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Benzylic C−H acylation by cooperative NHC and
photoredox catalysis
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Methods that enable site selective acylation of sp3 C-H bonds in complex organic molecules

are not well explored, particularly if compared with analogous transformations of aromatic

and vinylic sp2 C-H bonds. We report herein a direct acylation of benzylic C-H bonds by

merging N-heterocyclic carbene (NHC) and photoredox catalysis. The method allows the

preparation of a diverse range of benzylic ketones with good functional group tolerance under

mild conditions. The reaction can be used to install acyl groups on highly functionalized

natural product derived compounds and the C-H functionalization works with excellent site

selectivity. The combination of NHC and photoredox catalysis offers options in preparing

benzyl aryl ketones.
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The Friedel-Crafts acylation (FCA) is a very powerful and
established method for the introduction of an acyl group to
an electron-rich arene via electrophilic aromatic substitu-

tion. It is apparent that the rapid development of transition metal
catalyzed arene C–H functionalization has offered strategies to
conduct formal Friedel-Crafts acylations. In these modern var-
iants, a stoichiometric amount of a corrosive Lewis acid, generally
required in the classical FCA, is not necessary. Moreover,
electron-neutral and even electron-poor arenes have become
eligible substrates1. Although significant progress has been
achieved for the acylation of sp2 C–H bonds, the analogous
transformation on sp3 C–H bonds still remains a challenge2–4

Benzylic C–H bonds occur in many bioactive compounds and
~25% of the top-selling 200 pharmaceuticals contain this struc-
tural motif5,6. Great efforts have been devoted to functionalize
such C–H bonds and benzylic C–C7–11, C–N12–14, C–O15–18, and
C–F bond19,20 formation among others21,22 have been realized.
However, direct benzylic C–H bond acylation is not well
explored. A problem is that the targeted aryl ketones can further
react in a keto-directed sp2 C–H functionalization23. Moreover,
site-selective acylation is challenging in cases where various
benzylic C–H bonds are present. Li and co-workers reported
rhodium-catalyzed acylation of 8-methylquinolines with ketenes
or cyclopropenones to deliver the corresponding benzylic acy-
lated products24,25. Coordinating directing groups were required
to control the regioselectivity, thus limiting the applicability of
this method (Fig. 1a). The merger of photocatalysis with other
catalytic modes has opened avenues for acylation of sp3 C–H
bonds26,27. In 2012, the Rovis group introduced cooperative
NHC (N-heterocyclic carbene) and photocatalysis for the
asymmetric acylation of activated C–H bonds in N-aryl
tetrahydroisoquinolines28. The key C–C-bond forming step pro-
ceeds via an ionic trapping of an oxidatively generated iminium
ion with a Breslow-intermediate (Fig. 1b). Doyle, Murakami,
Shibasaki, Rueping and Hong employed cooperative nickel and
photoredox catalysis to realize C–H acylation of N-alkyl-N-aryl
amines, ethers, unactivated alkanes and benzylic C–H bonds29–33.
Alkyl acyl NiIII species were proposed as the key intermediates in
these transformations and C–H activation was achieved via
intermolecular hydrogen atom transfer (HAT; Fig. 1c).

Despite these achievements, the development of other catalytic
modes to achieve direct acylation of benzylic C–H bonds with
excellent regio- and diastereoselectivity is still highly desirable.
Inspired by our previous work on radical acyltrifluoromethylation
of alkenes via cooperative photoredox/NHC catalysis34 and recent
NHC-catalyzed radical reactions35–45, we wondered whether
ketyl radical cross-coupling with benzylic radicals could be
applied for acylation of benzylic C–H bonds. Our strategy is
based on the following reactions: single-electron oxidation of an
arene will produce a radical cation, which is readily deprotonated
to give the corresponding benzylic radical. On the other hand, a
persistent ketyl radical can be generated via single-electron-
transfer (SET) reduction of an in situ formed acylazolium ion46.
The SET-oxidation and SET-reduction steps would qualify for an
overall redox neutral transformation. The longer-lived ketyl
radical and the benzylic radical should then dimerize in a radical/
radical cross-coupling to afford after NHC fragmentation the
targeted ketone (Fig. 1d).

