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Profiling of circulating tumor DNA (ctDNA) may offer a non-invasive approach to monitor

disease progression. Here, we develop a quantitative method, exploiting local tissue-specific

cell-free DNA (cfDNA) degradation patterns, that accurately estimates ctDNA burden

independent of genomic aberrations. Nucleosome-dependent cfDNA degradation at pro-

moters and first exon-intron junctions is strongly associated with differential transcriptional

activity in tumors and blood. A quantitative model, based on just 6 regulatory regions, could

accurately predict ctDNA levels in colorectal cancer patients. Strikingly, a model restricted to

blood-specific regulatory regions could predict ctDNA levels across both colorectal and

breast cancer patients. Using compact targeted sequencing (<25 kb) of predictive regions, we

demonstrate how the approach could enable quantitative low-cost tracking of ctDNA

dynamics and disease progression.
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Cell-free DNA (cfDNA) is present in the blood circulation
of humans. In healthy individuals, the death of normal
cells of the hematopoietic lineage is the main contributor

of plasma cfDNA1. In cancer patients, blood plasma can carry
circulating tumor DNA (ctDNA) fragments originating from
tumor cells, offering non-invasive access to somatic genetic
alterations in tumors. The ctDNA profile of a cancer patient is
clinically informative in at least two major ways. Firstly, the
profile can provide information about specific actionable muta-
tions that can guide therapy2–5. Secondly, the profile can be used
to infer tumor growth dynamics by estimating the amount of
ctDNA in the blood6,7. This latter information offers a promising
non-invasive approach to track disease progression during clin-
ical trials or therapy, offering a real-time tool to adjust therapy8,9.

Existing next-generation sequencing-based approaches to
estimate ctDNA levels in plasma samples are based on somatic
single nucleotide variant allele frequencies (SNV VAFs), copy
number aberrations (CNAs), or DNA methylation patterns10,11.
cfDNA targeted sequencing typically only covers a few hundred
selected cancer genes because of the need for ultra-deep
sequencing (~10,000x). ctDNA burden estimation based on
SNVs may therefore be challenging when no clonal mutations
exist among the targeted genes. Alternatively, low-pass whole-
genome sequencing (lp-WGS) yields segmental/arm-level CNAs
that also allow for inference of ctDNA burden12. However, some
cancers may not have sufficient levels of aneuploidy and chro-
mosomal instability13,14 needed for robust estimation. Sequen-
cing of DNA methylation patterns may provide a general
approach to quantify the cellular origin of cfDNA15. However,
both DNA methylation and lp-WGS profiling require separate
assays in addition to standard targeted gene sequencing, high-
lighting the need for approaches that simultaneously allow for
profiling of actionable cancer mutations and quantitative esti-
mation of ctDNA burden.

Previous studies have shown that the size distribution of
cfDNA fragments has a mode of ~166 bp, suggesting that
nucleosome-bound DNA fragments are preserved during cell
death and shed into the circulation16,17. Nucleosome depleted
regions (NDRs) are therefore more frequently degraded, yielding
a nucleosome-dependent degradation footprint in cfDNA pro-
files, which can be used to infer tissue of origin18–20. Moreover,
plasma cfDNA degradation patterns in cancer patients have
been used to infer tumor gene expression18,21. Here, using these
concepts, we hypothesized that a limited set of tumor or blood-
specific NDRs could be used to infer the ctDNA burden (fraction)
in the blood circulation of cancer patients. ctDNA burden refers
to the relative amount of ctDNA out of all cfDNA molecules in a
plasma sample. Using deep cfDNA WGS data from cancer
patients and healthy individuals, we trained and tested a quan-
titative model that infers the ctDNA burden using cfDNA
sequencing data from a limited set of NDRs. We show that this
model is accurate for plasma samples from both colorectal cancer
(CRC) and breast cancer (BRCA) patients (mean absolute error
≤4.3%), and we explore how it can be deployed using a compact
targeted sequencing assay for low-cost and quantitative tracking
of patient ctDNA dynamics.

Results
Overview of approach. We collected blood samples (n= 29)
from healthy individuals and extracted plasma cfDNA for paired-
end WGS (merged ~150x coverage) (Fig. 1). We performed tar-
geted sequencing (see Methods section) of plasma samples (CRC
n= 65, BRCA n= 36) from cancer patients and selected samples
(CRC n= 12, BRCA n= 10) with high SNV VAFs (indicating
high ctDNA burden) for deep ~90x cfDNAWGS (Supplementary

Data 1). In these high ctDNA burden WGS samples, we could
obtain ctDNA burden estimates using existing methods22–25 that
infer tumor purity using matched tumor and germline high-depth
WGS data. To identify candidate NDR features for the quanti-
tative model, we identified tumor and blood-specific genes with
differential NDR cfDNA degradation in their promoters and first
exon–intron junctions in plasma samples from healthy indivi-
duals and cancer patients. Using a machine learning and in silico
cfDNA generation approach, we then trained and tested a sparse
linear model to predict ctDNA burden from NDR cfDNA cov-
erage. To further explore how the approach could be useful for
cost-effective monitoring of ctDNA dynamics, we designed a
compact (<25 kb) capture-based sequencing assay targeting pre-
dictive NDRs to explore the robustness of NDR-based targeted
approach using independent plasma samples (n= 53) from CRC
patients, and applied it to estimate ctDNA levels in longitudinally
collected plasma samples from a cohort of five colorectal cancer
patients.

