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A continuum of invariant sensory and behavioral-
context perceptual coding in secondary
somatosensory cortex
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A crucial role of cortical networks is the conversion of sensory inputs into perception. In the

cortical somatosensory network, neurons of the primary somatosensory cortex (S1) show

invariant sensory responses, while frontal lobe neuronal activity correlates with the animal’s

perceptual behavior. Here, we report that in the secondary somatosensory cortex (S2),

neurons with invariant sensory responses coexist with neurons whose responses correlate

with perceptual behavior. Importantly, the vast majority of the neurons fall along a continuum

of combined sensory and categorical dynamics. Furthermore, during a non-demanding con-

trol task, the sensory responses remain unaltered while the sensory information exhibits an

increase. However, perceptual responses and the associated categorical information

decrease, implicating a task context-dependent processing mechanism. Conclusively, S2

neurons exhibit intriguing dynamics that are intermediate between those of S1 and frontal

lobe. Our results contribute relevant evidence about the role that S2 plays in the conversion

of touch into perception.
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Key to understanding the emergence of a percept in the
cerebral networks is how sensory inputs are converted into
perceptual reports. Is there any cortical area where a sen-

sory representation coexists with a perceptual code? Do these
responses appear as a continuum between distinct neural codes?
Would these distinct neural codes be associated with separable
subnetworks? These questions have been investigated in rodents
and primates using different sensory tasks1–12, showing evidence
that some cortical areas may play a relevant role in the conversion
of sensory inputs into perceptual responses. However, it has been
hard to decode these neural operations across cortices, especially
quantifying the degree of sensory or perceptual responses
exhibited by a neuron. Vibrotactile discrimination tasks establish
an appropriate experimental setting to further explore these
questions in behaving monkeys3,13. While the temporality of each
stimulus is represented faithfully and homogeneously in the
primary somatosensory cortex (S1)14, frontal lobe neurons exhibit
complex and heterogeneous responses associated with working
memory and perceptual reports15. In other words, S1 and the
frontal lobe demonstrate disparate signals that correspond to
different stages of cognitive processing. The two processing stages
may require an intermediary that contains both types of signals,
representing sensory inputs for transformation into perceptual
reports. Based on proposed hierarchies of the cortical somato-
sensory network16–18, that intermediary could be the secondary
somatosensory cortex (S2).

Contrary to S1, S2 neurons display large, multi-digit or
bimanual receptive fields. Previous anatomical evidence has
suggested that S2 is largely connected with downstream, as well as
upstream areas19–25; this single area could have access to faithful
sensory inputs (bottom-up)4,26, as well as mnemonic information
that is solely found in the frontal lobe dynamics (top-down).
Further, their neuronal responses could depend on task
context11,27,28. While a transformation of the sensory code was
observed between S1 and S214, the coexistence of categorical
coding with sensory responses has yet to be studied in S2. The
division between neurons representing the sensory inputs and
neurons representing the categorical reports has remained
unclear in the somatosensory network. Moreover, what is the role
of S2 during non-demanding tasks, where S1 responses remain
unchanged and frontal lobe coding disappears3,13,15? Could S2 act
as a switch, transforming sensory information on the basis of task
requirements?

In this work, we focused on behavioral conditions in which
knowledge of the temporal structure of the stimulus pattern is
essential to solve the task. We employed a temporal pattern
discrimination task15 (TPDT) to analyze the neuronal responses
recorded in S2. The precise timing of each pulse matters during
the TPDT, since the monkeys discriminate between patterns
based on their temporal structure. Unlike other somatosensory
tasks15,29,30, an intensive code cannot be used to resolve the
TPDT. When we computed the S2 coding dynamics, we found
that S2 neurons displayed complex coding associated with the
stimuli, early working memory, comparison and decision reports.

We identified activity patterns that mirror the processing stages
observed in S1 and in the dorsal premotor cortex (DPC).
Focusing on one population extreme, the most sensory S2 neu-
rons showed phase-locked responses to the stimulus and that
were invariant to task context and decision outcome; conversely,
the responses of S2 perceptual categorical neurons were severely
affected during errors, and entirely ablated during a non-
demanding task variant (light control task [LCT]). Further, the
S2 population reflected a range of intermediate dynamics that
varied between pure sensory and pure categorical; the vast
majority of the S2 network falls along this continuum of com-
binations. Moreover, across the S2 responses, categorical

information increased during the TPDT with respect to the LCT,
and sensory information diminished. Consequently, which
information is predominant in the whole S2 population strongly
depends on task context. The entire S2 population demonstrated
response and coding latencies that lay between those of S1 and
DPC. S2 sensory neurons exhibit significantly longer latencies
than area 3b neurons (S1), while S2 categorical neurons display
significantly shorter latencies than DPC. Since categorical
dynamics emerge first in S2, they are unlikely to originate as a
top-down signal from DPC, although we cannot discard other
frontal areas as candidate sources. As an extension, we asked if
these distinct coding dynamics depended on two separable sub-
networks; however, we found neither spatial segregation based on
coding dynamics nor timescale differences across S2. Despite the
extreme diversity in S2 coding responses, they appear to develop
at the same processing stage. Collectively, our findings indicate
that S2 is an intermediate processing area where a continuum of
neuronal responses, from sensory to categorical, best char-
acterizes the entire population. This suggests that S2 plays a role
in the transition from sensory inputs to perceptual behavior.

Results
Single-neuron responses during the TPDT. We trained two
monkeys in the TPDT, in which they reported whether two
temporal patterns composed of vibrotactile flutter stimuli (P1 and
P2) were the same (P2= P1) or different (P2 ≠ P1)15 (Fig. 1a,
“Methods”). There were two possible temporal patterns: extended
(E), which presents 5 pulses periodically, and grouped (G), which
presents 3 of the 5 pulses center-grouped. Importantly, stimulus
mean frequency (5 Hz) and duration (1 s) were held constant, so
the monkey must restrict its discrimination to the period between
the initial and final boundary pulses. Thus, the stimuli presented
in each trial could be one of 4 possible pairs, or classes: G-G (c1),
G-E (c2), E-G (c3), and E-E (c4). The average performance across
S2 recording sessions during the TPDT was 84% (±7%),
remaining consistent across classes (Fig. 1b).

We recorded extracellular activity from 1646 neurons in S2
(Fig. 1c, “Methods”) during the monkeys’ performance of the
TPDT (Monkey RR17, n= 1035; Monkey RR20, n= 611). The
responses of 12 exemplary S2 neurons are shown in Fig. 1d–f and
Supplementary Fig. 1a–i. Contrary to S115, S2 neurons displayed
a broad repertoire of responses with clearly distinguishable
neuronal dynamics. Several neurons were entrained by the stimuli
(Fig. 1d and Supplementary Fig. 1a, b), limited to faithful
responses tracking the patterns. Another group of neurons
exhibited partially phase-locked responses but also encoded some
of the task parameters categorically (Supplementary Fig. 1c, d).
For example, the neuron of Supplementary Fig. 1f had a much
stronger response for G-patterns during both stimulus periods.
Supplementary Fig. 1c is phase-locked, however, it diminished its
activity during a specific class, c1. These examples reveal that
some S2 neurons exhibit intermediate dynamics between pure
sensory and pure categorical. On the other hand, some neurons
revealed predominantly categorical responses (Fig. 1e, f and
Supplementary Fig. 1g–i). These cells do not track the stimulus,
suggesting a complete transformation of sensory inputs into
abstract categorical representations. This first panorama lets us
summarize S2 neurons as consisting of a pure sensory group, a
pure perceptual categorical group, and a spectrum of responses
mixing both dynamics.

Single-neuron responses during the TPDT vs. the LCT. Several
of the S2 neurons recorded during the TPDT were also recorded
during the LCT (n= 313; Monkey RR17, n= 189; Monkey RR20,
n= 124), a control variant of the active task. In each trial, the
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animals received the same stimuli as in the TPDT, but the correct
decision report was guided by a continuous visual cue (“Meth-
ods”). As opposed to the TPDT, the performance for the LCT was
consistently 100% (Fig. 1b), demonstrating that it was not as
cognitively demanding. In a previous work, we observed that
neurons in area 3b (S1) do not alter their responses during the
LCT15, although DPC neurons ceased their task-parameter
coding15,31. Thus, DPC neurons were recruited to code task-
relevant information exclusively during the cognitively demand-
ing task (TPDT).

