparison based on two-tailed
Wilcoxon sum of ranking test taking HM group as reference. Boxplots in panel a–d represent median ± IQR (25th and 75th percentile) and whiskers
correspond to maximum and minimum values. BH-adjusted p-value* < 0.05. Statistics from panel c and d are described at supplementary data 10. HM:
Hispanic-Mexican, AA: African-American, LumA: Luminal A, LumB: Luminal B, CYT: cytolytic activity score, TIS: Tumor inflammation signature.
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epigenetic clock mechanism as suggested by Kresovich and
collaborators51, that propose that age acceleration is associated
with increased BC risk52. Thus, it’s possible that chronological age
not always correlates with biological age, presumably, by the
accumulation of biological changes that undergo at different rates
because of different carcinogen and environmental exposures or
neoplastic changes50. Of note, when we considered age at diag-
nosis and TMB no differences were identified between Mexican
younger and older patients. It is also possible that more than one
signature contributes to the mutational process. Interestingly, at
exploring this possibility, a significant co-occurrence of the con-
tribution of signature 1 with the APOBEC-related signatures was
only observed in HM-profiled tumors. Age-associated mutations
in tumors reflect a decrease in tissular fitness and an accelerated-
ageing that might be explained by intrinsic and exogenous risk
factors such as obesity-associated changes in metabolism,

exposure to steroid sex hormones, inflammation and environ-
mental and genetic background. These findings might partly
explain why breast cancer is diagnosed at younger ages in HM
women compared to what is reported for women with a different
ancestry in other studies.

Cancer health disparities studies are often focused on the dif-
ferences in frequency measures (e.g., incidence, prevalence,
mortality, etc.) and even when it is indisputable the impact these
factors have on the improvements in the clinical management of
BC among different human groups, it is also undeniable that
molecular characterization of cancer genomes of diverse popu-
lations has an important value in cancer research studies. In this
respect, our data extend the knowledge and contribute towards
the characterization of the biological and molecular factors in
HM patients. There are certain limitations of this study including
the number of analyzed samples and the limited number of

Fig. 9 Summary of our remarkable findings in the evaluated HM tumors. The outer circle was divided in each molecular alteration presenting a
differential status detected in our evaluated HM tumor samples against other human population. Inner circle shows barplots indicating the frequency of
each phenotype as indicated in the labels (y-axis and x-axis). Ribbon connections describe the proposed biological relation among the diverse altered
“omics” and clinical features. LumA: Luminal A.
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matched tumor samples across the “multiomic” characterizations.
Even if, this report presents one of the first relatively large and
comprehensive characterization (at genomic and transcriptomic
level) of breast tumors in Mexican women, our observations can
be only extended to the analyzed tumors and may not reflect all
population rates and was not conducted in a epidemiologic
design. As we took advantage of public data to have a robust
multi-ancestry comparison and overcome size limitations, our
study is constrained by available information, which impedes the
assessment of clinical features impact, such as the tumoral grade.
An important notion emerging from this work is that additional
efforts to overcome the underrepresentation of Hispanic patients
in multi-omics studies are still needed. In line with that notion, a
multifactorial vision strategy that considers not only ancestry-
related genomic and molecular features, but also socio-
demographic issues, environmental exposures, and even public
health policies would help refine our understanding of the factors
contributing to disparities in BC outcomes among different
groups of human populations, still a priority question to address
in order to reduce cancer health burden.

Methods
Tumor sample collection and clinopathologial assessment of in-house mole-
cular-profiled HM patients. Mexican patients diagnosed with primary breast
cancer, without a second tumor and treated with adjuvant therapy at the Institute
of Breast Diseases (FUCAM) from 2008–2012 were convenient collected. Tumor
and adjacent non-tumoral tissue, as well as peripheral blood were obtained (EDTA
Vacutainer tubes, BD, 6 ml) from each patient after informed consent was
obtained. After macroscopic inspection by the pathologist, sections of tumor and
normal tissue were frozen in liquid nitrogen and store at −80 °C until further
processing. A section of the tissue was formalin fixed and embedded in paraffin
(FFPE) to confirm pathological diagnosis, as well as to assess tumor cell content
and grade by hematoxylin eosin (H&E) staining. Only samples with tumor content
values >60% were further analyzed. Blood samples were centrifuged to separate and
isolate buffy and plasma components. Additionally, one hundred consecutive FFPE
specimens with adjuvant surgical resection (2012–2016) were convenient collected
at Anatomic Pathology Department of FUCAM fulfilling the inclusion criteria
described above. Tumor specimens were evaluated by a pathologist to determine
their histotype and evaluate cellularity, to then macrodisected the most enriched
area with tumoral cells (>60% of tumor cells). The clinical characteristics of the
HM in-house-profiled samples are shown in Supplementary Data 1. The protocol
was reviewed and approved by the Ethics and Research committees of the National
Institute of Genomic Medicine and FUCAM Institute in Mexico City (CE2009/11).
All the studies were conducted in accordance with the Declaration of Helsinki.

