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Single trial neuronal activity dynamics of
attentional intensity in monkey visual area V4
Supriya Ghosh 1✉ & John H. R. Maunsell 1

Understanding how activity of visual neurons represents distinct components of attention

and their dynamics that account for improved visual performance remains elusive because

single-unit experiments have not isolated the intensive aspect of attention from attentional

selectivity. We isolated attentional intensity and its single trial dynamics as determined by

spatially non-selective attentional performance in an orientation discrimination task while

recording from neurons in monkey visual area V4. We found that attentional intensity is a

distinct cognitive signal that can be distinguished from spatial selectivity, reward expectations

and motor actions. V4 spiking on single trials encodes a combination of sensory and cognitive

signals on different time scales. Attentional intensity and the detection of behaviorally

relevant sensory signals are well represented, but immediate reward expectation and

behavioral choices are poorly represented in V4 spiking. These results provide a detailed

representation of perceptual and cognitive signals in V4 that are crucial for attentional

performance.
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Selective attention greatly improves performance by enhan-
cing the processing of the fraction of available sensory
information that is most behaviorally relevant. Neuronal

responses across many cortical and subcortical visual areas in the
brain are strongly modulated when animals covertly shift their
focus of attention in visual detection tasks1–4. When a monkey’s
attention is directed toward the location of a neuron’s receptive
field (RF), improvement in perceptual performance in that region
is accompanied by greater spike rates5,6, reduced individual
response variance and decreased pairwise spike-count
correlations7,8. Many psychological and neurophysiological stu-
dies have proposed that attention might consist of multiple dis-
tinct neurobiological mechanisms9–11. Recent studies have
identified two behavioral components of attentional performance,
behavioral sensitivity (d′) and response criterion, that are differ-
entially represented in different visual structures. Neuronal
responses in visual cortical area V4 are selectively modulated by
changes in behavioral sensitivity (d′) and remain unaffected by
the changes in response criterion6. Unlike V4, neurons in the
lateral prefrontal cortex are strongly modulated by either changes
in response criterion or sensitivity12.

Although attention commonly refers to selective focus, it also
has another fundamental aspect—amplitude or intensity13, which
is separable from selectivity (Fig. 1). For instance, when attention
is shared between two spatial locations, the directed attention can
be more or less intense with the same selectivity (radial points,
Fig. 1b). Similarly, for the same intensity, attention can be highly
selective or nonselective (moving from off diagonal toward the
diagonal along an arc, Fig. 1b). Schematically, attentional inten-
sity is represented here as an objective function of resultant
performance across targets. It may not fully capture all aspects of
perceived subjective mental effort13. Attention and arousal are
thought to be closely related. An individual is expected to be
aroused in order to maintain a high level of performance while

engaged in a demanding task. It is plausible that the intensive
component of attention is a specific type of more general arousal,
but it remains unknown how this top-down intensity signal is
represented by cortical neuronal activity. In most previous stu-
dies, neuronal modulation in V4 attributed to visual attention was
limited to the changes in attentional selectivity. In response to
increased task demand, V4 neuronal activity is enhanced as a
result of higher cognitive engagement14,15, which is thought to be
closely associated with the intensive aspect of attention11. It has
also been proposed that spike rates of V4 neurons can signal
absolute reward size16 and motor action17,18 associated with a
visual target inside their RFs independent of attentional perfor-
mance. Given the strong experimental evidence for coexistence of
neuronal correlates of distinct cognitive and behaviorally relevant
information in V4, the exact contribution of these covariates and
their dynamics on spiking activities remains unknown.

An interesting hypothesis is that representations of funda-
mental aspects of attention and task-relevant variables in V4
might be multiplexed with distinct dynamics. In the context of
attention-demanding goal-directed tasks, isolating neuronal sub-
strates of attentional intensity from attentional selectivity and any
other relevant sensory or task variables is crucial to better
understand how visual cortex precisely contributes to distinct
components of attention. We manipulated the level of monkeys’
attentional intensity using a novel spatial attention task in which
their overall attentional intensity was switched between high and
low levels with no change in attentional selectivity for stimuli at
one location over another, over small block of trials (green
markers, Fig. 1b). Dashed arcs around the origin mark isopleths
of constant total attentional intensity or iso-intensity across the
two stimulus locations. Movements perpendicular to these lines
correspond to changes in attentional intensity; movements along
these lines correspond to changes in attentional selectivity. Here
we have considered an objective definition of attentional intensity
as measured by spatially nonselective behavioral performance (d′)
(Fig. 1b). Using simultaneous electrophysiological recordings
from a population of V4 neurons and computational models, we
found that attentional intensity modulates V4 neurons indepen-
dent of spatial or featural attention. Additionally, the relative
reward size for the hits and correct rejections (CRs) were varied
within blocks in an uncued way in order to encourage the animals
to maintain a behavioral criterion near 0. This variance in reward
size allowed us to produce single-trial estimates of the dynamics
of neuronal correlates of reward expectation as well as attentional
intensity. Using a generalized linear model (GLM) on single-trial
spike counts of individual V4 neurons, we quantitatively descri-
bed contributions of temporally overlapping neuronal response
components associated with attentional intensity, reward expec-
tation, sensory information, and perceptual detection. This
approach revealed both steady state and time varying multiplexed
cognitive and task-relevant signals encoded in V4, enabled the
assessment of a broader spectrum of cognitive functions to which
visual cortical areas can contribute dynamically.