The examples in Fig. 2 and Supplementary Fig. 2 show the
responses of ten typical S2 neurons that were tested in both the
TPDT and the LCT. Analogous to area 3b, the pure sensory
responses are not affected by context (Fig. 2a and Supplementary
Fig. 2a, c). On the other hand, intermediate neurons alter only
portions of their coding during the LCT (Supplementary Fig. 2b,
d, e). The neuron in Supplementary Fig. 2e exhibits G-pattern
categorical responses during P2 in the TPDT, but this coding
response was lost and only the sensory responses remained during
the LCT. In other words, in intermediate neurons, pure sensory
responses increased, and categorical responses diminished during
the LCT (Supplementary Fig. 2b, d, e, see Supplementary Fig. 8).
Further, neurons with clear, or pure, categorical responses (Fig. 2b
and Supplementary Fig. 2f) stop coding task parameters.
Summarily, S2 neurons modify their categorical responses
independently of their sensory responses; the perceptual coding
is context-dependent, and the sensory responses are not.

Context-dependent coding dynamics. To measure the coding
capacities of S2 neurons as a function of time, we employed
receiver operating characteristic (ROC) to compare pairs of firing
rate distributions associated with each of the four classes (Sup-
plementary Fig. 3). We tested each time bin to identify one of the
four coding profiles associated with different task parameters:
stimulus pattern identity (P1 or P2), class selectivity, or decision
outcome (“Methods”). With this, we were able to calculate the
percentage of S2 neurons (n= 1646) that coded each task para-
meter during the TPDT (Fig. 3a). A large percentage of neurons
coded the identity of the first pattern (P1, cyan) during the P1
period. The number of S2 neurons coding P1 identity decreases
significantly at the beginning of the working memory period,
recurring in a smaller proportion at the end of the delay. This
reappearance of P1 coding is mainly due to late neurons (see
Fig. 1c), potentially serving to recall this information for use during
the comparison period. Notably, no S2 neurons coded P1 identity
continuously throughout the working memory delay (Supplemen-
tary Fig. 4a), unlike the persistent working memory coding
demonstrated in DPC (Supplementary Fig. 4b). The comparison
period (3 to 4 s) began with the extinction of the P1 signal as a high
percentage of neurons coding P2 (green) appeared. Along with P2
coding, a strikingly large number of neurons with class-selective
coding (see Supplementary Fig. 1c, g) emerged almost simulta-
neously (pink). Besides that, a small percentage of S2 neurons
exhibited modulation based on decision outcome (black). Surpris-
ingly, the decision signal involves a massive portion of S2 neurons
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Fig. 1 Temporal pattern discrimination task (TPDT) and activity of single neurons in S2. a Trials’ sequence of events. The mechanical probe is lowered
(pd), indenting the glabrous skin of one fingertip of the right, restrained hand (500 µm); in response, the monkey places its free hand on an immovable key
(kd). After a variable prestimulus period (from 2 to 4 s), the probe vibrates for 1 s, generating one of two possible stimulus patterns [P1, either grouped (G)
or extended (E); mean frequency of 5 Hz]. Note that in extended pattern (E), pulses are delivered periodically. After a first delay (2 s length, from 1 to 3 s)
between P1 and P2, the second stimulus (P2) is delivered, again either of the two possible patterns [P2, either G or E; 1 s duration]; this is also called the
comparison period. After a second 2 s delay (from 4 to 6 s) between the end of P2 and the probe up (pu), the monkey releases the key (ku) and presses,
with its free hand, either the lateral or the medial push button (pb) to indicate whether P1 and P2 were the same (P1= P2) or different (P1≠ P2).
b Performance for the whole TPDT (gray, n= 423 sessions), for each class [G-G (red), G-E (orange), E-G (green), E-E (blue)] and for the whole LCT (yellow,
n= 76 sessions). See legend of Supplementary Fig. 5 for box-plot statistics and Supplementary Fig. 5a, b for box-plots and statistics for the individual
monkeys. c Top of the brain (left figurine) for approaching the secondary somatosensory cortex (S2) and coronal section of the brain (right) for locations of
recordings in S2 (red spots). Recordings were made contralateral and ipsilateral to the stimulated fingertip. d–f Raster plots of three S2 neurons sorted
according to the four possible classes (stimulus pairs). Each row is a single trial, and each tick is an action potential. Trials were interleaved randomly,
although the rows were sorted by class afterward (only 10 out of 20 trials per class are shown). Correct and incorrect trials are indicated by black and dark
red ticks, respectively. Average firing rates (PSTHs), per class, demonstrated in traces below each raster. Color traces indicate the four possible classes: G-G
(red); G-E (orange); E-G (green); and E-E (blue). One neuron exhibits a sensory response (d) while the other two exhibit categorical activity (e–f).
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during the report period (pb, Fig. 3a). Although its role is unclear,
this representation was also observed in DPC during the same
period15 (Supplementary Fig. 4e and Fig. 7c).

To what extent are S2 signals dependent on the animal’s
behavioral report? We applied the same coding scheme
(Supplementary Fig. 3) to the S2 population recorded during
the LCT (n= 313). Notably, the diversity of coding dynamics
changed dramatically (Fig. 3b): S2 neurons only coded the
stimulus patterns’ identity, limited to their respective stimulation
periods. Thus, S2 dynamics during LCT are exclusively sensory
(Fig. 2 and Supplementary Fig. 2). Further, the total percentage of
neurons coding P1 and P2 identity decreased during the LCT; P1
working memory coding, class coding, and decision outcome
coding all ceased (Fig. 2 and Supplementary Fig. 2). In addition,
note that the decision signal, observed in the TPDT after pu, also
disappeared during the LCT (see neurons in Supplementary
Fig. 2g, h). Moreover, analogous coding dynamics were observed
in the neurons of each monkey during the TPDT and the LCT
(Supplementary Fig. 5d–g).

To further quantify these differences, we computed the S2
population instantaneous coding variances (VarCOD) during both
the TPDT (Supplementary Fig. 4c) and LCT (Supplementary
Fig. 4d). During the TPDT, coding variance reaches its maximum
value during the comparison period, where coding dynamics are
most complex. Importantly, S2 VarCOD reveals the pure sensory
responses in a clearer manner during stimulation. Comparatively,
DPC variance dynamics do not exhibit any abrupt peaks related
to pure sensory dynamics (Supplementary Fig. 4e vs. c).
Moreover, in agreement, VarCOD almost vanishes entirely during
the middle period of the working memory. In stark contrast, S2
VarCOD is only the combination of P1 and P2 stimulus identity
variances during the LCT (Supplementary Fig. 4d), each restricted
to its respective stimulation period. The decision outcome
variance is abolished during the comparison and motor report
periods. The maintenance of sensory signals, both in the variance
and coding measures computed for S2, is a key characteristic
mirroring the dynamics of S1; the ablation of perceptual
categorical dynamics in DPC (Supplementary Fig. 4f) and S2
during the control task is a key characteristic of frontal lobe
dynamics. Critically, these changes indicate that S2 activity is
profoundly related to task context.

A continuum from phase-lock to categorical neurons. After-
wards, we employed mutual information14,32 to isolate neurons
with extreme sensory or categorical dynamics. We initially
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identified S2 sensory neurons whose evoked spikes were phase-
locked to the stimulus pulses (Fig. 4a). To estimate the degree of
periodicity of individual neurons, we computed, for each trial, the
frequency power spectrum of their spike trains, during each sti-
mulation period (“Methods”). In neurons with phase-locked
responses, the power spectrum should give a high amount of
information about stimulus identity14. As a result, it should be
possible to decode pattern identity based on spike train periodi-
city in sensory neurons. We calculated the periodicity informa-
tion during P1 (IPer, Eq. (10)), using a permutation test to
evaluate significance (p < 0.01, “Methods”). Since analogous
results were found using either stimulation period, we chose to
show results of the P1 period. Periodicity information is high in
the neuron from Fig. 4a (IPer= 0.89bits), but low in categorical
neurons without phase-locked responses (Fig. 4b, IPer= 0.04bits).
Then, IPer allows us to recognize neurons with strong phase-
locking, and putatively sensory, responses. As such, neurons with
significant and high IPer (>0.25bits) were classified as sensory.
This arbitrary value was set to identify the most extreme
S2 sensory neurons. To separate neurons with categorical

responses, we computed the 1 s firing rate mutual information
associated with the identity of P1 (I1s,P1, Eq. (6)) or P2 (I1s,P2).
Then, I1s,P1 (or I1s,P2) is blind to any phase-locked response since
they produce approximately the same number of spikes for both
patterns during the 1 s window (Fig. 4a, I1s,P1= 0.07bits). Instead,
categorical neurons, that respond differentially for a specific
pattern, exhibit high values of I1s,P1. As evidence, the differential
response to the E-pattern shown in Fig. 4b gives rise to a high
value of I1s,P1 (0.83bits). Neurons with significant and high I1s,P1
values (>0.25bits) were labeled as categorical. Again, although
arbitrary, this information criterion allowed us to isolate extreme
responses.