Immunohistochemistry. Estrogen and progesterone receptors, HER2 and EGFR
expression, was evaluated using the ER/RP pharmDX (Dako, Denmark, K1904,
ready-to-Use), Estrogen receptor alpha (Dako, Denmark, M7047, 1:35), Pro-
gesterone receptor (Dako, Denmark, M3569, 1:50), HercepTest (Dako, Den-
mark, K5204) and DAKO EGFR pharmDxTM kit (Dako, Denmark K1492,
ready-to-Use), respectively, following the manufacturer´s instructions. CK5/6
was evaluated with the mouse monoclonal anti-CK5/6 antibody (Dako, Den-
mark, M7237, 1:20, clone D5/16 B4), cytokeratin 14 (Novocastra, NCL-LL002,
1:20, clone LL02) and cytokeratin 17 (Dako, Denmark M7046, 1:2o, clone), as
well as Claudin 1 (Abcam, UK, AB15099, 1:50) and Claudin 3 (Abcam, UK,
AB15102, 1:50). Histopathological analysis was performed according to stan-
dard protocols by two trained pathologists.

DNA/RNA extraction. After tumor cell content evaluation, DNA and RNA were
extracted from tumor tissue using the AllPrep DNA/RNA mini kit (Qiagen,
Valencia, CA), while DNA from peripheral blood lymphocytes was extracted with
the QIAamp DNA Blood Maxi Kit (Qiagen, Valencia, CA), according to manu-
facturer’s instructions. DNA integrity was evaluated by 1% agarose gel electro-
phoresis and RNA integrity by capillary electrophoresis using the Bionalyzer
system (Agilent, Santa Clara, CA). Only samples with RNA integrity number (RIN)
>6.0 were used for microarrays analysis.

mRNA expression profiles. A total of 109 tumors were processes at the Affy-
metrix Unit of National Institute of Genomic Medicine (INMEGEN) in Mexico
City. Global mRNA expression patterns were analyzed with the Affymetrix (CA,
USA) microarray platform Human Gene 1.0 ST. Briefly, 100 to 300 ng of total RNA
were obtained from adjacent and neoplastic mammary tissues and processed
according to the Affymetrix protocol (Wt manually sense target). Microarrays were
read in a scanner and high-resolution model 7Gimage analysis and quality control

was performed using the Affymetrix Expression Console software. The mRNA
expression values were normalized with RMA and quantile algorithms in R (http://
www.r-project.org/) with the oligo library v 1.4653 from Bioconductor. Batch
correction was done with the SVA package v 3.36.0.54 using the function ComBat
with parametric prior method. Quality controls, as boxplots and histograms of
intensity values distribution and MA plots, were visualized with Oligo v 1.46 and
limma v 3.38.355 tools in R environment. To facilitate comparison between all
datasets, including our gene expression profiles and benchmark data, we applied z-
score scaling to each gene. Microarray data are available in GEO with the number
GSE86374.

Publicly available datasets. To have a robust representation of multi-ancetry
studies including Caucasian, African-American (AA), Hispanic (Non-Mexicans)
and Asian women, we integrated our data with LACE (n= 1635)56, TGCA (n=
894 from Xena and cbioportal), Metabric (n= 832, cbioportal)57, SMC (n= 166)16,
Nigerian (n= 96)58 and Geo omnibus (n= 1830) portraits, including clinical
annotations and multidimensional mutational, SCNV and gene expression profiles
to develop a deep biological comprehensive of BC among different ancetries
(Fig. 1a) (full details of datasets type and composition in Supplementary Data 2).
For datasets retrieved from GEO, gene expression analysis was limited to Affy-
metrix platforms (U133, U133 v2, U133 plus, Gene st). We first recover all the raw
data (cel file) from GEO data base, and samples from each dataset were normalized
and RMA background corrected with oligo package in R. Quality control were
performed and only samples with optimal QC parameters were included. We then
annotate the probe sets using BioMart59 on R package (biomaRt v2.38.0) and
extract the common genes between all platforms resulting in 13,060 common
genes. Then, all the common genes from all samples were putting together in a
single matrix and corrected for batch effect with ComBat60 in SVA R package with
parametric prior method. For data retrieved from GEO processed in another
microarray platform (Illumina or Agilent) only clinical data were downloaded to
report it.