Association of gene expression and cfDNA fragmentation
patterns. Analysis of cfDNA from the healthy individuals
expectedly revealed nucleosome depletion and reduced cfDNA
protection flanked by a series of strongly positioned nucleosomes
at gene promoter regions (Fig. 2a). Consistent with a previous
study21, relative coverage at the promoter NDR was inversely
correlated with gene expression in whole blood cells. Studies of
nucleosome positioning in cells have found that, apart from
promoters, exon–intron junctions are associated with NDRs26,27.
We therefore systematically scanned these gene regions for asso-
ciation between gene expression and cfDNA relative coverage
(Fig. 2a). Strikingly, we found that the first exon–intron junction
of transcripts showed a similar association between coverage and
expression, where relative cfDNA coverage at the NDR ranging
from −300 to −100 bp with respect to the end of the first exon
exhibited a strong inverse correlation with transcript expression in
whole blood cells. However, surprisingly, correlation between
expression and cfDNA coverage was not observed at other
exon–intron and intron–exon junctions as well as at gene ends
(Fig. 2a and Supplementary Fig. 1). As expected, when comparing
highly expressed (fpkm ≥ 30) and unexpressed gene groups, we
observed a strong positive correlation (Pearson r= 0.81; Spear-
man correlation, ρ= 0.85) between the cfDNA relative coverage at
promoter and first exon–intron junction NDRs across genes
(Fig. 2b). While relative coverage at these NDRs correlated
strongly with gene expression level, relative coverage could not
perfectly separate unexpressed from expressed genes (Fig. 2b, c),
suggesting that additional factors beyond gene expression con-
tribute to NDR cfDNA degradation. To further explore the factors
affecting cfDNA degradation at NDRs, we explored the associa-
tion between NDR relative coverage and a range of epigenetic
features (Supplementary Fig. 2). In addition to gene expression
levels (linear regression, promoter r=−0.23, junction r=−0.22),
relative coverage was negatively correlated with DNase hyper-
sensitivity (promoter r=−0.60, junction r=−0.55), H3K4me3
(promoter r=−0.59, junction r=−0.54), and H3K27ac (pro-
moter r=−0.45, junction r=−0.41), which are markers of open
chromatin, active promoters, and active enhancers respectively28.
In contrast, H3K36me3 (promoter r= 0.49, junction r= 0.46) and
H3K9me3 (promoter r= 0.11, junction r= 0.10), markers of gene
bodies and heterochromatin, were positively correlated with NDR
relative coverage.

cfDNA coverage patterns at NDRs in colorectal cancer
patients. To further explore the hypothesis that NDR cfDNA
coverage in plasma samples from cancer patients is associated
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with the epigenetic state of tumor cells, we first used a targeted
sequencing panel to screen plasma samples from CRC patients
for cases of high ctDNA burden (VAF > 15% for known cancer
driver mutations, Fig. 1). We initially identified 8 plasma samples
from 5 patients and performed high-depth WGS on these samples
(~72x–101x, Sample ID: CRC-1–8 in Supplementary Data 1). We
inferred ctDNA fractions in these samples using four existing
tissue-based estimation methods22–25 (see Methods section) and
used the median tumor purity estimate from these methods as
ctDNA fractions (in the range 35–86%, Supplementary Data 1).
We then used gene expression data from TCGA and GTEx to
identify genes specifically expressed in CRC tumors and whole
blood (see Methods section, Supplementary Fig. 3). As an
example, we identified PPP1R16A as a CRC-specific gene with
robust depletion of NDR cfDNA coverage in plasma samples
from cancer patients as compared to healthy individuals, and

GMFG as a blood-specific gene with greater coverage depletion in
healthy blood plasma (Fig. 3a). As expected, CRC-specific genes
generally showed depletion of cfDNA at both promoter and
junction NDRs in the plasma of CRC patients compared to
healthy controls (Fig. 3b). In contrast, blood-specific genes
showed higher cfDNA coverage at NDRs in the plasma of CRC
patients compared to healthy controls. Furthermore, directly
comparing CRC and blood-specific genes, CRC-specific genes
had significantly greater cfDNA depletion at NDRs in plasma
samples from CRC patients (P < 2.2 × 10−16, Wilcoxon rank-sum
test, Fig. 3b).