Each point in Fig. 4c represents a single-neuron recorded
during the TPDT (n= 1646), with its position defined by I1s,P1
(x-axis) and IPer (y-axis). Notice that a comparable number of
sensory (n= 105; Monkey RR17, n= 71; Monkey RR20, n= 34)
and categorical (n= 150; Monkey RR17, n= 91; Monkey RR20,
n= 59) neurons were identified with our criteria (IPer or I1s,P1 >
0.25bits, see Supplementary Fig. 6a). Remarkably, no neurons
were found along the diagonal that satisfied both criteria (Fig. 4c),
which serves as corroboration that pure sensory and categorical
neurons represent mutually exclusive dynamics. Neurons not
classified as sensory or categorical represented the brunt of the
population, exhibiting low or intermediate values for both types
of information (green points). Notably, when using the same
metrics for the neurons recorded during the LCT (n= 313,
Fig. 4d), the plots exhibited drastic changes. In the LCT, almost
all neurons with high information were sensory neurons (Fig. 4d);
conversely, the population of categorical neurons was drastically
reduced. Thus, during the LCT, higher values of IPer were far
more common than I1s,P1 (Supplementary Figs. 6b and 8a, b).
One potential explanation for the two types of dynamics is that
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information (I1s,P1, Eq. (6)) associated with pattern identity were used to
identify sensory and categorical S2 neuron subpopulations. a Exemplary S2
neuron with high periodicity information during the first stimulation period
(IPer= 0.89bits). This neuron demonstrates low values of I1s,P1 (I1s,P1=
0.07bits). We can label it as a member of the sensory subgroup. b S2
neuron with low periodicity (IPer= 0.04bits) information and a marked
categorical response for E pattern. This neuron conveys large values of I1s,P1
(I1s,P1= 0.83bits), so it was labeled as categorical. c For each S2 neuron
recorded during the TPDT (n= 1646), I1s,P1 (x-axis) is plotted against IPer
(y-axis), both associated with the identity of P1. Analogous P2 results were
omitted. The red dashed lines indicate the arbitrary mutual information
criteria (I > 0.25bits) used to label S2 neurons as sensory (y-axis) or
categorical (x-axis). Arbitrary boundaries isolate dynamics features in S2
network based on dominant information value (IPer or I1s,P1). Most S2
neurons exhibit low or intermediate values for both I1s,P1 and IPer (green
points). d I1s,P1 (x-axis) is plotted against IPer (y-axis) for each S2 neuron
recorded during the LCT (n= 313). Negligibly few neurons exhibit I1s,P1 >
0.25bits during the LCT. e–h Percentage of each subpopulation of neurons
with significant coding as a function of time during the TPDT or the LCT.
Traces refer to P1 (cyan), P2 (green), class (pink), and decision coding
(black). e–f Sensory neurons (IPer > 0.25bits) during the TPDT (right, n=
105) or the LCT (left, n= 41). Most sensory neurons only involved in coding
P1 or P2 identity during stimulation periods. g–h Categorical neurons
computed during the first stimulus (I1s,P1 > 0.25bits, n= 150) or second
stimulus (I1s,P2 > 0.25bits, n= 184) periods. In both cases, P1 coding emerges
later and remains longer than in sensory neurons; class coding is present in
both categorical neuron types. Decision coding after “pu” is observed in both
categorical and sensory neurons during the TPDT. No categorical neurons
were identified during the LCT for computing coding dynamics.
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they occur in discretized sub-areas, creating distinct sensory and
categorical subnetworks. To address this question, we analyzed
the I1s,P1 and IPer values conveyed by pairs of neurons recorded
together during the TPDT (Supplementary Fig. 7). We found no
clusters in the arrangement of S2 neurons; the probability of
recording a pair of nearby neurons with pure dynamics was
extremely low.

We inquired whether mutual information values depended on
the cognitive context (TPDT or LCT), so we compared the same
metrics in a subgroup of neurons recorded during both tasks (n
= 313, Supplementary Fig. 8). Specifically, we wondered whether
single neurons changed the type of information conveyed
depending on the task condition. Each neuron represents a point
in Supplementary Fig. 8a, defined by the TPDT IPer (x-axis) and
the LCT IPer (y-axis). The angle distribution between the two axes
was biased to higher values (<θ >=57.49°), meaning that neurons
have a higher degree of phase-locking responses during LCT than
TPDT. In contrast, neurons displayed larger values of categorical
information (I1s,P1) during the TPDT than the LCT ( < θ >
=31.45°, Supplementary Fig. 8b). Summarily, periodicity infor-
mation increases during the LCT, while categorical information
increases during the TPDT. In agreement, several exemplary
neurons with intermediate responses increase their sensory
response by decreasing their categorical coding during LCT
(Supplementary Fig. 2b–e).

Sensory vs. categorical coding dynamics. To elaborate, we
analyzed the dynamics at the extremes of neuronal responses,
implementing the same coding scheme (Supplementary Fig. 3). In
contrast to Fig. 3a, the coding dynamics of sensory neurons
increased abruptly and analogously during both stimulus periods
(Fig. 4e). Nearly identical coding dynamics were observed during
the LCT (Fig. 4f), contrasting sharply with the differences
observed between the TPDT and LCT for the whole population
(Fig. 3). Distinguishingly, the decision signals after pu were pre-
sent in sensory neurons during the TPDT, but not during the
LCT. Applying variance measures to these sensory neurons
produced analogous results (Supplementary Fig. 6c, d). These
neurons restrict the majority of their variance and coding
dynamics to the stimulation periods.

Conversely, neurons that convey high values of categorical
information (I1s,P1 or I1s,P2) exhibit different coding dynamics
(Fig. 4g, h). Several neurons code P1 identity during the early part
of the working memory period. In contrast to Fig. 4e, categorical
neurons display a high percentage of class coding (pink, Fig. 4g, h).
The variance of these neurons (Supplementary Fig. 6e, f) yielded
similar features. Neurons with high values of I1s,P2 (Supplementary
Fig. 6f) depict elevated values of variance during the P2 period,
suggesting a preponderant role during the comparison. Importantly,
categorical neuron coding increased much more slowly during
stimulation than in sensory neurons, and their coding disappeared
almost completely during the LCT (Fig. 4d), mirroring the
dynamics of DPC (Supplementary Fig. 4e, f).

Returning to the sensory neurons (IPer > 0.25bits), the firing
patterns of the example sensory neurons (Fig. 1g) were like those
observed in the normalized population activity (Fig. 5 and
Supplementary Fig. 9). Population averaged responses were
entrained to the stimulus patterns, but beyond that, there was
no firing rate modulation associated with working memory or
decision. When we superimposed the responses (Fig. 5) evoked
during hit (Supplementary Fig. 9a) and error TPDT trials
(Supplementary Fig. 9b), as well as LCT trials (Supplementary
Fig. 9c), we found no statistical differences based on mean
squared errors (mse ~1.2–2.6%). From this, we conclude that
S2 sensory neurons faithfully tracked the temporal structure of

the stimulus patterns, regardless of task context and the monkey’s
performance.