Results
Behavioral control of attentional intensity. We trained two
rhesus monkeys to distribute their visual spatial attention
between the left and right hemifields while doing an orientation
detection task (Fig. 2a). The animal held its gaze on a central
fixation spot throughout each trial. After a randomly varying
period of fixation, two Gabor sample stimuli appeared briefly for
200 ms. This was followed by a brief delay (200–300 ms), and
then a single Gabor test stimulus appeared at one of the two
sample locations (selected pseudo-randomly). If the orientation of
the test stimulus differed from that of the sample stimulus that
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Fig. 1 Attentional components, selectivity and intensity. a Visual field.
Dashed circles, locations of visual spatial attention. b Attention operating
characteristic (AOC). The spatial distribution of performance, as visual
attention is being shared between the two locations, left and right. Green
circles, attention is equally shared between the left and the right location
with no selectivity. Blue circles, selective attention is directed toward the
right location. Dashed arcs, path of constant intensity of attention (iso-
intensity). c Bottom, simulated spatial distribution of attentional intensity
when attention is focused in right. Top, average attentional intensity along
horizontal. d Same as in (c), for equally shared attention between left
and right.
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had appeared in that location (a target), the monkey had to
rapidly make a saccade to the stimulus to earn a juice reward. On
a random half of the trials, the orientation of test stimulus was
unchanged (a nontarget) and the monkey was required to
maintain fixation. In that case, a second test stimulus that always
had a different orientation was presented after a short delay and
monkeys needed to saccade to this stimulus to earn a reward.
Reward values for correct responses were always the same on
both sides and fixed, either small or large, within alternating
blocks of 120 trials. Stimulus parameters remained unchanged
throughout all trial blocks within a session, except for the reward
size. The transitions between blocks were unsignaled and
sequential (small to large or large to small, Fig. 2b). The monkey
therefore had to estimate reward expectancy based on previous
trials to adjust its behavioral strategy in allocating attention
between blocks.

Varying rewards in different blocks of trials allowed us to
behaviorally control the amount of attention the animal directed
to each stimulus location. Animals were encouraged to maintain a
behavioral target/nontarget bias (criterion, c) close to 0 by
providing rewards of different sizes for hits and CRs (Supple-
mentary Fig. 1). Because the reward sizes for targets were always
the same in both hemifields, animals typically allocated equal
attention to both sides within either the high- or low-reward
condition. Figure 2c plots behavioral sensitivity (d′) and response
criterion (c) for behavioral performance on the first test stimuli

on the left and right side, for both the large- and small-reward
conditions. Solid lines join average sensitivities from alternating
high- and low-reward blocks from a single day. Sensitivities on
both locations are well balanced (no net attentional selectivity)
during most individual sessions. Larger rewards strongly
motivated the animals to increase their attentional intensity
compared to small-reward trial blocks. A fourfold increase in
reward size (median small reward 131 µl, quartiles 108 and 150 µl;
median large reward 522 µl, quartiles 469 and 570 µl) increased
overall behavioral d′ (see “Methods”) by 71% (mean small 2.03,
SEM 0.07; mean large 3.48, SEM 0.08, p= 10−17, paired t-test;
Fig. 2c and Supplementary Table 1) and proportion of correct
responses (Supplementary Fig. 2 and Supplementary Table 2).
Behavioral response criterion remained near 0 regardless of
reward size (Fig. 2c and Supplementary Table 1).

Non-luminance mediated task-evoked increases of pupil size are
commonly considered a proxy for arousal, attentional engagement
and are sensitive to task demands across species19,20 (for review21).
Throughout the task, animals maintained a stable fixation during
which pupil area remains elevated for large-reward trials relative to
small-reward trials (Fig. 2d and Supplementary Fig. 3). Large
reward increased pupil area during fixation by 9% (all values
normalized to fixation on small-reward trials, mean large 1.09, SEM
0.02) and during sample stimuli by 24% (mean small 1.05, SEM
0.02, mean large 1.31, SEM 0.02) (repeated measures ANOVA,
effect of reward size, F(1, 415)= 45.5, p= 10−10; effect of sample
stimulus, F(1, 415)= 180.12, p= 10−15; Fig. 2d). While the within
block trial-averaged behavioral d′ was strongly positively correlated
with both reward size and pupil area during sample stimuli, pupil
area failed to exhibit any correlation with reward size (partial
correlation, reward− d′, ρ= 0.68, p= 10−55; pupil area− d′, ρ=
0.23, p= 10−5; reward− pupil area, ρ= 0.08; p= 0.09; n= 417
blocks of trials; Supplementary Fig. 4). Increased pupil size is often
taken as a signature of an increase in a subject’s overall level of
arousal. While it is conceivable that attentional intensity as defined
in our task is identical to overall arousal, it might not be. For
example, high attentional intensity in our task might correspond to
greater attention to sensory rather than cognitive signals, or greater
attention to visual rather than auditory signals (see “Discussion”).
While the precise relationship between attentional intensity and
overall arousal remains to be determined, the data from Fig. 2d
show that at least some component of the pupil size modulation is
associated with the visual attentional intensity controlled by
our task.

Responses of V4 neurons increase with increasing attentional
intensity. Previous studies have shown that attention-related
modulation of V4 neuronal responses increases when tasks
demand more cognitive engagement14,15. However, in those
studies, increases in task difficulty always covaried with increases
in behavioral selectivity for one visual field location over another.
A more recent study similarly showed that the V4 neurons
respond more strongly when monkeys shift their attention to
increase their behavioral d′ at the recorded neurons’ RF location
relative to another location in the opposite hemifield6, a manip-
ulation that also covaried selectivity and sensitivity. Our task
design allowed us to change attentional intensity with no
appreciable change in the selectivity for one spatial location over
the other (Fig. 2c).