Quantitative estimation of colorectal cancer ctDNA burden.
With the insight that cfDNA coverage at NDRs is associated with
the transcriptional state of DNA in the tumor cells, we hypo-
thesized that cfDNA coverage at a small set of NDRs could be
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used to infer the ctDNA burden (fraction of tumor DNA out of
all cfDNA) in the blood plasma of a cancer patient. As training
data we in silico “diluted” 8 deep WGS samples from 5 CRC
patients with data from healthy individuals, resulting in a training
set of 231 samples of ctDNA proportions ranging from 0.5% up
to the original undiluted fractions (Fig. 3c and Supplementary
Table 1). We shortlisted candidate CRC-specific transcripts that
were upregulated in CRC tumors (fpkmCRC > 10, fpkmblood < 1)
and had a differential DNA degradation signal at both promoter
and junction NDRs (relative coverage score <−0.2). Candidate
blood-specific transcripts were shortlisted with similar criteria
(fpkmCRC < 1, fpkmblood > 10, relative coverage score > 0.2).
Relative coverages at the NDRs of these candidate transcripts

were used as input features (total 529 unique tumor and
379 blood features, Supplementary Data 2). We then used Lasso
L1-regularization regression in combination with a stability-based
feature selection approach to a select a minimal set of 6 predictive
NDRs (Table 1), which could predict the ctDNA fraction in the
training data with a mean absolute error (MAE) of ~1.8%
(Fig. 3d). Expectedly, the signs of coefficients for the 6 NDRs in
the trained model corresponded to the sign of differential
expression of the associated transcripts in tumor tissue relative to
whole blood (Supplementary Table 2). To evaluate the ability of
the model to generalize to unseen data, we sequenced 4 additional
samples (CRC-9–12 in Supplementary Data 1, WGS at ~80–95x)
from 2 new CRC patients and created an in silico diluted test set
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of 113 samples (Supplementary Table 1). The model accurately
predicted the ctDNA proportion in this independent test set
(Fig. 3e, MAE= 3.4%). A direct comparison shows high simi-
larity between the observed (predicted) and expected ctDNA
fractions (Fig. 3f; Pearson r= 0.96; Spearman correlation, ρ=
0.97). To further explore the performance of more complex
models, we estimated the predictive error as a function of model
complexity (number of top predictive features) and found that
models with 4–10 NDR features were generally more accurate
and better at generalizing to unseen data compared with models
using fewer or more features (Supplementary Fig. 4). Next, we
explored the lower limit for ctDNA detection in the NDR model.
We evaluated the sensitivity and specificity of the model as a
function of ctDNA fraction threshold. We used the 113 in silico
test set CRC samples (Fig. 3e, CRC-9–12) as positives, and
40 random subsets (Supplementary Data 3, ~80x each) from the
data of plasma samples (n= 29) from healthy individuals as
negatives. At a 2% ctDNA fraction threshold, the model correctly
predicted all positive (of expected fractions ≥2% threshold) and
negative samples (100% sensitivity and specificity, Supplementary
Data 3). In comparison, at a 1% threshold, the sensitivity was
maintained at 100% but the specificity dropped to 75%.

To further evaluate the robustness of the model when tested on
in silico samples generated using healthy samples not seen during
model training, we split the healthy samples (n= 29) into two
different groups to separately generate in silico training and test
data. Reassuringly, this analysis showed robust model perfor-
mance in the presence of independent train/test healthy samples
(Supplementary Fig. 5; test set median Pearson r= 0.92; median
Spearman correlation, ρ= 0.93; median MAE = 5.3%).

Next, we compared the predictive performance of our model
with ichorCNA12, a method that estimates the ctDNA fraction on
the basis of arm-level copy number alterations in low-pass WGS
data. Overall, ichorCNA accurately predicted ctDNA burden
(Supplementary Fig. 6; Pearson r= 0.91; Spearman correlation,
ρ= 0.92). However, while 31 out of 120 low burden samples
(ctDNA burden ≤5%) were predicted as non-cancerous by
ichorCNA (Supplementary Fig. 7), only 4/120 were predicted as
non-cancerous by the NDR approach. This is consistent with the
reported 3% lower limit of detection using arm-level CNAs12.

Targeted NDR assay to estimate ctDNA burden. Intriguingly,
since the predictive models used data from only a few NDRs, we
hypothesized that a targeted sequencing approach could be
deployed for robust and low-cost estimation of ctDNA burden.
The CRC model only requires cfDNA relative coverages at
6 NDRs (Table 1). We therefore designed capture probes for these
six regions (total ~24 kb) and performed targeted sequencing
(~300x) on 53 new plasma samples from CRC patients (Fig. 4a),
followed by ctDNA burden estimation from the relative coverage
of the NDRs using the existing CRC model. To examine the

accuracy of our model on targeted NDR sequencing data, we also
performed low-pass WGS (~4x) on the same plasma samples for
ctDNA content estimation with the CNA-based method,
ichorCNA. We observed high concordance (Pearson r= 0.84;
Spearman correlation, ρ= 0.79) of estimated ctDNA burden with
the CNA and NDR-based approaches (Fig. 4b and Supplementary
Data 4). Moreover, in the 53 samples, we performed targeted
sequencing (~6000x) of a panel of 100 frequently mutated genes
(~370 kb, Supplementary Data 5) in colorectal cancer. SNVs
called by MuTect and VarScan were intersected and further fil-
tered to minimize false positives (Supplementary Data 6, see
Methods section). This analysis identified high-confidence
somatic mutations in 27 plasma samples and revealed high cor-
relation (Pearson r= 0.85; Spearman correlation, ρ= 0.88)
between maximum VAFs and NDR-based ctDNA burden esti-
mates across samples (Fig. 4c and Supplementary Data 4). ctDNA
was detected in 49 out of 53 (92%) samples with the targeted
NDR approach, compared to 33/53 (62%) and 27/53 (51%) with
ichorCNA and SNV calling approaches, respectively. The four
ctDNA-negative samples identified with the NDR approach were
also ctDNA-negative using ichorCNA and the SNV approach
(Supplementary Data 4). Overall, this demonstrates that the
NDR-based estimation approach is robust and can be deployed
with a compact and low-cost targeted sequencing approach.