Population P1 coding during hit and error trials. To investigate
the degree to which S2 neuron responses correlated with the
monkey’s choice, we compared the firing rate mutual information
associated with P1 during hit vs. error trials. First, we normalized
the activity (z-score) at each time bin from the 1253 neurons with
significant P1 coding (200 ms window, 50 ms step; permutation
test, ROC analysis, p < 0.05; Supplementary Fig. 3, “Methods”). A
200 ms window was optimal for decoding P1 identity from areas
3b, 1 and S2 sensory neurons (Supplementary Fig. 10). In parti-
cular, the information carried by categorical S2 and DPC neurons
saturates at this window-width. Later, we split the responses into
hit and error trials and measured their P1 mutual information
(IP1(t), Eq. (7)). In Fig. 6, we showed IP1(t) during P1 and working
memory periods (from 0 to 3 s). Even if most neurons with P1
coding (n= 1253), are neither pure sensory (n= 105) or cate-
gorical (n= 150), they are highly informative about P1 identity
during hit trials (Fig. 6a, blue), including the early part of working
memory. However, during error trials these neurons conveyed
less information (Fig. 6a, red).

Each extreme of the S2 responses conveys P1 information with
different features. Sensory neurons (n= 105; Fig. 6b) conveyed
information (IP1(t)) analogously during hit (blue) and error trials
(red), and only coded sensory inputs during the stimulation
period. In the case of categorical neurons (n= 150), the results
contrast drastically with the sensory group as well as the total
population. They demonstrated a slower increase in IP1(t) during
hits (Fig. 6c, blue), meaning that P1 information emerged later
and then lasted longer, stretching into the beginning of the
working memory delay; the most informative point was at the
end of the P1 stimulus period. Notably, P1 information carried by
categorical neurons almost vanished during errors (Fig. 6c, red).
This means that these responses correlated to behavior. The
whole population IP1(t) (Fig. 6a) is a combination between
sensory and categorical IP1(t), which likely occurs due to the
intermediate neurons. In conclusion, activity from sensory
neurons does not covary with behavior while categorical
responses do; the intermediate responses reflect a dynamical
balance.

In Supplementary Fig. 11, we extended these analyses to
compute the firing rate mutual information associated with
decision and reward. In concordance with Fig. 3, the higher
decision signal emerged after the push button press (Supplemen-
tary Fig. 11a, b). Notably, S2 neurons carried significant reward
information during the period after pb (after 7.5 s, Supplementary
Fig. 11c). Hence, it is possible to employ S2 activity to infer if the
animal received reward or not. Additionally, this signal emerged
subsequently to the categorical decision signal that appeared after
pb (Supplementary Fig. 11a, b).

S2 in the somatosensory hierarchy: latencies and inherent
timescales. Afterward, we calculate response and coding latencies
across the S2 population during the TPDT (Supplementary
Fig. 12a, “Methods”). We then computed these metrics for the
sensory (Supplementary Fig. 12b) and categorical (Supplementary
Fig. 12c) neurons. The panels in Supplementary Fig. 12 show the
probability distribution for each group. The subgroups can be
distinguished by their disparate response and coding latencies; the
entire S2 population responds and codes slower than the sensory
subgroup (response: 97 ms vs. 33 ms; coding: 432 ms vs. 301 ms),
but faster than the categorical subgroup (response: 97 ms vs. 106
ms; coding: 432 ms vs. 477 ms). A clear tendency could be
observed in the cumulative curves (Supplementary Fig. 12f);
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sensory neurons were the fastest, and categorical the slowest, for
S2 neurons. Moreover, the population recorded during the LCT
(n= 313, Supplementary Fig. 12d) displayed a trend to be faster
than the TPDT population for both latency types (response: 72
ms vs. 97 ms; coding: 363 ms vs. 432 ms).

To further explore the S2 population’s role in the somatosen-
sory hierarchy, we calculated latencies in other cortex populations
(area 3b, S1 and DPC) during the TPDT (Supplementary Fig. 13).
As one would expect, 3b neurons responded and coded the fastest
of all. However, a remarkably slight difference distinguished the
marginally slower sensory S2 latencies from the 3b latencies
(response: 33 ms vs. 23 ms; coding: 301 ms vs. 241 ms). Neurons
from DPC demonstrate the longest latencies but have comparable
coding latencies to S2 categorical neurons (477 ms vs. 484 ms, p <
0.01); however, their response latencies tend to be much slower
(106 ms vs. 281 ms, p < 0.001). Categorical S2 neurons start
responding before DPC neurons. Even if the whole S2 neuronal
population exhibits intermediate latencies33, sensory neuron
responses resembled those of 3b neurons and categorical coding
resembled the slower trends found in DPC.

Moreover, in recent works, timescales of intrinsic fluctuations
across cortices were presented within a hierarchical
framework17,34, using the autocorrelation function. We applied
this metric to each subgroup and to the entire network of S2
(Supplementary Fig. 14a). Surprisingly, we observed analogous
autocorrelation decay rates for the whole S2 population (τ= 178
ms), as well as for sensory (τ= 182 ms) and categorical neurons
(τ= 187 ms). Even if sensory and categorical neurons exhibit
completely different latencies, their autocorrelation functions are
similar. These results support the idea that, although different in
function, S2 subpopulations are embedded within the same
processing stage (see Supplementary Fig. 7). When extended to S1
and DPC, the same measure established a hierarchical order
across cortices (Supplementary Fig. 14b). S1 autocorrelation
exhibits a much shorter decay constant (τ= 67 ms), indicating
that information reverberates minimally within this network. On
the contrary, DPC yields a longer decay constant (τ= 182 ms).

Notably, all autocorrelation functions were unaffected during the
LCT (Supplementary Fig. 14c). Even though coding dynamics
may change completely during the LCT (Fig. 7), their
autocorrelation functions do not.

Dynamical coding across somatosensory areas during the
TPDT and LCT. To better contextualize our results, we com-
puted the coding dynamics (Supplementary Fig. 3) for 3b and
DPC exactly as we did for S2 (Fig. 7). Coding dynamics changed
completely across cortices during the TPDT (Fig. 7a–c). While
area 3b activity is only involved in P1 or P2 coding during sti-
mulation periods (Fig. 7a), S2 and DPC display much more
complex dynamics. Note that in DPC, P1 coding is persistent
throughout the working memory delay (Fig. 7c and Supplemen-
tary Fig. 4), and class and decision coding persist through the
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second delay. In contrast to S2 (Fig. 7b), there is no P2 coding in
DPC, meaning no pure sensory responses were identified. During
the comparison period, DPC neurons focus almost completely on
class and decision coding33. Further, analogous to 3b (Fig. 7d),
sensory S2 neurons remained invariant during the LCT (Fig. 4f).
However, DPC and S2 coding changed completely (Fig. 7e, f). In
DPC, all coding disappeared entirely during the LCT. This is
further evidence that invariant sensory responses are not present
in DPC. While S2 depicts both sensory-invariant and categorical
perceptual responses, area 3b and DPC only exhibit one. There-
fore, S2 might act as a switch network that allows information
flow based on necessity, while potentially aiding in the sensory
input transformation itself.

Discussion
Our work sought to characterize the S2 neural responses during a
temporal pattern discrimination task. We show conclusive evi-
dence that a duality exists in S2 between sensory and categorical
coding. On one hand, a percentage of S2 neurons constitute a
sensory subgroup that is invariant to both behavior and cognitive
demand of the TPDT. Alternatively, another specialized group of
neurons categorically encode the stimulus identity with a clear
dependence on task context (TPDT or LCT) and behavioral
reports (hits or errors). Importantly, the information conveyed by

the S2 population exhibits a context-dependent shift: during LCT,
categorical coding essentially vanished while sensory responses
prevailed. Moreover, we employed coding dynamics, latencies
and autocorrelation timescales to frame the intermediate behavior
of S2 within the somatosensory hierarchy.

During vibrotactile frequency discrimination and detection
tasks, S2 neurons can exhibit categorical responses highly corre-
lated with the monkeys’ decision16,18,33. In contrast with these
two tasks, the precise internal structure of the stimulus is
necessary for the temporal pattern discrimination. Then, pure
sensory and categorical S2 neurons may both be required during
the TPDT. However, the vast majority of neurons exhibit a mix of
dynamics. We explored the role of these intermediate neurons
with a cognitively non-demanding control task, the LCT. Notably,
the entire spectrum of neurons shifts the information conveyed
depending on the task’s cognitive demand. During the LCT, the
sensory information is more abundant, but categorical informa-
tion predominates during the TPDT. We speculate that the dual
role of S2 neurons may be crucial in transforming pure sensory
signals into more abstract, categorical codes.