Estimate. As a quality control of samples ESTIMATE scores were computed,
including purity, stromal and immune values, were calculated using the ESTI-
MATE R package v0.22.061. Samples with a tumor purity score under 60% were
discarded for gene expression profiles description and further analysis.

Pam50 subtyping and triple-negative breast cancer molecular classification.
To obtain the intrinsic subtype classification, the PAM50 algorithm was applied as
described by Parker14. The Pam50 subtype centroids were applied to the nor-
malized data and the classification was carried out using the pbcmc package v
1.6.062 on Bioconductor using robust parameters (nPerm= 10,000, pCutoff= 0.01,
where= fdr and corCutoff= 0.1), defining the following molecular subtypes:
luminal A and B, HER2-enriched, Basal-like and Normal-Like for each sample in
our study63. Samples classified as Normal-like were discarded due to possible
contamination by normal tissue. For triple-negative samples, TNBC molecular
subtypes were identified using TNBCtype v.1.0 (http://cbc.mc.vanderbilt.edu/tnbc/)
to corroborate TN status.

Genotyping arrays of samples from HM women. DNA from tumor and per-
ipheral blood was processed using Affymetrix Genome-Wide Human SNP 6.0
(Affymetrix, CA, USA) according to manufacturer’s protocols. Briefly, DNA was
digested with NspI and StyI enzymes (New England Biolabs, USA), ligated to the
respective Affymetrix adapters using T4 DNA ligase (New England Biolabs, USA)
amplified (Clontech-Takara Bio, USA), purified using magnetic beads (Agencourt,
Beckman, USA), labeled, fragmented, and hybridized to the arrays. Following
hybridization, the arrays were washed and stained with streptavidin-phycoerythrin
(Invitrogen, USA). Arrays preparation and scanning was performed at the geno-
typing core laboratory of INMEGEN. Background correction and extraction of raw
fluorescence intensity were performed with the Affymetrix Genotyping Console.
Raw microarray data was deposited in GEO under the number GSE87048.

Ancestry proportion analysis. The ancestry estimation calculation of the Mex-
icans breast cancer patients of our dataset were performed using 299,411 SNPs
from Affymetrix SNP6.0 microarray to inferred ancestry proportions based on the
four main ancestries populations in the American Continent as reference. The first
three ancestries populations were retrieved from the HapMap International Pro-
ject: 27 individuals with northern European ancestry (CEU), 27 individuals with
African ancestry from Yoruba in Ibadan, Nigeria and 41 East Asian ancestry
(merge of Japan and China individuals) were included, together, with 37 additional
Native Americans from Mexico (10 Zapotecas from Oaxaca, 13 Tepehuanos from
Durango and 14 Mayas from Campeche) from the Mexican Genome Diversity
Project (MGDP)7, 8, finally we include 161 Mexican mestizo (admixed population)
of six Mexican federal states to compare the ancestry mean between breast cancer
patients and Mexican mestizo population. The ancestry proportions were calcu-
lated using a fast sequential quadratic programming algorithm and novel quasi-
Newton acceleration method implemented in ADMIXTURE Software v.1.3.064, 65.
For samples in our collection that were not profiled by SNP6 Affymetrix Array,
ancestry was reported as self-identified Mexican ancestry. For samples from public
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datasets in GEO, ancestry was retrieved from sample information deposited within
in each series matrix file, while TCGA ancestry data were recovered from clinical
information deposited on cbioportal and from METABRIC tumors based on
information reported on ref. 66.

Whole-exome sequencing. Whole-exome was captured through Agilent Sur-
eSelect ExomePlus bait system (Agilent Technologies, USA) and biotinylated RNA
baits67 process. ~155 Mb baits were target including the standard exome, plus
intronic and promoter sequences for known cancer genes, relevant targets iden-
tified by cancer genomic studies, TCGA and the Cancer Cell Line Encyclopedia.
Exome libraries were sequenced on Illumina GAII or HiSeq 2000 (Illumina, USA)
sequencers with 76 base-paired-end reads achieving a mean of 141x. Alignment
was performed with the Burrows–Wheeler Alignment tool68 and standard Picard
pipeline to the human genome assembly hg19/GRCh37.