NDR-based monitoring of ctDNA dynamics and disease pro-
gression. To further explore how NDR-based ctDNA burden
estimation could be used for low-cost monitoring of cancer
progression, we applied the targeted NDR assay to serial plasma
samples collected from five CRC patients (Fig. 4d). Overall, tar-
geted NDR profiling showed concordant ctDNA burden
dynamics when compared with SNV VAFs profiled in the same
samples, with coinciding increases and decreases in ctDNA bur-
den and VAFs over time. For example, patient C357 showed
generally increasing ctDNA burden and VAFs over time, and
patient C986 had an intermediate coinciding peak in both ctDNA
burden and VAFs. We detected driver mutations in TP53,
PIK3CA and APC in patient C986. While VAFs of these muta-
tions were highly correlated, they showed a between-mutation
spread of ~0.1–0.2 VAF units across all timepoints. Similarly,
patient C519 had TP53 and APC mutations with a ~0.2–0.3 unit
difference in VAFs. While such differences may be caused by both
technical (e.g. capture efficiency) and biological (e.g. clonality or
concomitant CNAs) bias, they demonstrate the challenge in
estimating ctDNA burden levels based on VAFs alone.

We noted a number of plasma samples for which the NDR-
based ctDNA burden was inferred to be positive, yet our variant
calling pipeline identified no SNVs under default settings. To
further understand this discordance, we manually inspected the
raw sequencing data in these “mutation-free” plasma samples.
Indeed, when searching for variants that were identified in other

Table 1 NDR features predictive of ctDNA fraction in CRC.

Gene Transcript Chr Site Region Expr. FPKMblood FPKMCRC Pr.

SHKBP1 ENST00000599716 19 41,082,891 Junction Blood 10.66 0.22 1.000
ACSL1 ENST00000454703 4 185,747,070 Junction Blood 35.07 0.78 1.000
BCAR1 ENST00000162330 16 75,285,369 Junction Tumor 0.00 16.86 1.000
RAB25 ENST00000361084 1 156,030,951 Promoter Tumor 0.07 131.50 0.999
PRTN3 ENST00000234347 19 840,960 Promoter Blood 13.78 0.00 0.995
LSR ENST00000605618 19 35,739,922 Promoter Tumor 0.22 31.85 0.990

The column Site is the position of the nucleosome-depleted site (GRCh37); Region is the annotated class of the nucleosome-depleted site (promoter or exon–intron junction); Expr. denotes whether the
transcript is specifically expressed in CRC tumor tissue or whole blood cells; Pr. is the probability/frequency with which the feature was selected in the Lasso stability-selection approach.
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samples/timepoints from the same patients, the raw sequencing
data supported presence of the expected SNVs in all the samples
with positive NDR-quantified ctDNA burden (Supplementary
Data 7). In contrast, one plasma sample (patient C1531, day 191)
was quantified with zero ctDNA burden by the NDR approach
and manual screening confirmed absence of TP53 and APC
mutations in this sample (Supplementary Data 7). Overall, these
results highlight the robustness of the targeted NDR assay for
ctDNA burden estimation.

We next explored how ctDNA burden dynamics correlate with
response to targeted or cytotoxic treatments. Patient C357 was
treated with Regorafenib (days 821–842 after diagnosis) followed
by Trifluridine (days 979–1026). However, ctDNA burden
estimation in this time interval (days 800–1056) showed no drop
in ctDNA burden following either treatment, indicating tumor
resistance to both drugs; end-treatment CT scans (day 916 and
1056 respectively) confirmed progressive disease. In contrast,
patients with positive response to treatment showed a marked
reduction of ctDNA burden in plasma. For example, patient
C1531 received the chemotherapy regimen of FOLFOXIRI (days
82–175) and had on and post-treatment CT scans showing partial

response. Strikingly, this patient showed a concomitant and
marked drop in ctDNA burden both during (day 160) and after
(day 191) treatment. In patient C575, TP53 and ATR mutations
were only identified at two out of four timepoints by our pipeline.
In this patient, both CT scans and ctDNA burden estimation
inferred stable disease (days 612–833) during the first round of
XELOX/bevacizumab treatment. However, during the second
round of treatment, the ctDNA burden increased (day 864) and
CT scans confirmed progressive disease, indicating acquired drug
resistance. Finally, discrepancies between tumor dynamics
inferred from CT imaging and ctDNA burden have previously
been reported6,29. Patient C519 reflected one such example,
where CT scans indicated progressive disease while both ctDNA
burden estimates and mutation VAFs decreased.