Importantly, several neurons in S2 sustained their response
coding during the early delay period between P1 and P2. This
early working memory coding is markedly affected or entirely lost
in error trials. Thus, while the sensory inputs are the same, the
categorical transformation is directly correlated with the
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monkeys’ behavioral reports. In contrast to DPC, no S2 neurons
exhibit persistent coding during the delay14,33. Congruently, a
disappearance of persistent coding and a recall signal was recently
identified in mice S2 neurons during working memory11. Further,
S2 inactivation during this recall deteriorated performance. We
speculate that this information is recalled from higher-order
cognitive areas, such as DPC. This frontal lobe top-down signal
may play a fundamental role during the comparison of sensory
information in S2.

The comparison of latencies between cortical areas and neuron
subgroups yielded a great deal of information. The entire S2
population responds and codes with different temporal lags
depending on each neuron’s coding profile, but all fall between
those of 3b and DPC. The fastest portion of the S2 network lies at
the sensory extreme and the slowest at the categorical extreme,
paralleling the disparate 3b and DPC populations. Note that S2
appears to be located conveniently to receive both bottom-up and
top-down inputs20–25. Importantly, several works have suggested
that S1 acts as a driver in the processing role of S219,20,24, while
others suggest that the somatosensory thalamus (VPL) plays the
driver role instead23. Our results show strong evidence that a
subgroup of the S2 population responds similarly to 3b neurons,
with slightly longer average response latencies (33 ms vs. 23 ms).
Moreover, the slowest neuron still responds and codes faster than
DPC, so all dynamics appear initiated in S2 before DPC is
recruited. With regards to other frontal areas (i.e., MPC, VPC,
PFC), prior studies in other tasks have shown that their latencies
are analogous in all cases to those found for DPC18,33.

These results suggest that S2 may not be receiving the initial
categorical information from the frontal lobe. This is supported
by the fact that DPC does not contain considerable P2 infor-
mation, which would be necessary to compute categorical (class
or decision) representations through stimuli comparison. S2, on
the other hand, does contain information about P2, but it lacks
the persistent representation of P1. We are thus presented with a
possible functional loop between these parietal cortices and the
frontal lobe. The frontal lobe stores information that will be
useful for categorical abstraction; but this is, in turn, relayed back
to S2 so as to converge with the sensory input of P2, permitting
the actual computation. Afterwards, the result is sent back.

Motivated by the clear differences between sensory and cate-
gorical responses, we wondered whether these contrasting
dynamics arise within differentiable subnetworks. It is unlikely to
record pairs of pure sensory or categorical neurons in nearby
electrodes, indicating that neurons with similar responses do not
appear in spatial clusters. Further, the intrinsic timescale of neural
fluctuations, estimated with the autocorrelation decay constant,
increases from sensory to frontal lobe cortices in monkeys17,34

and mice35. We found the same timescale for all S2 responses,
regardless of dynamic profile. All this evidence taken together
does not support the notion of subnetworks or structural differ-
ences. Besides, across the somatosensory hierarchy, S1 displays
fast timescales and phase-locked responses, while S2 and DPC
exhibit much longer time constants that are appropriate for
temporal integration. Further, the optimal integration window to
decode pattern identity from 3b and S2 sensory responses was
~200 ms, which concords with the S2 timescale found here.
Moreover, categorical S2 and DPC neurons saturate their coding
capacity at around the same window-width.

Recently, we have analyzed the heterogeneous responses
observed in frontal lobe neurons with dimensionality reduction
techniques3,31,36, which allow us to condense the network’s sig-
nals, preserving the significant population dynamics37–39. Nota-
bly, for each component, the weights given to each neuron
occurred with a Gaussian-like distribution31,36. These continua of
responses are parallel to the gradient of intermediate dynamics we

have shown in S2, so a promising line of inquiry would be the
application of such techniques to interpret mixed responses at a
population level. In another recent study, analogous methods
were applied to investigate the simultaneous recordings of two
visual sensory areas, V1 and V240. They revealed a population
level mechanism in V1 that influences a small part of the total
activity fluctuations observed in V2. The somatosensory network
could be implementing a similar mechanism for the routing of
sensory information from S1 to S2 and categorical information to
DPC. Future experiments and analyses are required to address
this hypothesis.

We would like to highlight the high percentage of S2 neurons
that code the decision during and after the pb event. The loss of
this signal during the LCT means that it could not be associated
with motor execution. Although the functional purpose of this
decision coding is not evident, we hypothesize that it could be
associated with the S2 reward signal observed afterwards. One
possibility is that both signals may be necessary for network
rewiring, employing the choice outcome to adapt future
decisions41,42. Further, in a recent model, activity surpassing a
threshold leads to an ignition, causing a distribution of infor-
mation across cortices43,44. If subjects do not attend to the sti-
mulus, the ignition may fail. In terms of our S2 findings, we
speculate that this area could play a relevant role in the ignition-
gated distribution of categorical information to frontal areas3.
Furthermore, unpublished results from our lab have suggested
that animals with lesions applied to S2 are no longer able to
perform the task adequately, similar to the effect observed from
lesioning S145. Ultimately, this could mean that S2 is necessary
for cognitive processing within the cortical network46,47.

To conclude, both sensory and categorical responses were
found within S2. While categorical responses covaried with
behavior and ceased during the non-demanding task (LCT), the
sensory responses prevailed. The information conveyed by the
network depends on context, with categorical information dom-
inating during the active task and sensory information during the
control task. From this, we speculate that this area may play a
fundamental role in the conversion of sensory inputs to more
abstract, conceptual and categorical responses. Therefore, S2 may
act as a switch network: always receiving the same sensory inputs,
but selectively converting and transmitting abstract representa-
tions when the task demands it. This may be a central processing
principle, not only for S2, but also for other areas related to other
sensory tasks and modalities.

Methods
Temporal pattern discrimination task (TPDT). The TPDT used here has been
previously described15. In brief, two monkeys (Macaca mulatta) were trained to
report whether the temporal structure of two vibrotactile stimuli patterns (P1 and
P2) of equal mean frequency (5 Hz, 5 pulses) were the same (P2= P1) or different
(P2 ≠ P1; Fig. 1a). The temporal structure of each pattern was either grouped (G) or
extended (E) with a fixed stimulation period of 1 s. The five pulses were delivered
periodically during the extended pattern (E), and three grouped centered pulses
with a smaller distance between them as compared to the first and final pulses,
during the grouped pattern (G). Monkeys performed the task in blocks of trials in
which the two stimulus patterns had a fixed mean frequency. The right arm, hand
and fingers were held comfortably but firmly throughout the experiments. The left
hand operated an immovable key (elbow at ~90°) and two push buttons in front of
the animal, 25 cm away from the shoulder, at eye level. Stimuli were delivered to
the skin of one digit from the distal segment of the right, restrained hand via a
computer-controlled stimulator (2 mm round tip, BME Systems, Baltimore, MD).
The initial event marks the beginning of the trial by descending the probe to a skin
indentation of 500 µm (probe down, “pd” in Fig. 1a). Vibrotactile stimuli consisted
of trains of short mechanical pulses; each pulse consisted of a single-cycle sinusoid
lasting 20 ms. Time is always referenced to first stimulus onset (0 s corresponds to
the start of P1). In a trial, P1 and P2 were delivered consecutively to the glabrous
skin of one fingertip, separated by a fixed inter-stimulus delay period of 2 s (1 to
3 s). Each stimulus could be one of the two possible patterns: grouped (G, upper
trace of Fig. 1a) or extended (E, lower trace of Fig. 1a) pulses. Therefore, in total
there were four possible P1-P2 combinations, denominated as classes: G-G (class 1,

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22321-x ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2000 | https://doi.org/10.1038/s41467-021-22321-x | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


c1), G-E (class 2, c2), E-G (class 3, c3) and E-E (class 4, c4). These were presented
in pseudo-random order to the monkeys across trials. The monkeys were asked to
report whether P2= P1 (match: combinations E-E and G-G) or P2 ≠ P1 (non-
match: combinations E-G and G-E) after a fixed delay period of 2 s (4 to 6 s)
between the end of P2 and the mechanical probe rising from the skin (probe up
event, “pu” in Fig. 1a). The “pu” was the go signal that triggered the animal’s
release of the key (“ku” in Fig. 1a). The monkey indicated their decision by pressing
one of two push buttons with the left hand (“pb” in Fig. 1a, lateral push button for
P2= P1, medial push button for P2 ≠ P1). As the two stimulus patterns had equal
mean frequency over their full duration (1 s), the decision had to be based on
comparison of their temporal structure. The animal was rewarded for correct
decisions with a drop of liquid. Animals were handled in accordance with stan-
dards of the National Institutes of Health and Society for Neuroscience. All pro-
tocols were approved by the Institutional Animal Care and Use Committee of the
Instituto de Fisiología Celular, Universidad Nacional Autónoma de México.