We recorded from total 970 single units and small multiunit
clusters (single unit, 298; multiunit, 672) during 24 recording
sessions from the two monkeys (monkey P, 9 sessions, 407 units;
monkey S, 15 sessions, 563 units) using 96 channel multielectrode
arrays chronically implanted in V4 in the superficial prelunate gyrus
of one hemisphere (Supplementary Fig. 5). Trial-averaged
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Fig. 2 Manipulation of attentional intensity using differential reward
outcomes. a Visual spatial attention task. Monkeys were required to fixate,
attend to sample stimuli (Gabors) presented in both hemifields (inside and
outside of recorded neurons’ receptive field (RF)), and report an orientation
change that occurred in one of the two test intervals by making a saccade
to the stimulus location. b Unsignaled change in reward size between large
and small values over blocks of 120 trials. c Attention operating
characteristic (AOC) curve, indicating behavioral sensitivity (d′, circles) and
criterion (c, triangles) on individual sessions and their average (solid
markers) for test stimuli inside and outside RF during two reward
conditions, large and small (24 Total sessions: 9 monkey P; 15 monkey S).
Dashed colored lines indicate average d′ in each hemifield. Lines connect
two reward conditions within a session. Data are presented as mean with
95% confidence intervals. d Block-averaged pupil area during pre-stimulus
fixation and sample stimulus periods. Pupil area was normalized to mean of
pre-stimulus fixation during small-reward trial blocks. Data are presented
as mean with 95% confidence intervals.
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population spike rates during the pre-sample fixation period for
correctly completed trials (hits and CRs) did not differ between the
two reward sizes (p= 0.06; Supplementary Fig. 6). Spike counts
during the sample stimuli period increased in large-reward trial
blocks when the monkeys’ attentional intensity was higher
(Fig. 3a–c). Average responses were low because the stimulus was
patently suboptimal for most of the simultaneously recorded
neurons. The offset response latency was longer than the onset
latency. A similar offset latency difference in V4 and IT neurons
was found in several previous studies6,22,23. A strong top-down
modulation and activation of recurrent network could increase the
offset latency in V4 neurons depending on the type of behavioral
task24. The peak-normalized population spike rates in one monkey
(animal S) show greater sustained activity than the other (animals
P, Fig. 3b, c). This difference arose from differences in average
absolute peak firing rate (monkey P mean 28.7 SEM 1.1 spikes/s,
monkey S mean 24.6 SEM 0.9 spikes/s, p < 0.01, rank sum test) and
average absolute sustained rates (monkey P mean 16.2 SEM
0.7 spikes/s, monkey S mean 18.5 SEM 0.6 spikes/s, p < 0.01, rank
sum test). Principal component (PC) analysis of spike peri-stimulus
time histograms of all neurons revealed that the monkey P has
higher PC scores associated with third PC, which captured a
transient peak response (Supplementary Fig. 7). To quantify
neuronal modulation by attentional intensity, we computed a
modulation index (neuronal d′) as the difference of z-scored firing
rates (60–260ms from sample onset) between high and low
attentional intensities. The mean firing rate was significantly greater
during the high intensity condition (neuronal d′ for all units,
mean= 0.13, p= 10−153, n= 970, t-test; Fig. 3d). Both single
neurons and multiunit clusters showed significant modulation of
firing rates by attentional intensity (neuronal d′ for single units,
mean= 0.09, p= 10−31, n= 298, t-test; for multiunit clusters,

mean= 0.14, p= 10−127, n= 672, t-test). The attentional intensity
effect was also significant for individual monkeys (monkey P, mean
= 0.19, p= 10−94; monkey S, mean= 0.09, p= 10−82; Supplemen-
tary Fig. 8). In addition, of 970 units recorded in V4 from the two
monkeys, significant intensity modulations (p < 0.05) were observed
in 595 (61%) units. Thus, an isolated change in attentional intensity,
affects responses in V4 in the absence of behavioral selectivity or
response criterion changes.

It is expected that with increased reward size, animals’ level of
general arousal might also increase. Next, we wanted to test if the
observed effects due to changes in attentional intensity can be fully
explained by general arousal. It is believed that animal’s general
arousal and motivation decreases with time during a long
experimental session which can be reflected by pupil size and the
rate of aborted trials16. We separately analyzed behavioral d′, rate of
aborted trials (fixation breaks), pupil area, and V4 spike counts for
the early (first half) and late (last half) trials for small- and large-
reward blocks within each session (Supplementary Fig. 9 and
Supplementary Table 4). We then compared the modulations of
these measures between attentional intensity and session timing.
Attentional intensity significantly affected behavioral d′ (p= 10−3)
and the rate of aborted trials (p= 10−3), whereas trial timing (early
versus late) had no significant effects on behavioral d′ (p > 0.05) or
aborted trials (p > 0.05). Thus, the level of attentiveness relevant to
the task in a given type of reward block (small versus large) did not
change detectably over longer intervals within a session irrespective
of changes in satiation (motivation) and fatigue (or general arousal).
In contrast, pupil area and V4 spike counts were significantly
affected by both the attentional intensity (p= 10−3) and trial timing
(p= 10−4). However, there were no significant effects of intensity-
by-trial timing interaction on pupil area or spike responses (p >
0.05). Together, these results suggest that the attentional intensity
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95% confidence intervals.
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and general arousal can independently modulate common down-
stream targets such as autonomic sympathetic nervous system
(pupil dilation) and cortical neuronal activity.

Higher attentional intensity reduces neuronal response varia-
bility. In addition to enhancing firing rates, increased attentional
intensity reduced the trial-to-trial variability of spike rates of
individual neurons (Fig. 3e). Following sample stimuli onset, the
mean-matched Fano factor (the ratio of the variance of the firing
rate to the mean; “Methods”) dropped and remained significantly
lower for high attentional intensity compared to low intensity
(mean ± SEM Fano factor over 60–260 ms, for all units 0.881 ±
0.001 (small), 0.865 ± 0.001 (large), p= 10−16, for single units
0.889 ± 0.003 (small), 0.867 ± 0.002 (large), p= 10−7, for multi-
units 0.875 ± 0.002 (small), 0.862 ± 0.002 (large), p= 10−5, t-test;
Fig. 3e). Attentional intensity did not have any effect on the Fano
factor before the sample stimuli onset (mean ± SEM over –200 to
0 ms, for all units 0.970 ± 0.003 (small), 0.966 ± 0.002 (large), p=
0.21, for single units 0.986 ± 0.003 (small), 0.982 ± 0.003 (large),
p= 0.38, for multiunits 0.961 ± 0.005 (small), 0.956 ± 0.004
(large), p= 0.38, t-test; Fig. 3e).