Estimation of ctDNA burden across cancer types. The pre-
dictive model for CRC ctDNA burden included 3 (out of 6) NDR
coverage features from genes overexpressed in whole blood.
Intriguingly, a predictive model completely restricted to blood-
specific genes could hypothetically quantify the extent that a
cfDNA profile deviates from a healthy baseline profile, allowing
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prediction of ctDNA burden across different cancer types. Indeed,
we were able to identify genes overexpressed in whole blood
compared to solid tumor tissue that also had decreased NDR
coverage in plasma samples from healthy individuals as compared
to patients of distinct cancer types (Fig. 5a). To further system-
atically test this idea, we performed deep (~72–94x) cfDNA WGS
sequencing of blood samples from 10 breast cancer patients
(Supplementary Data 1) and generated in silico diluted cfDNA
samples of variable ctDNA burden (Supplementary Table 1 and
Fig. 5b). Since germline data was not available for the BRCA
patients, ctDNA fractions were estimated in the 10 BRCA sam-
ples using ichorCNA. We then shortlisted transcripts highly
overexpressed in whole blood compared to solid tumor tissues
(comprising 20 different solid tumor types, Fig. 5b), yielding 792
blood-specific candidate NDR features (Supplementary Data 8).
Using a training dataset comprising cfDNA samples from both
CRC and BRCA patients, we found that models comprising
approximately 10 features were able to generalize well to unseen
data from both cancer types (Supplementary Fig. 8). A model
fitted with the training data using the top 10 predictive features
(Supplementary Data 9) had a mean absolute error of 2.2%, with
comparable accuracy in CRC and BRCA samples (Fig. 5c). In the
unseen CRC and BRCA test data (Fig. 5d), the model achieved
an overall accuracy (MAE= 4.3%; Pearson r= 0.95; Spearman
correlation, ρ= 0.97; Supplementary Fig. 9), comparable to the
CRC-specific model applied to CRC data (MAE= 3.4%; Pearson
r= 0.96; Spearman correlation, ρ= 0.97; Fig. 3e, f) and a BRCA-
specific model applied to the BRCA data (MAE= 6.1%; Pearson
r= 0.97; Spearman correlation, ρ= 0.97; Supplementary Fig. 10).
We also observed strong concordance between the CRC+ BRCA
and CRC-specific models in their predicted ctDNA fractions in

the test set plasma samples from CRC patients (Pearson r = 0.95;
Spearman correlation, ρ= 0.95; Supplementary Fig. 11). We
analyzed the lower limit of detection for the CRC+ BRCA model
by evaluating the sensitivity and specificity of the model as a
function of ctDNA fraction threshold. We used the 206 in silico
test set samples (113 CRC+ 93 BRCA, Fig. 5d) as positives and
40 random subsets (~80x each) from healthy individuals as
negatives. At a 3% ctDNA fraction detection limit, the CRC+
BRCA model achieved 100% sensitivity and specificity (Supple-
mentary Data 10). In comparison, at a 2% threshold, the sensi-
tivity was almost maintained at 99.5% but the specificity dropped
to 88%. These results support that a model based on a limited set
of blood-specific NDR features can predict ctDNA fractions
across two distinct cancer types.

Discussion
Monitoring of ctDNA offers a non-invasive approach to tracking
disease progression and has been demonstrated as a valuable real-
time tool for assessing therapeutic response3,30–34. Here, we show
that cfDNA coverage patterns at tumor and blood-specific NDRs
can be used for quantitative estimation of the ctDNA burden in
blood plasma samples. While SNV VAFs can be used as a proxy
for the ctDNA burden35, this only works for the subset of patients
with known and measured clonal SNVs in a given targeted gene
panel. SNV-based approximation of ctDNA burden may be fur-
ther challenged by clonal haematopoiesis36, which is frequently
observed in cancer patients. Additionally, absolute ctDNA frac-
tion estimation from SNVs requires co-estimation of allele zyg-
osity and clonality37, which may be challenging to infer for
metastatic patients with multiple independently evolving tumors
contributing ctDNA to the blood circulation38. Furthermore, in
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low ctDNA burden samples, which are common and clinically
important39, NDR-based burden estimation showed improved
accuracy as compared to a lp-WGS-based estimation method12.
In contrast to lp-WGS and DNA methylation-based profiling,
NDR-based estimation is directly compatible with targeted gene
panel sequencing. Since the ctDNA burden estimation model
requires data from 10 or less NDRs, these regions can be profiled
at low cost by capturing <25 kb of genomic sequence. Targeted
cfDNA assays often cover hundreds of genes and >1Mb captured
genomic sequence, with larger panels required for profiling across
cancer types and tumor mutation burden estimation40. It would
be straightforward to co-profile NDRs in such assays, with only a
minor increment in panel size. Furthermore, down-sampling
analysis showed that the NDR approach is robust down to 100x
sequence coverage (Supplementary Fig. 12), imposing a sequen-
cing demand equivalent to ~0.001x WGS, orders of magnitude
lower than current lp-WGS approaches. Importantly, an inte-
grated NDR/gene assay would be able to estimate ctDNA burden
in patients without clonal mutations in targeted cancer genes,
potentially corresponding to 5–70% of patients depending on
cancer type41. While the estimated lower limit of detection (~2%)
of the NDR approach is likely not suited for screening of cancer
in healthy/cancer-free individuals, the approach could enable
low-cost and simultaneous quantitative estimation of ctDNA
burden and mutational profiling in response to treatment inter-
ventions. Furthermore, critical for treatment decision support,
independent ctDNA burden estimates could assist in classifica-
tion of clonal and subclonal actionable mutations. Intriguingly,
we found that a model restricted to blood-specific NDRs could
robustly predict ctDNA burden across both colorectal and breast
cancer patients, suggesting it might be possible to estimate ctDNA
burden independently of tumor types and metastatic lesions.
However, studies across multiple cancer types are needed to
further test and establish the robustness of such an approach. We
also recognize that the targeted NDR sequencing approach should
be tested across larger patient cohorts and healthy individuals to
more accurately assess potential technical bias and its limit of
detection.