Light control task (LCT). During this control task, events proceeded exactly as
described above and in Fig. 1a, except that when the probe touched the skin (“pd”),
one of the two push buttons was illuminated, indicating the correct choice.
Identical stimuli were used. The monkey grasped the key until the probe was lifted,
but in this case the light was turned off when the probe lifted from the skin. The
monkey was rewarded for pressing the illuminated button. Maintaining stimuli and
arm movements identical to the TPDT, the decision must be based on the visual
stimuli instead.

Task design and performance. The TPDT is not a simple variation of the
vibrotactile frequency discrimination task (VFDT)33. Some cognitive demands and
the basic structure of the tasks are similar: both require attention to two separate
vibrotactile stimuli (TPDT: P1, P2; VFDT: f1, f2), working memory and a com-
parison to reach the decision report. Nevertheless, the TPDT requires a very dif-
ferent evaluation of the stimuli; as they only differ by their temporal structure, any
computation must be restricted to the internal structure to identify, categorize and
distinguish between them15. Further, the comparison process is significantly dif-
ferent between the two tasks. Expanding on the necessitated computation, the
VFDT can be solved by computing a difference between the parametric repre-
sentation of the stimulus frequencies to indicate whether f1 > f2 or f1 < f2, whereas
the TPDT offers no comparable method of solution (in any trial P1 and P2 always
have the same mean frequency). The TPDT demands a match (P2= P1) vs. non-
match decision (P2 ≠ P1). Hence, the comparison employs categorical repre-
sentations (instead of parametric) of the stimulus patterns.

We computed the average performance across S2 recording sessions (p=
84.0%; Monkey RR17, p= 84.5% and Monkey RR20, p= 83.1%). Fig. 1b and
Supplementary Fig. 5a–c). Although each animal received around two years of
training, this task was difficult enough to impede 100% performance; this reflects
the very high-cognitive demands of the TPDT. To provide some context, the
average training period to achieve similar performance levels for the VFDT was
about six to eight months;33 for the vibrotactile detection task30, the average time
was two months. After training in the TPDT, the monkeys saturated their average
performance around 84% (Fig. 1b and Supplementary Fig. 5a–c, nSES= 423
recording sessions; Monkey RR17, nSES= 281; Monkey RR20, nSES= 142). In
addition, the performance was statistically identical for each class15. Notably, task
repetition across recording sessions did not improve performance. However, the
performance for the LCT was consistently 100% (Fig. 1b and Supplementary
Fig. 5a–c, nSES= 76 recording sessions; Monkey RR17, nSES= 49; Monkey RR20,
nSES= 27); this reflects the lack of cognitive demand required for the guided-task,
as intended by design. As a final observation, the animals were first trained in the
LCT, and then gradually introduced to the TPDT. During the recording sessions in
S2 (Fig. 1c), animals switched between performing the TPDT and the LCT.

Recordings. Neuronal recordings were obtained with an array of seven indepen-
dent, movable microelectrodes (2–3MΩ)16 inserted into S2 (Fig. 1c), either con-
tralateral (left hemisphere) or ipsilateral (right hemisphere) to the stimulated hand.
We were careful to record just above the primary auditory cortex (A1), and we
tested this using auditory stimuli to ensure that the neurons were only responding
to vibrotactile stimuli. The receptive fields of the recorded neurons were all very
large and some were bimanual, and since the monkey’s hand was carefully fixed in
the same manner during each recording session, we do not believe it is possible for
these neurons to be responding to motor data in a categorical manner, as would be
seen in the parietal ventral area (PV). Concurrently, categorical decision responses
during P2 or after pb disappeared during the LCT (Fig. 4).

We collected neuronal data in blocks using different mean frequencies15.
However, for the analysis described below we will focus on the neuronal responses
with the stimulus set illustrated in Fig. 1a (5 Hz). In general, we recorded 20 trials
per stimulus pair (c1; c2; c3; c4). Recording sites changed from session to session;
the locations of the penetrations were used to construct surface maps in S1, S2 and
DPC by marking the edges of the small chamber (7 mm in diameter) placed above
each area. It is important to emphasize that the sensory and categorical neuron
subgroups were both recorded across the entire S2 region. The probability of
recording two pure subgroup responses together is extremely low (Supplementary

Fig. 7), so we did not record sufficient pure pairs for further analyses. In area 3b
(S1), we recorded neurons with cutaneous receptive fields confined to the distal
segments of the glabrous skin of one fingertip of digits two, three or four, such that
the receptive field always corresponded to the stimulated digit. All recordings in
DPC were made in the hand/arm region F2. This region is in front of M1 (F1),
lateral to the central dimple, posterior to F7 and the genu of the arcuate sulcus15,33.
The neuronal recording protocol was identical for both the TPDT and LCT.

Datasets. We recorded 1646 S2 neurons using the TPDT stimulus set with 5 Hz
mean frequency (Monkey RR17, n= 1035; Monkey RR20, n= 611). Additionally,
we have a dataset of n= 313 neurons (Monkey RR17, n= 189; Monkey RR20, n=
124) that were tested in both the LCT and TPDT using the 5 Hz mean frequency
set. These neurons were used to compare periodicity and categorical firing rate
information between the cognitively demanding TPDT and the guided LCT
(Supplementary Fig. 8).

For each neuron of the datasets (n= 1646 and n= 313), we calculated a time-
dependent firing rate per trial using a 200 ms deterministic square kernel with 50
ms steps, beginning 1 s before stimulus pattern P1 and continuing until the end of
the trial (1.5 s after the push button press). In Supplementary Fig. 10, we show that
this window-width is optimal for decoding pattern information. Importantly, each
dataset is defined by four dimensions: N, number of neurons; C, stimulus
conditions (classes, always 4); T, time (−1 to 7.5 s, always 170 bins); K, number of
hit trials (for each class). Further, we constructed a similar dataset with error trials
for the 5 Hz TPDT stimulus set. Each recorded neuron had on average 2.9 error
trials for a given class. A remarkable feature of this task design is the low number of
stimulus conditions (four classes), which were equally demanding for the subject.
This design allowed us to have, on average, 15.3 hit trials (and 2.9 error trials) per
stimulus class for each studied neuron.

Single-neuron coding. This analysis was designed to quantify whether the activity
of single S2 neurons was modulated as a function of time by the four stimulus
classes used in the task: c1 (G-G); c2 (E-G); c3 (E-G) and c4 (E-E). We employed
the same coding scheme used previously to identify single-neuron coding in DPC
and S115.

Employing only hit trials, we constructed a neuron firing rate distribution for
each class. At each time bin we used the ROC to identify class-differential
responses; using these class firing rate distributions, we computed the area under
the ROC curve (AUROC value) for the six possible class comparisons: c1 vs. c2; c1
vs. c3; c1 vs. c4; c2 vs. c3; c2 vs. c4; and c3 vs. c4. To determine significant AUROC
values, we performed a permutation test by randomly shuffling the class labels
across trials, while re-computing the AUROC values with the shuffled trials. If the
unshuffled AUROC value (≠0.5) reached or exceeded the 95% of the distribution
obtained from 1000 shuffled surrogates, responses for the two compared classes
were labeled statistically different (p < 0.05); otherwise, they were labeled as equal.
We should emphasize that statistical equality means that there is not enough
neuronal response information to differentiate the two distributions; this does not
mean that both distributions were the same.