Results and discussion
Reaction conditions development. To test our hypothesis, we
initiated the study by examining the cross-coupling between
benzoyl fluoride (1a) and 4-ethyl anisole (2a) with the triazolium
salt A as the catalyst, which has been shown to be efficient in
multi component couplings34. [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 was

selected as a photocatalyst because its excited state is a strong
oxidant (E1/2[Ir*III/II]=+1.21 V)47. Although 4-ethyl anisole
shows a higher oxidation potential (E1/2=+1.52 V)48, we
speculated that the endothermic SET can be productive if the
subsequent deprotonation is fast6. Indeed, after irradiation for
24 h in dichloromethane, a 15% yield of the targeted 3a was
obtained. However, conversion was low (Table 1, entry 1). Solvent
optimization revealed that improved yields can be achieved in
dimethylformamide and acetonitrile with the latter showing the
best result (entries 2–8). The NHC-screening identified the tria-
zolium salt A as the ideal precatalyst, and all other triazoliums,
imidazoliums, and thiazolium salts B-H tested, provided lower
yields. In two cases (E and G), no conversion was noted (entries
9–15, Fig. 2). Yield and conversion could be further improved
upon running the cascade at higher concentration (entries
16–18). It is notable that the donor–acceptor dye 2,4,5,6-tetra
(carbazol-9-yl)isophthalonitrile (4CzIPN)49 showed the same
catalytic efficiency as the Ir-based photocatalyst (entry 19).
Decreasing the amount of base, NHC precatalyst, or photocatalyst
led to lower yields (SI, Supplementary Table 1). Finally, control
experiments validated the necessity of carbene and the photo-
catalyst for successful C–H benzoylation of 2a. No product was
observed in the absence of light, photocatalyst, or carbene (entries
20–22). Importantly, the same two substrates that qualify for
classical Friedel-Crafts acylation using a Lewis acid as an activator
will provide a different product upon switching to the NHC/
photocatalyst activation mode in a chemodivergent manner. For
example, the reaction of benzoyl fluoride (1a) with 4-ethyl anisole
(2a) in the presence of a stoichiometric amount of AlCl3 afforded
the Friedel-Crafts product in 72% yield. Acylation occurred with
excellent regioselectivity at the ortho-position of the activating
methoxy group (see SI for details).

Substrate scope. With the optimized conditions established, we
examined the reaction scope with respect to the acyl fluoride first
(Fig. 3a). A wide range of benzoyl fluorides bearing electron-
donating or electron-withdrawing substituents could be used for
the C–H aroylation of 4-ethyl anisole, affording the desired
products in moderate to excellent yields (3b–3m, 48–95%). As is
evident from these results, aryl halides, most of which would be
incompatible with Ni catalysis29–33, engage in this cascade, albeit
a moderate yield was obtained for the iodo-congener (3f, 48%). α-
Naphthoyl and β-Naphthoyl fluoride were successfully used in
the direct aroylation of 2a (3n, 47%; 3o, 76%). The latter was
more reactive due to lower steric hindrance during formation of
the β-naphthoyl azolium intermediate. Furthermore, heteroaroyl
fluorides containing the furan and thiophene moieties were also
amenable to the coupling with 2a to afford 3p and 3q in 47% and
82% yields, respectively.

The scope of the reaction with respect to the benzylic
component was explored next using benzoyl fluoride 1a as the
acyl donor (Fig. 3b). A variety of functional groups are tolerated,
giving rise to products bearing ester (3r, 82%; 3w, 60%), amide
(3s, 84%), azide (3t, 47%), ketone (3u, 66%), and ether (3v, 31%)
functionalities. It is important to note that the 1,2-dihydrobenz-
furan and chroman substructures can be found in pharmaceutical
drugs such as Darifenacin and Nibivolol50,51. With this in mind,
we tested them as radical coupling partners and both systems
worked well to afford the ketones 3x and 3y in 82% and 87%
yields, respectively. Benzoylation in α-position to the O-atom was
not observed, clearly showing that C-radical formation occurs
with complete regioselectivity at the benzylic position. Compared
with 4-ethyl anisole, 1-ethyl-4-phenoxybenzene showed a lower
efficiency (3z, 47%). Primary benzylic C–H bonds could also be
acylated to give the desired products (3aa, 48%). However,
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reaction was sluggish and 48% of starting material was recovered.
Owing to the steric hindrance of tertiary C–H bonds, lower yields
were obtained for 3ab (28%). Importantly, an activating O-
substituent decreasing the arene oxidation potential is not
required and (4-bromobutyl)benzene could be benzoylated with
1a, albeit with moderate yield (3ac, 41%).