Nucleosome positioning across gene bodies, and its association
with transcriptional activity, has been studied using both bio-
chemical assays27 and cfDNA profiles18. Unexpectedly, our sys-
tematic analysis across ordered exon–intron junctions revealed
that, in addition to the promoter, only the first exon–intron
junction showed signatures of strong nucleosome and expression-
dependent cfDNA degradation (Fig. 2a and Supplementary
Fig. 1). Interestingly, transcription and splicing are coupled
processes42, and it has been observed that H3K4me3 and H3K9ac
chromatin marks of active transcription are concentrated speci-
fically at both promoters and ends of first exons43. Our data
further supports that nucleosome depletion and DNA accessi-
bility at the first exon–intron splice junction is strongly associated
with transcriptional activity, supporting a model where the first
exon splice region may act as a transcriptional enhancer43,44.

In summary, we show how tissue and expression-specific
cfDNA degradation at NDRs can be used to quantitatively esti-
mate ctDNA burden in blood samples. The approach is directly
compatible with targeted gene sequencing, allowing for low-cost
and simultaneous discovery of actionable cancer mutations and
accurate estimation of ctDNA burden. We anticipate these
insights will be useful in the design of next-generation cfDNA
assays to quantitatively track and analyze cancer disease pro-
gression across time and patients.

Methods
Plasma samples. Cancer patient and healthy volunteer samples were collected under
studies 2013/110/B (now 2018/2795), 2013/251/B, 2014/119/B, and 2012/733/B

approved by the Singhealth Centralised Institutional Review Board. The written
informed consent was obtained from the patients. Information of patients is
provided in Supplementary Data 11. Plasma was separated from blood within 2 h of
venipuncture via centrifugation at 10min × 300 g and 10min × 9730 g, and then
stored at −80 °C. DNA was extracted from plasma using the QIAamp Circulating
Nucleic Acid Kit following manufacturer’s instructions. Sequencing libraries were
made using the KAPA HyperPrep kit (Kapa Biosystems, now Roche) following
manufacturer’s instructions and paired-end sequenced (2 × 151 bp) on either an
Illumina Hiseq4000 or HiseqX.

Whole-genome sequencing. We first used a targeted sequencing panel (Supple-
mentary Data 5) to screen plasma samples from CRC patients and selected
12 samples (Supplementary Data 1) of likely high ctDNA burden, having max-
imum VAF >15% for known CRC cancer driver mutations (Supplementary
Data 12). Similarly, we selected 10 BRCA plasma samples of high ctDNA burden,
with either VAF >15% based on a panel of 77 genes (Supplementary Data 13) of
common breast cancer mutations (Supplementary Data 14), or alternatively, sig-
nificant proportions (>20%) of short (length <150 bp) cfDNA fragments (Sup-
plementary Data 1). It has been reported that short cfDNA fragments below 150 bp
are enriched in high-ctDNA plasma samples45. Deep WGS (~90x) was performed
on the 12 cfDNA samples from 7 CRC patients and 10 cfDNA samples from
10 BRCA patients (Supplementary Data 1). For the 5 CRC patients with 2 samples
each, there was at least a 12 months interval between the two samples. We used
bwa-mem46 to align the WGS reads from healthy (n= 29, ~5x coverage), cancer
(CRC n= 12, BRCA n= 10, ~90x coverage), and matched germline samples (CRC
n= 12 ~30x coverage, not available for BRCA) to the hg19 human genome.
Duplicates were marked using biobambam47. A previous study found that trim-
ming reads from both ends increased the coverage signal of nucleosome
positioning21. Similarly, we used BamUtil48 to trim the original reads (~151 bp)
from the two ends and preserved the central 61 bp to amplify the nucleosome-
associated DNA degradation signal. BAM files of healthy individuals were
merged using SAMtools merge function49. Low-pass WGS (~4x) was performed on
53 cfDNA samples from 23 CRC patients (Supplementary Data 4).

Sample preparation for targeted sequencing. Plasma and patient-matched buffy
coat samples were isolated from whole blood within six hours from collection and
stored at −80 °C. DNA was extracted with the QIAamp Circulating Nucleic Acid
Kit, followed by library preparation using the KAPA HyperPrep kit. All libraries
were tagged with custom dual indexes containing a random 8-mer unique mole-
cular identifier. Targeted capture was performed on xGen custom panels (Inte-
grated DNA Technologies) relevant to the experiment: (a) panel of 100 genes
selected based on literature review for relevance to colorectal, see Supplementary
Data 5 or (b) capture probes (Supplementary Data 15) targeting genomic regions
(4 kb centered at the sites in Table 1) related to the 6 NDRs predictive of ctDNA
content in colorectal cancer. Paired-end sequencing (2 × 151 bp) was done on an
Illumina Hiseq4000 machine. Information of the samples with NDR-positive
ctDNA detection but SNV and ichorCNA-negative has been provided in Supple-
mentary Data 16.