From this, we produced a library of binary words; for each 200 ms bin we had
six digits resulting from the six comparisons (Supplementary Fig. 3). In this coding
scheme, the 0’s are as important as the 1’s. The criterion to assign both was very
strict: to avoid random assignments at each time window, we only assigned a
binary label of statistical equality (0) or inequality (1) if the same digit was kept for
at least four consecutive bins, otherwise no label would be assigned, and that time
bin was excluded from the classification. This part of the coding scheme was
designed to correct for multiple comparisons. It is important to note that for each
time bin this procedure generates a unique code for each neural response, one of
our “binary words”. However, we isolated four relevant response or coding labels
(P1, P2, class and decision) from the 64 binary words. These four profiles are
explained below. From 64 binary words, we isolated 7 associated with our labels,
while the rest represent mixed or ambiguous codes (Supplementary Fig. 3). Using
the binary words computed from the six AUROC values as described above, each
time bin was tested for classification into one of four possible coding profiles
during the TPDT and LCT.

P1 coding. This profile applied to responses that tracked the identity of the P1
pattern. In this case, the responses must be similar for classes c1 (G-G) and c2 (G-
E), and for c3 (E-G) and c4 (E-E), which have the same P1, but must differ between
all other class comparisons, which have different P1 patterns (Supplementary
Fig. 3).

P2 coding. As described above, but for responses that tracked the identity of P2.
Responses must be similar for c1 and c3, and for c2 and c4, which have identical
P2, and must be different for all other class combinations, which have different P2
patterns.

Class-selective coding. This profile corresponds to neurons that responded pre-
ferentially to one of the four classes. Time bins were labeled according to the class
that selectively evoked a response. We associated four binary words with this
profile, pursuant to a single rule: the preferred class evoked a unique response,
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while the three non-preferred classes were indistinguishable between each other
(Supplementary Fig. 3).

Decision coding. In this profile, responses must be similar for classes c1 (G-G) and
c4 (E-E), as well as c2 (G-E) and c3 (E-G), which share the same outcomes (either
P1= P2 or P1 ≠ P2) and differ for all other class comparisons with distinct out-
comes (Supplementary Fig. 3).

Time bins where the six comparisons did not fit any of the binary words
described above were considered to be non-coding. Further, to consider that a
neuron had significant coding, a minimum of 4 consecutive bins must maintain the
same profile. Applying this procedure across all neurons allowed classification of
encoding dynamics as functions of time (Figs. 3a, b, 4e–h, 7a–f, Supplementary
Figs. 4a, b, 5d–g). This coding scheme rendered two advantages: (1) being able to
quantitatively assess and describe all the possible neural codes during all task
epochs, and (2) generating coding types that would not overlap in their meaning.

Instantaneous coding variances across the population. For each neuron, we
averaged the time-dependent firing rate of hit trials per class (c1, c2, c3 or c4).
Using the peri-stimulus time histogram (PSTH) of each neuron, we constructed
pseudo-simultaneous population responses by combining neural data mostly
recorded separately. For each time and class, the population response is defined by
an N-dimensional vector in which each component represents the firing rate from
a different neuron. This means that including all the recorded neurons (n= 1646),
we obtained a 1646-dimensional firing rate vector that depended on the time and
class (�r t; cð Þ)). The population firing rate averaged over all hit trials (�r tð Þ) was an N-
dimensional vector that measures the mean response for each neuron (ri(t))as a
function of time. For the LCT control condition, the population response was a
313-dimensional firing rate vector.

At each time point, the population instantaneous coding variance (VarCOD,
Supplementary Figs. 4c–f and 6c–f, blue trace) was computed as the quadratic
square sum of the firing rate fluctuations among classes and neurons:

VarCOD tð Þ ¼ 1
N
1
4
∑N

i¼i ∑
4
c¼1 ri t; cð Þ � ri tð Þ� �2 ð1Þ

This metric, normalized per neuron, measures the population’s variation of
firing rate between classes at each time point. In this case, VarCOD will be associated
with any class-related change in the population activity and to stochastic
fluctuations (residual noise).

To evaluate the influence of each kind of coding on VarCOD, we calculate the
instantaneous variance associated with each task parameter. At each time bin, the
population instantaneous P1 variance (VarP1, Supplementary Figs. 4c–f and 6c–f,
cyan trace) was computed as the quadratic square sum of the firing rate
fluctuations among P1 identity and neurons:

VarP1 tð Þ ¼ 1
N
1
2
∑N

i¼i ∑
2
P1¼1 ri t; P1ð Þ � ri tð Þ� �2 ð2Þ

Analogously, the population instantaneous P2 variance (VarP2, Supplementary
Figs. 4c–f and 6c–f, light green trace) measures the firing rate fluctuations among
P2 identity and neurons:

VarP2 tð Þ ¼ 1
N
1
2
∑N

i¼i ∑
2
P2¼1 ri t; P2ð Þ � ri tð Þ� �2 ð3Þ

The population instantaneous decision variance (VarDEC, Supplementary
Figs. 4c–f and 6c–f, black trace) measures the firing rate fluctuations of decision
identity and neurons:

VarDEC tð Þ ¼ 1
N
1
2
∑N

i¼i ∑
2
DEC¼1 ri t;DECð Þ � ri tð Þ� �2 ð4Þ

The value of VarCOD during the period immediately before P1 onset
represented the inherent stochastic fluctuation (residual noise) in the firing rate
estimates (~2[sp/s]2); to be interpreted as a degree of population coding, VarCOD
should be higher than this resting-state variance (basal variance). The same
reasoning applies to the other specific variances. Accordingly, VarCOD and VarP1
depart from their basal values at the same time bins (Supplementary Figs. 4c–f and
6c–f). Further, the times at which any of the specific variances depart from their
basal value coincide with the emergence of significant coding in individual neurons
(compare Fig. 3a with Supplementary Fig. 4c and Fig. 7c with Supplementary
Fig. 4e).

Sensory population response. To describe the sensory population responses of S2
(n= 105), we normalized the firing rates for each time bin (50 ms window dis-
placed every 10 ms) using the z-score transform. The z-score was computed by
subtracting from each trial (hit, error, and control trials) the mean firing rate and
dividing the result by the standard deviation (SD) at each time window. The mean
and SD for each neuron were calculated using the recorded firing rate activity in hit
trials from all time bins in the interval from −1 to 7.5 s of the task. We calculated a
mean z-score value for hit, error and control (LCT, n= 41) trials for each class to
obtain an average sensory population response as a function of time. Finally, we
transformed back the mean population z-scores to show responses in terms of
firing rates instead of z-scores (Fig. 5 and Supplementary Fig. 8). Back

transformation was computed using the average firing rate values and SDs from all
sensory neurons.

Firing rate information. Using the firing rate values, we measured their association
with P1 and P2 in terms of Shannon’s mutual information:

I ¼ ∑r;P P Pð ÞP rjPð Þlog2
P rjPð Þ
P rð Þ

� �
ð5Þ

Here, the information (I), measured in bits, quantifies the accuracy with which
the neural response (the firing rate r) can be used to determine the identity of the
stimulus pattern (P). The expression P(r) corresponds to the probability of
observing a response (r) regardless of the stimulus pattern; it was computed using
the firing rate probability distribution from all hits during the same time window.
P(P) represents the probability that the stimulus pattern takes a value P (G or E),
considering only hit trials. P(r | P) is the conditional probability of observing a
response r given a specific stimulus pattern P.

Importantly, to calculate the categorical information, we employed 1000 ms
windows that covered the whole first stimulus (from 0 to 1 s) or the whole second
stimulus (from 3 to 4 s) period. Then, we quantified the decodable firing rate
information conveyed by each neuron about pattern identity (G or E) during P1 or
P2, employing a 1 s integration window (I1s):

I1s ¼ ∑r1s ;P
P Pð ÞP r1sjPð Þlog2

P r1sjPð Þ
P r1sð Þ

� �
ð6Þ

Note that I1s in neurons that are tightly phase-locked to the stimulus pulses
(phase-locked or sensory neurons), should be near zero (Fig. 4a). Since the number
of pulses is the same for each type of pattern G and E, if each pulse is represented
equally by a sensory neuron, the firing rate during the whole stimulus period (1 s)
should be approximately the same. This means that 1 s-firing rate mutual
information (I1s) associated with the pattern identity is near zero for sensory
neurons. Contrary to that, categorical neurons should have higher values of I1s
(Fig. 4b), where pulses generated different responses depending on the pattern
identity (G or E).