Somatic mutation analysis. For HM patients, a dataset of aggregated mutations
was generated by combining 54 MAF files retrieved from cBioPortal (Breast
Invasive Carcinoma Broad, Nature 201211) and 100 MAF files corresponding to
Whole-exome sequencing data of breast tumors from HM patients69. Additionally,
annotated and filtered MAF files of 894 TCGA Breast Invasive carcinoma samples,
were obtained from Firebrowse database (v1.1.40)70. Briefly, somatic mutations
were identified via MuTect71, with a standard panel of normal samples com-
plemented with extra information from ExomePlus cohort. Local realignment and
FFPE artifact filter were applied to remove alignment and technical artifacts.
Variants were annotated with Oncotator72 and TransVar73. Asian Kan data were
downloaded from supplementary information16. Next, significantly mutated genes,
for each sample collection, were identified using MutSigCV v1.3.01 algorithm22

through GenePattern module. Since, coverage information file was not available for
the analyzed datasets, we used the “full coverage” file, that is available on the
GenePattern public server (exome_full192.coverage.txt) assuming full coverage.
This file provides information of how the reference sequence of the human exome
breaks down by gene, category and effect. For this analysis, the TCGA and public
samples were independently analyzed based on ancestry. Only mutations altera-
tions with a q-value < 0.05 (false-discovery rate) were considered significant.
Visualization was performed with Maftools v 1.8.1074.

Hypermutation cutoff in breast cancer samples analyzed. To define a hyper-
mutated threshold in the set of breast cancer samples analyzed coming from dif-
ferent human populations we applied a segmented linear regression. Since very
extreme values (outliers) can produce disproportionate effects on the slope of the
regression equation, we first identified those influential points. Therefore, we
applied the median and median absolute deviation method (MAD), that is an
outlier detection approach and filter all samples with values over 15 mut/Mb (N=
12 excluded samples). We then computed the segmented function (control= seg.
control, n.boot= 0, it.max= 1000, K= 10, psi missing) on the Segmented package
implemented in R. The first breakpoint at which a statistically significant change
occurred was at 4mt/Mb.

Actionable genomic alterations. Hotspot mutations have been identified with
cancer hotspot database (http://cancerhotspots.org)26, 75 using protein change
annotation retrieved from TransVar73.

Cancer hotspot tool provides useful resources for query and visualization of
statistically significant hotspot mutations among diverse tumors. Then, to
determine the clinical actionability and oncogenicity of identified mutations,
OncoKB27 knowledgebase was interrogated. OncoKB provides disease-specific
levels of evidence for the actionability of mutant alleles and DNA copy-number
alterations as follows: (1) level 1 alteration is an FDA-recognized biomarker in
specific tumor type; (2) level 2 is a biomarker routinely used to guide prescribing of
an FDA-approved drug, based on tumor type (2A) or other indication (2B); (3)
level 3 demonstrates compelling clinical evidence supporting its use as a biomarker.
OncoKb also categorized a specific gene as “oncogenic” or “likely oncogenic” in
accordance with its alterations and biological consequence.

Driver mutation discovery. Detected mutations were annotated and classified as
driver and passenger somatic mutations using the method implemented in
OncodriveMUT algorithm76 and the Cancer Genome Interpreter (https://www.
cancergenomeinterpreter.org/home) framework, which allows to identify the most
likely driver mutations of a tumor. The oncogenic classification: known and pre-
dicted mutation (in any neoplasia), were considered as driver alteration and taken
into account for analysis.

Structural 3D view of AKT1 mutations. c protein visualization for AKT mutation
was performed with RCSB PDB (rcsb.org)77 for AKT E17K mutation (2UZS) with
the NGL Viewer, and RCSB PDB78.