Variant calling and allele frequency estimation. Sequencing data was analyzed
using the bcbio-nextgen pipeline50, including read alignment with BWA mem,
PCR duplicate marking with biobambam, as well as recalibration and realignment
with GATK51. Somatic variant calling was performed using MuTect52 and
VarScan53 with default parameters, and all calls were annotated with Variant Effect
Predictor54. Variants were removed if they were outside coding regions. The
inferred VAFs were either from one of the two callers if the variant was missed by
one caller, or the mean if the variant was called by both callers (Supplementary
Data 6). Variants from HLA-A, KMT2C and MUC17 were filtered because the
majority of variants in these genes were also found by at least one caller at ≥0.005
VAF in buffy coat sequencing.

Gene expression analysis. Tissue-specific RNA-seq transcript expression data
based on GTEx dataset (including 337 whole blood samples) and tumor RNA-seq
transcript expression based on TCGA dataset were obtained from UCSC Toil
RNAseq Recompute Compendium (Supplementary Table 3)55. Because a gene
usually comprises multiple alternative transcripts with different genomic positions,
we studied gene expression at the transcript level for a precise mapping of pro-
moter and junction locations. Transcripts of all coding genes were grouped on the
basis of their expression level (fpkm) in whole blood. If a group (e.g. 0.1 < fpkm ≤ 1;
25,155 transcripts) had more than 5000 transcripts, we randomly selected 5000
transcripts to represent the group. Unexpressed genes were defined as transcripts
that were not expressed in ≥99% of all 7861 GTEx samples.

Relative cfDNA coverage estimation. Read coverage at promoter and junction
regions was computed from BAM files with SAMtools depth function49. For the
promoter region (−150 to 50 bp relative to TSS), the mean raw coverage across the
region was divided (yielding “relative coverage”) by the mean coverage of the
upstream (−2000 to −1000 bp relative to TSS) and downstream (1000–2000 bp
relative to TSS) flanks (Supplementary Fig. 13). Thus, the mean coverage of the
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combined upstream and downstream 2k bp flanks serves as a “normalization
factor”. A similar approach was used for exon–intron junctions. To measure the
difference of relative coverage at NDRs between plasma samples from CRC patients
and healthy individuals, we computed the relative coverage score:

score ¼mean CRCð Þ �meanðhealthyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðCRCÞ
p ð1Þ

where mean(CRC) and mean(healthy) are the mean of average relative coverages at
NDRs across CRC plasma and healthy plasma samples respectively, and var(CRC)
is the standard deviation of average relative coverages at NDRs across CRC sam-
ples. The variance across individual sites in healthy samples could not be estimated
due to low sequencing depth (~5x). Instead, to test for differences in variance
between cancer and healthy samples, we approximated the variance in healthy
samples using bootstrapping. Briefly, we estimated the standard deviation across
20 subsets of healthy samples (~50x merged) generated by randomly sampling
(with replacement) and merging 10 samples out of 29 healthy controls. This
analysis showed similar separation between CRC and blood-specific NDRs when
variance was estimated in plasma samples of cancer (Fig. 3b) and healthy control
(Supplementary Fig. 14). When computing average relative coverage of each NDR
(either −150 to 50 bp relative to TSS, or −300 to −100 bp relative to first exon
end), positions with relative coverage >2 were truncated to reduce bias from
potential outlier values.

To explore the association between relative coverage and a range of epigenetic
features, we used linear regression to fit each candidate feature (covariate) with
relative coverage (response). Whole blood gene expression (fpkm) was discretized
into 6 bins [unexpressed, 0.01 < fpkm ≤ 0.1, 0.1 < fpkm ≤ 1, 1 < fpkm ≤ 5, 5 <
fpkm ≤ 30, fpkm > 30] and fitted as a categorical covariate with the unexpressed
group as the reference group. Peaks of epigenetic features [DNase, H3K4me3,
H3K36me3, H3K27ac, H3K4me1, H3K9me3, and H3K27me3] from primary T-
cells (E034) were obtained from the Roadmap Epigenomics Project. Epigenetic
features were fitted as binary covariates with no signal as the reference group.

Estimation of ctDNA fractions from deep WGS cfDNA data. The ctDNA
fractions in CRC plasma samples were quantified using four different methods:
THetA222, TitanCNA23, AbsCN-seq24, and PurBayes25. These methods were ori-
ginally developed to use matched tumor tissue and germline Exome/WGS data to
estimate mutation and copy number tumor heterogeneity, including tumor purity.
Here we applied these methods to the ~90x cfDNA and ~30x matched germline
(buffy coat) WGS data to estimate ctDNA fractions. Somatic mutations and copy
number alterations, as input to AbsCN-seq and PurBayes, were called by SMuRF56

and CNVkit57, respectively, using the bcbio-nextgen workflow50. The median of
these four ctDNA fraction estimates for a given sample was used as the final
consensus estimate of the ctDNA fraction. Since germline samples were not
available for the BRCA patients, the ctDNA fractions of the BRCA plasma samples
were estimated by ichorCNA12.