We next turned our attention to examine the site selectivity of
the direct C-H benzoylation. Even in the presence of weaker

benzylic C–H bonds, exclusive functionalization of the ethyl
moiety in para-position to the alkoxy group was noted (3ad, 65%
yield). Along these lines, methoxy-substituted dihydroindene and
tetrahydronaphthalenes reacted with excellent site selectivity at
the benzylic position that is located ortho or para to the activating
methoxy group (3ae, 44%; 3af, 74%; 3ag, 70%). Likely,
intermolecular C–H abstraction with an electrophilic radical
would be not regioselective in these cases, showing that the

Fig. 1 Direct acylation of sp3 C-H bonds. a RhIII-catalyzed benzylic C-H acylation of 8-methylquinoline. b Cooperative photoredox/NHC catalysis for
acylation of N-aryl tetrahydroisoquinolines. c Cooperative photoredox/Ni catalysis for acylation of C–H bonds. d Cooperative photoredox/NHC catalysis
for site-selective acylation of benzylic C–H bonds via radicals cross-coupling. NHC N-heterocyclic carbene, LEDs light-emitting diodes, Rh rhodium, Ru-cat
ruthenium catalyst, Ni-cat nickel catalyst.
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deprotonation of an arene radical cation under our conditions is a
highly regioselective process. It is noteworthy that monobenzoy-
lation of 5,6-dimethoxy-2,3-dihydro-1H-indene was achieved
(3ah, 62% yield). 1,2-Dihydrobenzfuran and chroman bearing a

methyl substituent adjacent to the reactive benzylic site delivered
the targeted ketones with high diastereoselectivities in good yields
(3ai, 69%, trans/cis= 98:2; 3aj, 57%, trans/cis= 91:9). Finally, to
further demonstrate the potential of our method, we applied the

Table 1 Optimization of the reaction conditionsa.

Entry Solvent NHC precatalyst 2a, (M) Conversion (%)b Yield (%)c

1 CH2Cl2 A 0.05 17 15
2 CHCl3 A 0.05 24 22
3 DMSO A 0.05 20 20
4 DMF A 0.05 43 42
5 1,4-Dioxane A 0.05 5 5
6 Toluene A 0.05 5 4
7 CH3CN A 0.05 60 59
8 Ethyl acetate A 0.05 4 4
9 CH3CN B 0.05 43 42
10 CH3CN C 0.05 3 3
11 CH3CN D 0.05 7 6
12 CH3CN E 0.05 0 0
13 CH3CN F 0.05 3 3
14 CH3CN G 0.05 0 0
15 CH3CN H 0.05 2 0
16 CH3CN A 0.07 77 77
17 CH3CN A 0.10 86 85
18 CH3CN A 0.17 92 88 (83)
19d CH3CN A 0.17 – 83
20e CH3CN A 0.17 0 0
21f CH3CN A 0.17 0 0
22g CH3CN 0.17 0 0

aReaction conditions: unless otherwise noted, all the reactions were carried out with benzoyl fluoride (0.4 mmol), 4-ethyl anisole (0.1 mmol), NHC catalyst (0.02 mmol), Cs2CO3 (0.2 mmol), and [Ir(dF
(CF3)ppy)2(dtbbpy)]PF6 (0.002mmol) in anhydrous CH3CN (2mL), irradiation with blue LEDs at room temperature for 24 h.
bGC-FID conversion using 1,3,5-trimethoxybenzene as an internal standard.
c1H NMR yield using 1,3,5-trimethoxybenzene as an internal standard and yield of isolated product is given in parentheses.
d4CzIPN (0.002mmol) was used instead of [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 as the photocatalyst.
eThe reaction was carried out in the dark.
fNo photocatalyst was added.
gNo NHC catalyst was added. 4CzIPN, 2,4,5,6-tetra(carbazol-9-yl)isophthalonitrile. rt, room temperature. NHC, N-heterocyclic carbene. LEDs, light-emitting diodes.
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radical/radical cross-coupling reaction to the late-stage benzylic
benzoylation of biologically interesting compounds (Fig. 3c).
Highly regioselective benzoylation of the methylene moiety of a
δ-tocopherol analog was achieved and benzoylation of the methyl
group did not occur (3ak, 34%, dr= 1:1). Additionally, both
epiandrosterone and dopamine analogs could be regioselectively
functionalized at the benzylic positions, with no byproduct
observed derived from reactions adjacent to the ketone or amide
moieties (3al, 73%; 3am, 52%).