We also computed spike-count correlations over 200ms during
sample stimuli (60–260ms) between pairs of simultaneously
recorded neurons (Fig. 3f). Neuron pairs were binned based on
their evoked responses (geometric mean of baseline subtracted spike
rate, “Methods”). Intense nonselective attention reduced spike-count
correlations (mean ± SEM, for all units 0.0616 ± 0.0007 (small),
0.0539 ± 0.0006 (large), p= 10−60, for single units 0.0725 ± 0.0026
(small), 0.0616 ± 0.0025 (large), p= 10−13, for multiunits 0.0605 ±
0.0009 (small), 0.0542 ± 0.0009 (large), p= 10−20, t-test). Collectively,
these results indicate that the attentional intensity modulation of V4
neurons is highly similar to those described for spatially selective
attention6,7,25.

Spatial distribution of neuronal modulation. The definition of
attentional intensity used here depends on spatially uniform
performance as measured by behavioral d′ across the hemifields.
The task design does not rule out all forms of spatial selection, as
the animals might have distributed their attention to other
locations beyond the two stimulus locations tested. If so, V4
neurons could have been modulated by the spatially selective
shifting of attention from those other locations to the two sti-
mulus locations. Responses of V4 neurons with RF away from the
focus of spatially selective attention are generally not modulated.
Thus, an absence of spike modulation for the neurons with RF
slightly off from the focus of attention would indicate a significant
contribution of spatially selective attention in the observed
attentional intensity-related neuronal effects. We examined the
spatial distribution of attention by measuring the correlation
between firing rate modulation and the proximity of V4 neurons’
RFs and attended Gabor stimulus (Fig. 4). The proximity was
estimated by the proportion of overlap between two-dimensional
probability densities of neurons’ RF and Gabor stimulus (Fig. 4a,
b). We saw a wide distribution of RF-Gabor overlaps across
recorded V4 units (median 22%, quartiles 12 and 30%; Fig. 4c). A
monotonic increase (positive correlation) in spike rate modula-
tion with the increase in RF-Gabor overlap would indicate spa-
tially selective attention. Instead, we found no detectable change
in neuronal modulation based on the RF-Gabor overlap (for all
units, ρ= 0.0002, p= 0.49; single units, ρ=−0.12, p= 0.97;
multiunits, ρ= 0.04, p= 0.18; Spearman correlation; bottom,
Fig. 4d). There was no significant difference in spike modulation
among groups of units with four equal intervals of RF-Gabor
overlap (F(3, 730)= 0.67, p= 0.57, ANOVA; top, Fig. 4d). This
suggests that the firing rate increase with increasing attentional

intensity is distinct from previously described selective attention
modulation of V4 spike rates.

Because we recorded from the same fixed multielectrode arrays
over many sessions, it is possible that some units were sampled in
more than one session. We investigated the effect of potential
resampling by analyzing a subsample that included only one unit
from each electrode across all recording sessions (n= 159 from
two monkeys). For this conservative set, high attentional intensity
increased spike rate (neuronal d′, mean= 0.13, p= 10−25, n=
129, t-test; Supplementary Fig. 10) and reduced mean-matched
Fano factor (mean ± SEM Fano factor, 0.914 ± 0.004 (small),
0.873 ± 0.004 (large), p= 10−10) to extents that were indistin-
guishable from the whole population. Thus, the results are robust
and independent of any multiple sampling that might have
occurred.

Trial-by-trial behavioral, physiological, and neuronal dynamics
in response to reward modulation. Many experimental covari-
ates might closely follow the timing of changes in reward size
used to manipulate attentional intensity. We therefore examined
the dynamics of behavioral, physiological, and neuronal responses
associated with reward changes. All the blocks of trials were first
aligned to the first correct trial after block transitions. Trial-by-
trial values of sample stimuli-evoked pupil area (physiological
response) and spike counts were then averaged across blocks
(Fig. 5 and Supplementary Fig. 13). In order to estimate the trial
dynamics of behavioral performance, d′ at a given trial order
(1–120) was computed using all behavioral responses at that trial
order across blocks. The first reward in a block unambiguously
signaled a block transition, which was otherwise unannounced.
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neurons in (a, b). d Bottom, correlation between neuronal modulation
(neuronal d′, Fig. 3d) and the proximity of RF and Gabor stimulus (ρ=
0.0002, p= 0.49; Spearman correlation, two-sided t-test). Red line, linear
regressor (with 95% confidence intervals). Filled circles, example neurons
in (a). Top, mean modulation indices of units grouped in four equal intervals
of RF-Gabor overlaps. There was no difference among these groups (F(3,
730)= 0.67, p= 0.57; one-way ANOVA). n= 731 units from monkey P and
monkey S. Data are presented as mean with 95% confidence intervals.
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Block-averaged single-trial reward values received by the animals
approximated step functions (single exponential fit: τ= 0.2 and
0.5 trials, respectively, for transitions from small to large (n= 212
blocks) and from large to small (n= 205 blocks), Fig. 5a).
Behavioral d′ closely tracked reward changes for the transition