In silico sample generation. The cancer cfDNA samples were in silico diluted by
mixing cancer cfDNA reads with reads from healthy samples, maintaining the
same average coverage as the original undiluted cancer cfDNA sample. The in silico
generated samples were diluted from ctDNA content ranging from 0.005 up to the
original undiluted fractions, with a denser sampling of low fractions ≤0.05 (Sup-
plementary Table 1). We generated a training set of 231 samples originating from
8 samples from 5 CRC patients, and a test set of 113 samples originating from
4 samples from 2 additional CRC patients. For BRCA, the training set comprised
215 in silico generated samples from 7 patients/samples, and the test set had
93 samples from 3 patients/samples (Supplementary Table 1).

Generation of NDR features. We computed the relative coverage score (see
above) of NDRs for all transcripts and combined the relative coverage score with
expression data to shortlist tumor/blood-specific transcripts associated with dif-
ferential tumor/blood NDR cfDNA coverage. For each transcript, we calculated its
median fpkm (fpkmblood) across all whole blood samples, its median fpkm
(fpkmCRC) across all CRC samples, as well as its respective median fpkm values for
other tumor types. Tumor transcripts were defined as being highly expressed in
CRC tumor, lowly expressed in normal blood cell, and more highly degraded in
CRC samples at both promoter and junction NDRs (fpkmCRC > 10, fpkmblood < 1,
relative coverage score <−0.2). Blood transcripts were defined with similar rules
(fpkmCRC < 1, fpkmblood > 10, relative coverage score > 0.2). This approach short-
listed 284 CRC and 210 blood transcripts, each transcript with two features
(promoter and junction NDR coverage). After removing overlapping features
(multiple transcripts sharing the same NDR), we used NDR coverages of the
resulting 529 tumor and 379 blood features (total n=908) as input features for
predictive modeling. For the CRC+ BRCA model, we only shortlisted transcripts
with blood-specific expression (fpkmblood > 5) that were also lowly expressed
(fpkm < 1) in tumors of all 20 tumor types (TCGA tumor type acronyms: BLCA,
BRCA, CESC, CRC, ESCA, GBM, HNSC, KIRC, KIRP, LGG, LIHC, LUAD, LUSC,
OV, PAAD, PRAD, SKCM, STAD, THCA, UCEC), leading to a total of 792
features.

Lasso regularized regression to predict ctDNA fraction. We used Lasso reg-
ularized linear regression using glmnet58 to select features and predict ctDNA
content in plasma cfDNA samples. To select robust features, we first extracted half
of the training data randomly and used Lasso with ten-fold cross-validation to
identify features predictive of ctDNA fractions. This procedure was repeated 1000
times and the top stable features (selection frequency ≥ 0.99) were extracted as the
final predictive features, which resulted in 6 predictive features (Table 1) for the
CRC-specific model and 10 predictive features (Supplementary Data 9) for the
CRC + BRCA model, respectively. We trained the final predictive model with ten-
fold cross-validation on the full training set. We also attempted to predict ctDNA
fractions with log-transformed relative coverage, and tested the performance using
a logistic regression model, both of which failed to outperform the current model in
prediction accuracy (data not shown).

To evaluate the robustness of the model when we trained and tested on in silico
samples generated using independent healthy samples, we split the normal samples
evenly into 2 sets. The first set (N1) was used to perform in silico spike-ins/dilution
of the training set, and the second set (N2) was used for in silico dilution of the test
set. Briefly, we re-fitted the coefficients of the CRC model (comprising the 6
features in Table 1) using the training data (diluted with the N1 healthy samples),
and we then evaluated the model accuracy on the withheld test samples (diluted
with N2). We repeated this procedure 10 times and evaluated the model accuracy
on the test data generated using the independent normal samples.

ichorCNA benchmarking. For the in silico samples, we mixed cfDNA reads from
the 12 deep-WGS CRC samples with reads from healthy samples to generate in
silico low-pass samples (~0.1x) for ctDNA content estimation using ichorCNA. We
followed the usage guidelines with default parameters in the 2 step workflow:
(1) read count coverage calculation with HMMcopy Suite, and (2) tumor content
estimation with ichorCNA R package.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
cfDNA sequencing data have been deposited at the European Genome-phenome Archive
(EGA) under the accession code EGAS00001004657. Data is available under restricted access
and will be released subject to a data transfer agreement. Tissue-specific RNA-seq transcript
expression data (https://toil.xenahubs.net/download/gtex_RSEM_isoform_fpkm.gz) based
on GTEx dataset and tumor RNA-seq transcript expression data (https://toil.xenahubs.net/
download/tcga_RSEM_isoform_fpkm.gz) based on TCGA dataset were obtained from
UCSC Toil RNAseq Recompute Compendium. The remaining data are available within the
Article, Supplementary Information or available from the author upon request.

Code availability
The code for generating coverage features and developing quantitative models is included
in Supplementary Software 1. The NDR models, code, and data accessions are available at
https://github.com/skandlab/NDRquant.
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