Control experiments. To gain insights into the reaction
mechanism, control experiments were performed. C-H-
benzoylation of chroman with 1a was fully suppressed in the
presence of 2,2,6,6-tetramethyl-piperidin-1-oxyl (TEMPO)
(Fig. 4a). When CD3CN was used in place of CH3CN, there was
no deuterium incorporation into the product, as well as in the
recycled starting chroman, which indicates that H-atoms or
protons of the solvent do not participate in the cascade (Fig. 4b).
Moreover, a kinetic isotope effect (KIE) was observed in the
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intermolecular competition experiment, demonstrating that the
deprotonation might be involved in the rate-determining step
(Fig. 4c) 52.

Reaction mechanism. According to the above results and pre-
vious reports, a possible mechanism is suggested in Fig. 5. Under
blue LEDs irradiation, [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 will be
excited and the excited state will be reductively quenched by the
electron-rich arene 2, leading to an arene radical cation III with
concomitant formation of a radical anion of [Ir(dF(CF3)

ppy)2(dtbbpy)]PF6 (E1/2(P/P•-)=− 1.37 V vs SCE) or 4CzIPN
(E1/2(P/P•-)=− 1.21 V vs SCE)47,49. The radical cation III will be
deprotonated (Cs2CO3) at the benzylic position to generate a
transient benzylic radical IV. Based on the KIE studies, the initial
electron transfer from 2 to PC* is reversible. The reduced pho-
tocatalyst will then transfer an electron to the acyl azolium salt I
(E1/2=−1.29 V vs SCE)40 itself formed in situ from the acyl
fluoride 1 and the NHC catalyst to generate a persistent ketyl type
radical II, closing the photoredox catalysis cycle. Radical/radical
cross coupling of the transient radical IV with the persistent ketyl
radical II steered by the persistent radical effect53 will lead to
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intermediate V. Fragmentation of the NHC will eventually pro-
vide the product ketone 3 thereby liberating the NHC catalyst.

In this work, we have developed a strategy to accomplish
acylation of benzylic C–H bonds via cooperative NHC and
photocatalysis. The key step of the cascade is a radical/radical
cross-coupling. The acylation occurs with excellent site selectivity
and broad functional group compatibility. The protocol is
amenable to functionalize important structural motifs with good
to excellent diastereoselectivities, as well as to the late-stage
benzoylation of more complex natural product derived com-
pounds. The method will open avenues in the area of direct C–H
bond acylation and also complements existing transition metal
catalyzed C–H bond functionalization methodologies.

Methods
General procedure for the cross-coupling between an acyl fluoride and a
benzylic component. To a Schlenk tube the carbene precatalyst A (6.3 mg, 0.02
mmol), 4CzIPN (1.6 mg, 0.002 mmol) or [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (2.2 mg,
0.002), and Cs2CO3 (65.2 mg, 0.2 mmol) were added. Then the reaction tube was
evacuated and backfilled with argon two times. Subsequently, a benzylic compo-
nent (0.10 mmol) and an acyl fluoride (0.40 mmol) (if solid, they should be added
at the beginning) and CH3CN (0.6 mL) were added. The resulting mixture was
degassed under vacuum two times and then the mixture was irradiated with blue
LEDs at room temperature for 24 h. After that, the residue was purified by silica gel
chromatography using a mixture of n-pentane and ethyl acetate or pentane and
diethylether as an eluent to get the desired product. Each reaction was carried out
twice and the average value was used as the final yield.

Data availability
Supplementary information is available in the online version of the paper. Data
supporting the findings of this work are available within this paper or its Supplementary
Information and also from the corresponding author upon reasonable request.
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