from large to small (τ= 1). However, the d′ was much slower
(τ= 12.2) for transitions from small to large (Fig. 5b). As
expected, trial constants of percent correct, followed a time course
similar to d′ (large to small, τ= 1; small to large, τ= 9.0; Sup-
plementary Figs. 11 and 12). In contrast to task performance,
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Fig. 5 Directions of reward change have differential delayed effects on behavior and physiology. Block-averaged single received rewards (a), behavioral
sensitivity (d′) (b), normalized mean pupil area during sample stimulus period (c), and normalized V4 spike counts across all neurons (n= 970; (d)) in
large (n= 212) and small (n= 205) reward blocks. Circles, observed data. Lines, single exponential fits. τ, decay or rise constants. Trials are aligned with
respect to the first correct trial following block transition. Dashed lines, 95% confidence intervals. e–g Hysteresis with transition of attentional intensity.
Behavioral d′ (e), pupil area (f), and V4 spike counts (g) in response to reward changes from large to small and reverse. Horizontal error bars, mean ± SEM
of reward size across blocks at the center value of y-axis variable. h V4 spike counts as a function of d′ changes. Vertical lines, mean d′ across blocks at the
half-value of spike counts. i Top, analysis windows for reward-matched V4 spike counts in large- and small-reward blocks within first 10 trials at the
beginning (middle, cyan) and last 60 trials at the end of blocks (bottom, purple). Bars, mean received rewards across trials binned between 0 and 1
(bin size= 0.2, overlap= 0.1; within session normalized) for two reward block conditions. Data are presented as mean with 95% confidence intervals
(bootstrap, n= 104). Circles, mean normalized spike counts (n= 970) on immediate next trial. j Left, linear regression between mean pupil area
(0–400ms), spike counts (60–260ms), and reward conditions (high and low attentional intensities) across all trials were fit separately for each neuron.
Population mean ± SEM of fitted coefficients of intensity was significantly higher compared to the coefficients of spike counts (p= 10−196; rank sum test)
for neurons with significant fit (p < 0.05, n= 625; F-test). Right, two separate linear regression fits between pupil area and spike counts for large- and
small-reward trials. Mean ± SEM of fitted coefficients of spike counts for the two reward conditions for neurons with significant fit (p < 0.05, n= 334;
F-test) were not different (p= 1.3; rank sum test).
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pupil area and population mean V4 spike responses (60–260 ms
from sample onset) had the same slow decays for large-to-small
transitions (τ= 9 for both) and similar, faster rises for small-to-
large transitions (τ= 4 and 2, respectively, for pupil area and
spikes, Fig. 5c, d). Similar to previous studies16, we also found
that the changes in reward size differentially affected trial-by-trial
rate of aborted trials depending on the direction of reward change
(Supplementary Fig. 14). Immediately after the block transition,
the aborted trials slowly increased (τ= 4.2) for transitions from
large to small compared to transitions from small to large (τ=
0.1). However, as the trials progressed abort trial rate gradually
decreased in small-reward blocks. Taking into account the dis-
similar early aborted trial rates between small- and large-reward
blocks did not alter qualitatively trial-by-trial dynamics of beha-
vioral d′, pupil area, and V4 spike counts as a function of time
rather than trial count (Supplementary Fig. 15). Time constants
of these behavioral, physiological, and neurophysiological vari-
ables were closely proportional to the trial constants as measured
from trial-by-trial dynamics as a function of number of trials.

The discrepancies between the effects of two directions of
reward changes on neuronal firing, pupil area, and behavior can
be clearly seen in hysteresis plots (Fig. 5e–g). These response
transitions show memory effects where an equivalent change in
the response requires significantly different amount of reward
change depending on the change direction. Behavioral d′ tracks
transitions from small-to-large reward size more slowly than
transitions from large-to-small reward size (Fig. 5e). In contrast,
pupil area and neuronal responses track transitions from small-
to-large reward size more quickly than transitions from large to
small. The normalized reward value at which the values reach
their mid-point differ significantly for large-to-small and small-
to-large transitions for all three measures (horizontal bars in
Fig. 5e–g, mean ± SEM, p= 10−31, t-test). Similar neuronal
hysteresis is also seen in motion perception and contrast
detection in humans where stimulus history affects perceptual
detection threshold26,27. The different dynamics between d′ and
spike rate were almost complementary (Fig. 5h), with spike rate
leading for low-to-high transitions and lagging for high-to-low
transitions of d′.

While the average spike rate in area V4 changed slowly
following block transitions, the averages might obscure trial-to-
trial changes in neuronal activity that tracked the reward received
on the previous trial. Because rewards for hits and CRs typically
differed (Supplementary Fig. 1), we could measure dependency of
spike counts on the previous reward. We sorted trials into
different bins depending on the normalized reward size on the
preceding trial and measured spike counts of each neuron (see
“Methods”). We further separated the trials based on whether they
occurred immediately after block transitions (within first one to
ten trials from the first correct response after the reward switch) or
during steady state within a block (final 60 trials, 61–120) (top,
Fig. 5i). Reward value on the previous trial did not affect spike
counts (F(8, 12801)= 1.46, p= 0.164 for repeated measured factor
reward value (nine levels); F(1, 12801)= 3.72, p= 0.0537 for
between group factor, block-reward condition (large and small))
(middle, Fig. 5i). The lack of dependency of spike responses on
immediate expected reward remained unchanged even during the
late, steady state portion of blocks (late trials), when a large effect
of block-reward size was seen (F(8, 10752)= 1.18, p= 0.307 for
reward value; F(1, 10752)= 7.78, p= 0.005 for block-reward
condition) (bottom, Fig. 5i). Thus, the strong V4 response
modulations we saw were dominated by slow effects associated
with reward history and not due to immediate expected reward.

The similar dynamics of pupil area (Fig. 5c) and spike rate
(Fig. 5d) suggest that a larger pupil area associated with high
attentional intensity might enhance effective retinal illumination,

which might elevate V4 neuronal spiking. To test this possibility,
we quantified how well pupil area correlates with V4 spike rates
and attentional intensity (“high” or “low”) for all neurons using
linear regression (see “Methods”). Regression coefficients for
attentional intensity were more than eightfold higher than the
coefficients for spike rate (mean ± SEM, spike rate, 0.08 ± 0.005;
attentional intensity, 0.68 ± 0.01; Wilcoxon rank sum test (WRS),
n= 625, p= 10−196; Fig. 5j, left). The weak relationship between
pupil area and spike rate was similar for the two reward
conditions, when mean pupil area was fit separately for small-
and large-reward trials (mean ± SEM, small reward, 0.094 ± 0.008;
large reward, 0.097 ± 0.01; WRS test, n= 334, p= 0.13; Fig. 5j,
right). We additionally measured the temporal relationship
between single-trial V4 spike trains and pupil area dynamics
using cross-correlation and spike-triggered averaged (STA) pupil
area for each neuron (see “Methods”). None of the neurons show
any significant correlation between peri-stimulus time histograms
(PSTHs) of pupil area and spike rates (binned at 10 ms) over the
analysis window from −350 to +350 ms from sample onset
(Supplementary Fig. 16). Similarly, STA-pupil area that measured
the extent to which individual spikes were aligned with pupil area
did not show any significant relationship between single spikes of
individual neurons and pupil area (absent of STA-pupil area > 0
at negative lags; Supplementary Fig. 17) compared to subcortical
brain structures including locus coeruleus and superior
colliculus28. Together, these results suggest that V4 spike activity
and the autonomic sympathetic system that regulates pupil
dilation are both strongly modulated by common top-down
cognitive states rather than a direct influence of changing retinal
illumination on V4 spike activity within the limit of observed
pupil area change.