In Fig. 6, we computed the firing rate mutual information associated with the
identity of P1 during hit or error trials for different subpopulations of S2 neurons.
We z-scored the 200 ms (see Supplementary Fig. 10) firing rate responses from
each hit or error trial at each time bin. Then, we joined the z-score values from
different neurons to calculate the population z-score conditional probabilities P((z
(t)|P1)) associated with each pattern (E or G). Note that we constructed different
distributions for hits and errors. Next, we used the z-score population probabilities
to estimate, per time bin, the mutual information associated with P1 during hits or
errors:

IP1ðtÞ ¼ ∑zðtÞ;P1 P P1ð ÞP zðtÞjP1ð Þlog2
P zðtÞjP1ð Þ
P zðtÞð Þ

� �
ð7Þ

Analogously, we calculated the population firing rate mutual information
associated with the decision identity during hit or error trials (Supplementary
Fig. 11b). As before, we computed the z-score normalization to the 200 ms firing
rate responses, splitting hit and error trials. Then, we constructed population
probability distributions associated with decision identity (P1= P2 or P1 ≠ P2)
during hit or error trials:

IDecðtÞ ¼ ∑zðtÞ;Dec P Decð ÞP zðtÞjDecð Þlog2
P zðtÞjDecð Þ
P zðtÞð Þ

� �
ð8Þ

Finally, we estimated the firing rate mutual information associated with reward
(Supplementary Fig. 11c). In this case, we computed a distribution with all hit trials
and another with all error trials. We employed these two population probability
distributions to calculate the amount of information associated with the reward,
conveyed in the firing rate of the population:

IRewðtÞ ¼ ∑zðtÞ;Rew P Rewð ÞP zðtÞjRewð Þlog2
P zðtÞjRewð Þ

P zðtÞð Þ
� �

ð9Þ

In Supplementary Fig. 10, we employed different sliding window-widths (from
10 to 1000 ms), moving in 10-ms steps, and quantified the information conveyed
by each neuron about pattern identity (G or E) during P1 or P2 for each window-
width. Averaging across time points, for each neuron, we computed the mean
information values for P1 and P2 as functions of window-width. Finally, we
averaged the pattern information values from all neurons to obtain the mean
population information for each window. We showed that a 200 ms window is
optimal for decoding pattern identity from sensory neurons in areas 3b and 1 and
S2 (Supplementary Fig. 10a–d). Categorical and DPC neurons reach a stationary
value at this window-width (Supplementary Fig. 10g, h).

Periodicity information. The extended patterns (E) are periodic with a frequency
between pulses of 4.34 Hz (pf). Contrary to that, grouped patterns (G) are aperiodic
(Fig. 1a, up pattern). Based on the temporal stimulus structure, a phase-locked
neuron (sensory) should respond periodically during an extended pattern (E) at
4.34 Hz but not during grouped patterns (G). We aimed to compute the mutual
information associated with the pattern identity (G or E) that is conveyed by the
periodicity of the neural responses. To accomplish that, we employed Fourier
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decomposition of the time signals formed by the evoked trains of spikes during
stimulation periods. For each trial, the power spectrum of the spike train evoked
during stimulation was computed and normalized. We removed the DC compo-
nent, so that the total power summed over all positive frequency bins was 100%14.
Employing this methodological approach, the number of spikes contained in each
train had little effect on the resulting Fourier amplitudes, which indicate the
proportion of power for each frequency bin. Thus, Fourier amplitudes were mainly
determined by the temporal arrangement of the spikes, not by their number. Each
trial was first transformed to firing rate employing a quadratic and deterministic
kernel of 24 ms and 0.6 ms step. The width of the frequency bins was 0.97 Hz. This
value was limited by the duration of the stimulation period, which for the Fourier
analysis we took as 1228.8 ms. This means that for each stimulus period we
employed 2048 points to compute the Fourier transform, starting 50 ms before and
finishing 178.8 ms after the P1 or P2 period.

From each trial, we extracted the two power spectra values associated with the
two Fourier frequencies (3.88 Hz and 4.85 Hz) that are nearest to the periodic
stimulation frequency (pf= 4.34 Hz). These values should increase for evoked
spikes that are more tightly phase-locked to the periodic stimulation pulses.
Suppose a neuron is strongly phase-locked to the periodic pattern (E) and fires
spikes somewhat like a clock, one or two spikes per stimulus pulse, in an
approximately periodic fashion. In its spectra, the maximum power would be at the
periodic pattern frequency. Hence, for a sensory neuron, these values should be
high during E patterns and small during G patterns.

Similarly, as we explained for categorical information, the mutual information
that the periodicity of the response at pf provides about the stimulus pattern (P) is
calculated from the probability distributions relating these two variables. The
function P(pf | P) represents the conditional probability of observing a spectrum
value at pf given that the stimulus pattern had a value of P (G or E). The expression
P(pf) describes the probability of observing a spectrum value at pf regardless of the
value of the stimulus pattern, and P(P) is the probability that the stimulus takes a
value of P (G or E). Then, the information that the spectrum value at pf provides
about the pattern identity can be computed as:

IPer ¼ ∑pf ;P P Pð ÞP pf jPð Þlog2
P pf jPð Þ
P pfð Þ

� �
ð10Þ

For all the mutual information values computed across this work (Eqs. (5)–(10)),
a correction for sampling bias was applied32. Furthermore, the significance of
mutual information values for neurons labeled as sensory and categorical was
computed through a permutation test, with the significance criterion set to the p <
0.01 level.

Choice probability. The choice probability index (CP) was calculated using
methods from signal detection theory. In this case, the ROC measures the overlap
between hit and error responses for each stimulus pair (P1, P2). A value of 0.5
indicates full overlap, whereas 1 and 0 indicate no overlap between distributions.
Thus, the CP quantifies the selectivity for one or the other decision outcome during
the discrimination process. To compute the CP as a function of time, we used a
window of 200 ms duration moving in steps of 50 ms, beginning at P2 and ending
1500 ms after the animal reported the comparison between P2 and P1. To combine
the responses from all neurons at each time bin, the CP values were averaged across
all S2 neurons with decision coding (Supplementary Fig. 11a).

Response latencies. We calculated two different latencies (Supplementary Fig. 12
and 13): a response latency, which corresponds to the time at which the stimulus-
driven neural activity (during P1) becomes significant, and a coding latency, which
corresponds to the time at which the encoded signal becomes significant
(during P1).

Response latency. Firing rate distributions were generated at each time point using a
time window of 200 ms sliding steps of 1 ms during P1, and were compared against
the rates obtained in a basal period (200 ms before P1 onset) using the ROC
method15. The first time-bin at which the AUROC was significantly different from
0.5 (permutation test, p < 0.05) for five consecutive bins was considered as the
response latency to P1.

Coding latency. This latency varied depending on the coding profile of the cells.
The P1 coding latency was estimated for each neuron by identifying the first of five
consecutive bins significantly coding patterns G or E (200 ms windows with 10
ms step).

Autocorrelation analysis. The autocorrelation functions of spike counts were
computed following the same methodological procedure as in refs. 17,34. The basal
period (−1 to 0 s) was divided into overlapping, successive time bins of 40 ms
duration with 20 ms steps. Then, for two time-bins separated by a time lag t, we
calculated the across-trial correlation between spike counts N. Next, we averaged
the correlation values computed for each neuron and time lag t across the popu-
lation. Afterwards, this averaged population autocorrelation function of the time

lag t between bins was fit by an exponential decay with an offset:

Aut tð Þ ¼ A exp � t
τ

� �
þ B

h i
ð11Þ

In this equation the autocorrelation tau (τ) measures an intrinsic population
timescale. The offset (B) represents the contribution of timescales much longer
than our observation window. We fit Eq. (11) to the full autocorrelation data from
all neurons and trials. Hence, fits were performed at the population level rather
than single-neuron level (Supplementary Fig. 14). To be able to fit this equation to
the single-neuron level, much more recorded trials per cell are required. To fit Eq.
(11) to the population autocorrelation data, a nonlinear least-squares fitting via the
Levenberg–Marquardt algorithm was employed.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data files are publicly available at Zenodo (https://doi.org/10.5281/zenodo.4421855); see
ref. 48.

Code availability
The custom MATLAB (R2020b) and C scripts employed in the analysis of this data, as
well as the experimental protocols, are available from the corresponding author on
reasonable request.
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