Mutational signatures. Identification of mutational signatures in tumor samples
was performed with deconstructSigs v1.8.018. Briefly, the algorithm determines the
linear combination of predefined signatures (COSMIC project v2, www.cancer.

sanger.ac.uk/cosmic/signaturesnd), that more accurately reconstructs the muta-
tional profile of a single tumor sample using SNP type variants to estimate the
contribution for each signature. To determine how much of each signature is
present in each sample we ran the whichSignatures function, using the following
parameters; tumor.ref= context matrix consisting of the counts of the mutations
observed in each of the 96 possible trinucleotide contexts for each sample, sig-
natures.ref= reference signatures matrix, which values represent the fraction of
times a mutation is seen in each of the 96-trinucleotide contexts for each selected
signature, with the following parameters tri.counts.method= exome2genome
method as normalization strategy and signature.cutoff= 0.06. As a cross-validation
method we computed mutational signatures with SigFit v2.0 package19, which
estimate signature contribution based on a Markov Chain Monte Carlo sampling
and Non-Negative Matrix Factorization (NMF) model to fit the mutational input
to a COSMIC mutational catalog. The parameters used were: iter= 6000, warmup
= 3000, and hpd_prob= 0.90 to get the exposures and 90% highest posterior
density intervals. To define the overall signature exposure in each sample, the
calculated signature weights were multiplied by the COSMIC trinucleotide context
probability within the corresponding signature and then normalized by the total
number of mutations in that sample. The signature with the maximum exposure
was considered as the one that mostly contributes in that sample. To maximize the
algorithms performance, only samples harboring a TMB higher than the median in
each datasets were included (HM median TMB:0.99 mut/Mb, Asian TCGA: 0.92,
Asian Kan: 1.39794, AA TCGA 0.86 and Caucasian TCGA 0.72). A mutational
signature was considered to be present if it contributes >5% towards the entire
mutational load of a sample. The probability of co-occurrence (i.e., the frequency of
occurrence) of any two predominant mutational signatures in each tumor dataset
was estimated as the statistical association between signatures across samples in
that tumor collection, using a Fisher Exact Test. Co-occurrence was considered to
be present if an association was found with FDR-corrected p-value < 0.1.

Copy-number profiles. To generate the copy-number profiles, we used the “Copy-
Number Inference” pipeline implemented in Genepattern79 (http://genepattern.
broadinstitute.org/gp/pages/index.jsf). In brief, probe-level signal intensities from
Affymetrix SNP6 (cel files) were normalized to a uniform brightness and merged to
obtain values for each probe set using SNP File Creator. These intensities mea-
surements were converted into a copy-number call by the Copy-Number Inference
model. After reducing the noise by subtracting out the variation that is also seen
within the normal samples (peripheral blood), the CBS segmentation algorithm
identifies regions in the genome that have a uniform underlying copy number,
creating a segmentation file. Finally, to identify significant focal SCNAs in induvial
genes of across different ancestries, GISTIC 2.0 (v2.0.23)80 algorithm was com-
puted in the Genepattern environment (Deletion Threshold= 0.1, cap-values=
1.5, broad length cutoff= 0.7, Remove X-Chromosome= 0, Confidence Level=
0.90, Join Segment Size= 4, Arm Level Peel Off= 1, Maximum Sample Segments
= 2000, Gene GISTIC= 1). Segmentation file were used as input. Peaks with q-
value < 0.15 were selected as significant. For the comparison of our dataset, TCGA
segmentation data were downloaded from cbioportal, and processed as previously
described in the GISTIC module for each ancestry.

Frequency of altered genome. The tumor altered fraction (TAF) was computed as
reported previously81: the length of segments with log2 copy-number level (log2-
ratios) larger than 0.2 divided by the length of all segments measured.

Correlation between CNA and gene expression. Pearson correlation between
copy-number changes of significantly deleted or amplified regions, as inferred by
GISTIC, and significantly differentially expressed genes located within those
regions was performed on 49 MH tumor samples with CNA values and gene
expression data available. Correlations for each possible region and its contained
genes were computed and considered to be significant with a Pearson R coefficient
> 0.3 and p-value < 0.05. Functional annotation of GO biological process and
KEGG terms (GO_Biological_Process_2018 and KEGG_2019_Human) among
significantly correlated genes was performed using the package enrichR v2.182

implemented in Bioconductor/R, with default parameters. We then selected the top
15 terms, ordered by raw p-value from each collection, considering genes in
amplify and deleted regions separately.