Single-trial encoding of attentional states in area V4. To
understand better how V4 neurons encode a cognitive state of
enhanced attentional intensity, we fitted single-trial spike counts
of every neuron using a GLM as a function of experimental
predictor variables (see “Methods”). In a detailed GLM (complete
model; Fig. 6a), we used 13 predictor variables: orientation of
sample stimuli inside RF; mean pupil area during the sample
period; the saccadic choice; and a reward history that consisted of
reward outcomes in each of the previous ten trials. We also
compared the performance of this complete model with two
reduced GLMs (Supplementary Fig. 18) that included either
reward history (reward model) or the pupil area (pupil model)
alone (Fig. 6a). Fitted single-trial spike counts in small- and large-
reward conditions from cross-validation test data set for an
example neuron are shown in Fig. 6c. Model performance was
measured by pseudo R2 values (see “Methods”). Most neurons
(78%, 757/970) were significantly fit (p < 0.05, F-test) with the
complete model. Fewer neurons had significant fits for the
reduced models (reward model, 12%, 114/970; pupil model, 50%,
483/970; Fig. 6b). Figure 6d shows population-averaged spike
counts of all fitted neurons estimated from the complete GLM
with observed responses overlaid for the cross-validated test data
set. We next compared the relative contributions of the experi-
mental variables on spike responses for each neuron as measured
by predictor importance (PI), which is the normalized magnitude
of fitted coefficients (see “Methods”). Stimulus orientation has the
strongest contribution to the spike counts, which is expected
because most V4 neurons are orientation selective (PIs of indi-
vidual neurons, Fig. 6e; mean PI across neurons, Fig. 6f). More
interestingly, single-trial pupil area also strongly predicts spike
response compared to reward history and saccade choice.
Instantaneous pupil area remained a strong predictor when we
compared with constant levels of attentional intensity (“high” and
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Fig. 6 Encoding of cognitive states by single-trial spike counts. a Top, generalized linear models (GLM) on single-trial spike counts during sample stimuli
period (60–260ms from sample onset). Spike counts were fit with three different GLMs. Two were reduced models, based on either reward history (ten
immediate past received rewards; reward model) or mean pupil area over 400ms following stimulus onset (pupil model). A more detailed model
contained multiple experimental and cognitive variables that included reward history (past ten trials), pupil area, saccade response, and Gabor stimulus
orientation (complete model). b Left, cumulative probability densities of pseudo R2 values (see “Methods”) of single neurons measure goodness of fit for
different GLMs. Right, fraction of the neuron population that were fit significantly better (p < 0.05, F-test) compared to a null model (a constant) (reward
model, 114/970 (12%); pupil model, 483/970 (50%); complete, 757/970 (78%)). c Observed and model-predicted spike counts on single trials from
cross-validation test data set for an example neuron in two representative reward blocks. d Population-averaged observed and fitted (complete model)
spike counts. Gray, observed; blue, complete model. e Comparing predictor importance (PI) that measures contributions of different predictor variables
estimated by absolute standardized predictor coefficient values. Colormap represents PIs of all neurons that were fit with the complete model (n= 757, p <
0.05; F-test). Neurons were sorted based on the pseudo R2 values. f Population-averaged PIs well fit neurons (n= 757) presented as mean with 95%
confidence intervals (bootstrap, n= 104).
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“low”) as well as block-averaged single-trial pupil area in two
alternate models (PI, mean ± SEM, constant attentional intensity,
2.3 ± 0.07; blocked-averaged pupil area, 2.7 ± 0.09, instantaneous
pupil area, 5.37 ± 0.19; ANOVA, F(2, 2195)= 166.31, p= 10−67;
Supplementary Fig. 19).

Together, these suggest that even though reward history is the
primary external motivator for the monkeys, V4 spike responses
to the sample stimuli encode the level of instantaneous attentional
intensity more strongly than recent reward outcome value or
saccade choices.

It is possible that reward history has more weight around the
time of block transitions, when expectations change rapidly16.
Because most of the trials within blocks in our task occur long
after a transition (steady state), this weight would be diluted. To
address this, we also fit spike counts from only the first 20 trials
after block transitions with the same complete GLM as shown in
Fig. 6a (Supplementary Fig. 20). As with the complete data set,
stimulus orientation and pupil area contribute much more
strongly to V4 spike counts than does reward history. Although
both the pupil area and spike counts are not directly related, they
are linked to the top-down attentional intensity in a similar way.
Thus, the state of spatially nonselective attention as represented
by pupil area is encoded in single-trial spike counts during the
sample stimuli period.

Dynamic representation of the detection of behaviorally rele-
vant sensory signal in area V4. Although reward representation
in V4 is weak during the sample stimuli interval, stronger signals
might emerge closer to the behavioral response. We therefore
separately fit spike counts during the choice interval (test 1
interval) using a similar complete GLM. We used only those trials
for which test 1 stimulus appeared inside RFs and the animal did
not initiate a saccade until after the analysis period (which was
60–260 ms from test 1 stimulus onset; 44.4% (22,238/50,038) of
the trials) (Supplementary Fig. 23). The stimulus feature variable
in this model was the product of orientation tuning filter and test
1 stimulus orientation, as there were four different orientations of
test 1 stimulus. The remaining variables were mean pupil area
during the test 1 presentation, reward outcomes in each of the
previous ten trials and the saccadic choice.

Reward history remained a poor predictor of single-trial spike
counts compared to pupil area (Supplementary Fig. 23). Notably,
the saccade choice variable is also a strong predictor of spike
responses for the same neuronal population. Previous reports
have shown that spike responses of V4 neurons enhance before
initiating a saccade toward the RF location17,18. Among all the
saccade sensitive neurons (n= 256, significant saccade coefficient,
p < 0.05) about two-thirds were more active before saccades
(saccade-preferred neurons; saccade coefficient > 0; n= 149/256)
and the rest were less active (saccade anti-preferred neurons,
saccade coefficient < 0; n= 107/256). Furthermore, based on
behavioral outcomes (hit, miss, CR, and FA), we sorted observed
spike counts on single trials during sample and test 1 stimulus
periods for these two neuron types, saccade preferred and saccade
anti-preferred (Supplementary Fig. 23). A true encoding of
saccade choice by these neurons predicts indistinguishable spike
response between hits and FAs (and between CRs and misses).
Instead, spike responses of saccade-preferred neurons increase for
hits and misses (nonmatch trials) compared to CRs and FAs
(match trials). Similarly, responses of saccade anti-preferred
neurons increase for CRs and FAs (match trials) compared to hits
and misses (nonmatch trials). This suggests that saccade choice is
not a suitable predictor variable in accounting for single-trial
spike counts during the test 1 interval; rather “stimulus
orientation change” can be a better predictor parameter.

We next fit the same data set of spike counts during test
1 stimulus with a complete GLM as mentioned above except, the
saccadic choice variable was replaced with stimulus orientation
change (Δori) (top, Fig. 7a). The variable Δori represents the trial
type: match or nonmatch trial. Covariance between single-trial
absolute test 1 stimulus orientation and Δori is small (mean
partial correlation 0.005) across sessions due to small Δori values
(16°–32°). Furthermore, we used only the neurons with very weak
correlation coefficients (<0.2) between model-predicted spike
counts due to stimulus feature (product of orientation tuning
filter and test 1 orientation) and Δori to rule out stimulus
orientation-related effects on estimates of Δori coefficient.
V4 spike counts robustly encode information of single-trial Δori
(Fig. 7a, b). Based on significant Δori coefficients (p < 0.05), two
populations of neurons were classified, Δori preferred (Δori
coefficient > 0, n= 130/521) and Δori anti-preferred (Δori
coefficient < 0, n= 109/521). As expected, orientation change
differentially modulates mean spike counts during the test 1
interval in these two neuron subpopulations in accordance with
the change in stimulus orientation (two factors repeated
measured ANOVA, F(1, 237)= 15.33, p= 10−4 for neuron types
(Δori preferred, Δori anti-preferred); F(3, 711)= 7.83, p= 10−4 for
repeated measured factor response choices (hit, miss, CR, and
FA)) (right, Fig. 7c).

Finally, we tested the detection accuracy of stimulus orientation
change from observed V4 spiking activity during the test
1 stimulus by using the fitted model on a single trial in a tenfold
cross-validation test data set (see “Methods”). A random pair of
trials, one from nonmatch (hit or miss) and another from match
(CR or FA) without replacement, were selected. For each of these
two trials, we evaluated the likelihoods of observed spike counts to
be consistent with spike counts under the two possible orientation
changes for each fitted neuron within a session. Sum of the log-
likelihood ratios across simultaneously recorded neurons amounts
to the predicted probability of a realization of orientation change
on that trial. The discrimination of an orientation change from no
change was considered correct only when the decoded orientation
changes in both trials of the selected pair matched the observed
data. Figure 7d shows the model-fitted population-averaged spike
counts and decoded task variables, orientation change (top, using
Δori GLM) and saccadic choice (bottom, using saccade GLM as
described in Supplementary Fig. 23) on 20 pairs of randomly
selected trials in an example session. Similar to saccade prediction,
we also tested accuracy in discriminating response choices, i.e., hit
from miss or FA from CR from observed spike counts during test
1 using the same saccade GLM. Prediction accuracy of orientation
change (using Δori GLM) is better than both saccade and choice
(hit versus miss or CR versus FA) predictions (using saccade
GLM) across all sessions (mean ± SEM, Δori, 68.5 ± 2.8%,
saccade, 50.0 ± 1.4%, choice, 34.2 ± 0.8%; p= 10−25, F(2, 69)=
154.2, ANOVA; Fig. 7e). Decoding performance of Δori is better
compared to saccade irrespective of the number of neurons used
for decoding within a session (Fig. 7f). Together, these encoding
and decoding models offer powerful methods in isolating task-
relevant variants and reading out perceptual or decision signals
from a population of neuronal spikes.

Discussion
We used simultaneous multineuron recordings and single-trial-
generalized linear modeling to uncover how visual area V4
activity represents information related to intensity of attention,
perceptual detection, reward expectation, and the saccadic motor
action relative to sensory stimulus. First, we found that isolated
changes in spatially nonselective attention between two locations
modulate the activity of neurons in V4. Previous reports on
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modulation of V414,15 activity with “effort” by changing task
difficulty is thought to represent the intensive aspect of
attention13. The changes in effort in these studies14,15 were always
conflated with changes in attentional selectivity, which is known
to strongly modulate V4 neuronal activity5–7,25. The current data
show conclusively that V4 neurons are modulated by attentional
intensity in a manner similar to spatially selective attention-
mediated effects, including an increase in spike rate and reduc-
tions in both individual variability as well as pairwise spike-count
correlations. Unlike selective attention, the spike rate modulation
with attentional intensity is spatially nonselective and indepen-
dent of the neuron’s RF location. Previous studies have reported
that visual spatial attention can be split into multiple foci to
suppress task irrelevant distractor information29,30. Absence of
any distractor in the current task and spatially nonselective
neuronal modulation with changes in attention intensity elim-
inates the possibility of split spatial attention-mediated effects in
the results. Second, changes in reward size result in correlated

changes in the averaged cortical responses, pupil area—a phy-
siological signature of attention and arousal—, and behavioral
performance (d′). However, neuronal responses, pupil area, and
behavioral d′ dissociate markedly at block transitions, exhibiting
distinctly different degrees of dependency on trial history and
single-trial dynamics. Third, sensory stimulus and pupil area
strongly predict V4 spike counts throughout individual trials, as
revealed by single-trial information encoding. However, V4 spike
counts are little affected by recent reward history. The detection
of sensory stimulus change emerges to be strongly represented
within the spike counts immediately before the behavioral choice
when animals make the decision. Together, these results isolate
the dynamics of multiplexed representations of cognitive and
experimental signals in V4 which can be crucial for performance
in attention-demanding tasks.