Mutually exclusivity modules in cancer. To search for genomic alterations
occurring in biological pathway context, we used the MEMo v1.1 program,
which is a method for identifying network modules of significantly mutually
exclusive alterations in member genes that show recurrent somatic mutations
or CNA and are likely to belong to the same biological pathway or process.
MEMo was run across all breast tumors profiled by exome sequencing and/or
genome-wide arrays (i.e., samples with information on single nucleotide
mutations and/or CNV data) selecting alterations affecting at least 2% of the
samples. We used HRN2 as background reference network and the following
parameters, mut_sig_q_value_threshold= 0.10 (i.e., the threshold of FDR
correction computed with the Benjamini & Hochberg method) and min_-
number_of_alterations= 3, which selects the minimum number of alterations
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in a gene to be include for analysis. MEMo statistically significant modules
were selected with an FDR-corrected p-value ≤ 0.1.

Immune characterization through CYT, TIS, and ssGSEA of immune sig-
natures. Cytolytic signature (CYT) that measure the activity of lymphocytes T-
CD8 to punch the tumoral cells was calculated through a validated gene expression
signature based on the geometric mean of normalized gene expression levels of
granzyme A (GZMA) and perforin-1 (PRF1)33. Tumor Inflammation Signature
(TIS) score34, correlated with CD8, CD4, natural Killer and macrophage M2-like
activity, was calculated as the average of continuous mean of log2-transformed
normalized expression of the identified genes. Individual enrichment scores based
on immune-related gene expression signatures50 were computed with ssGSEA
implemented in GSVA v1.36.283 Bioconductor library with min gene set size
parameter of 5. Wilcoxon test were applied to define significant differences among
HM vs. any of the other populations.

Statistics. To compare associations of the oncogenic alterations between datasets
and intrinsic subtypes a Fisher exact test was performed, using the fisher.multcomp
function on R, and p-values were controlled for false-discovery rate with the
Benjamini & Hochberg method and a multivariate Cox proportional hazards
analysis was computed with SAS University Edition Statistical. Two-tailed
Kruskal–Wallis or Wilcoxon test were applied to define statistical differences
between the conditions evaluated on continuous variables. Statistical significance
was set as p= < 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Gene Expression data generated in this study have been deposited in the GEO
(GSE86374). SNP array can be found in the GEO (GSE87048). Somatic mutations and
annotation data from HM women can be retrieved from cbioportal under the URL
[https://cbioportal-datahub.s3.amazonaws.com/brca_broad.tar.gz] and from the dbGAP
database [https://www.ncbi.nlm.nih.gov/gap/] under accession number phs001250. v1.p1
(upon authorization request). Public gene expression datasets used in this study are
available in the GEO database under the following accession codes: GSE78958,
GSE16716, GSE20271, GSE37751, GSE48390, GSE54002, GSE15852, GSE2109,
GSE75678, GSE113184, GSE59595. Public somatic mutations and annotation data from
TGCA breast cancer samples are available through Firebrowse database under the URL
[http://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/BRCA/20160128/gdac.
broadinstitute.org_BRCA.Mutation_Packager_Oncotated_Calls.Level_3.2016012800.0.0.
tar.gz]. Copy-number data from TGCA breast cancer samples are available in
Xenabrowser portal under the URL [https://xenabrowser.net/datapages/?dataset=TCGA-
BRCA.cnv.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https%3A%2F
%2Fxena.treehouse.gi.ucsc.edu%3A443]. Clinical and molecular subtype data from
METABRIC and Metastatic breast cancer (INSERM, PLoS Med 2016)84 samples are
available in cbioportal database under the URLs [https://www.cbioportal.org/study/
clinicalData?id=brca_metabric] and [https://www.cbioportal.org/study/clinicalData?
id=brca_igr_2015]. Clinical and molecular subtype from Nigerian breast cancer samples
(Pitt et al. 2018)58 are available as supplementary information in the URL [https://static-
content.springer.com/esm/art%3A10.1038%2Fs41467-018-06616-0/MediaObjects/
41467_2018_6616_MOESM4_ESM.xlsx]. Clinical and molecular subtype from Asian
breast cancers samples (SMC Kan et al. 2018)16 are available as supplementary
information in the URL [https://www.nature.com/articles/s41467-018-04129-4#Sec24].
Clinical and molecular subtype from Japanese breast cancer samples (Hatakeyama et al.
2019)17 are available as supplementary information in the URL (https://onlinelibrary.
wiley.com/action/downloadSupplement?doi=10.1111%2Fcas.14087&file=cas14087-sup-
0002-TableS1.xlsx). The remaining data are available within the article, supplementary
data or available from the authors upon request.
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