In these experiments, we controlled attentional intensity using
changes in reward size. Some formulations in psychology and
neuroscience term the intensive component of attention as

Fig. 7 V4 spikes encode change in stimulus orientation immediately before response selection. a Top, Δori model: GLM of spike counts during test 1
interval (60–260ms from test 1 on). Predictor variables: product of test 1 stimulus orientation and neuron’s orientation tuning filter, pupil area, reward
history, and orientation change (match or nonmatch trial). Only the trials when test 1 stimulus appeared inside RF of recorded neurons and monkey did not
initiate any saccade before analysis period (44.4% of the total trials). Bottom, contributions of predictor variables to spike counts of single neurons.
b Population-averaged predictor importance presented as mean with 95% confidence intervals (n= 521). c Observed normalized mean (with 95%
confidence intervals) V4 spike rates of Δori responsive neurons during sample and test 1 stimulus presentations for different behavior choice trials. H hit,
M miss, R correct rejection, F false alarm. Neurons with significant Δori coefficient (p < 0.05; two-sided t-test) are classified as Δori preferred (coefficient
< 0, n= 130; two-sided t-test) or Δori anti-preferred (coefficient < 0, n= 109; two-sided t-test) based on the GLM fits. d Decoded task variables on
randomly selected pair of trials from cross-validation test data set in an example session. GLM fitted coefficients and observed single-trial V4 spike counts
are used to estimate probability of Δori (Δori model, (a)) and probability of saccade (saccade model, Supplementary Fig. 12). Open red circle, observed
response. Filled black circles, incorrect prediction. Dot, predicted probability of a response. e Decoding accuracy of response choice, saccade and Δori for
cross-validation test data sets across all sessions (n= 24) using GLM fits. Triangles, population means. Dashed line, 25% chance level. f Decoding
accuracy as a function of number of neurons used for decoding across sessions (n= 24). Markers, individual session. Solid lines, second-order polynomial
fits. Dashed lines, 95% confidence intervals.
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“effort” which is uniquely associated with changes in task diffi-
culty, and view it to be a specific type of “arousal” but distin-
guishable from other forms of arousal such as that induced by
stress, novel bottom-up stimuli, and drugs13 (but see31). It is
possible that the brain might incorporate distinct forms of
arousal. For example, while increased arousal is typically viewed
as enhancing task performance, elevated generalized arousal
caused by stressful bottom-up stimuli is typically associated with
poor performance, as measured by lower response criterion with
faster and less accurate responses32. It is possible that the phe-
nomena of nonselective attentional intensity we observed with
reward manipulation either represent mechanisms that work in
parallel with overall arousal or specific components of overall
arousal similar to “effort” induced by task difficulty. Moreover,
neurophysiological evidence suggests that common neural path-
ways are activated by either changes in expectation of reward or
changes in task difficulty33. Understanding of the relationship(s)
between attentional intensity, effort, and arousal might be refined
through future experiments with precise and independent control
of these cognitive factors on simultaneous tasks. Other important
questions to be addressed concern the circuit, cellular, and
molecular mechanisms that mediate attentional intensity. These
could involve activation of diverse neuromodulatory systems such
as norepinephrine, acetylcholine, serotonin34–39, and inputs from
other brain regions, including direct anatomical projections
including the amygdala40,41.

In the current experiments, pupil area provides a reliable phy-
siological correlate of the dynamics of attentional intensity42. Var-
ious other cognitive processes have been linked with pupil size
changes, including memory, decision-making, and emotions11,43–46.
Changes in pupil size are related to the activity of neurons in the
locus coeruleus (LC)28, which projects extensively to attention
processing areas including visual cortex. A recent study has shown
that V4 spiking activity strongly covaried fluctuations in pupil size
association with spontaneous slow drift in task performance47. Like
V4, many other brain areas show correlated spike activity with pupil
area, including structures implicated in attention28. A noradrenergic
neuromodulation of V4 neurons might mediate such brain-wide
attentional state representation. It might be valuable to learn whe-
ther changes in pupil size and behavioral performance associated
with attentional intensity depend on changes in LC activity or are
instead mediated in part or wholly by other structures.

When reward sizes increase, the rise of d′ is slow relative to the
increase in V4 spike rate and pupil area. In contrast to reward
increases, performance drops quickly with decreased rewards
even though pupil area and neuronal response remain elevated
(i.e., delayed decay, Fig. 5). Dissimilar effects of reward change
directions on behavior are often seen across species48,49. Inde-
pendence of V4 neuronal activity from single-trial behavioral
performance is consistent with the notion that transitions
between cognitive states occur with different dynamics in
downstream structures that read out perceptual detection and
weigh anticipated outcomes against the cost of initiating and
executing action16,50. It remains to be determined how much
subjects can control the dynamics of their behavioral responses to
changes in reward expectation. The observed hysteresis in
V4 spike responses with reward changes represents a type of
memory. Hysteresis at the input–output level of a single neuron
can improve memory capacity and retrieval properties in the
presence of noise in a synchronous network of neurons with
nonlinear threshold51. Indirect evidence of hysteresis in single
cortical neurons comes from the fact that spike train history is an
important predictor of individual spikes52,53. Spike counts on
reward-matched trials are indistinguishable between the two
reward conditions immediately after the reward switch and
become different only in later trials when the animal’s attentional

intensity attains a steady level (Fig. 5i). These results together
with reward-spike hysteresis (Fig. 5g) strongly support a depen-
dency of V4 neuronal activity on history of attentional intensity.
Previous trial history of task-relevant signals has also been
reported to strongly modulate PFC neurons54. Neuronal hyster-
esis during visual perception has been suggested to arise from
cooperativity between interconnected neurons27,55. Future
experiments are required to dissociate the role of single cell
excitability and connectivity among neurons on neuronal hys-
teresis in V4. Absence of reward modulation (immediate past trial
outcome) of spike counts on reward-matched trials in trials
immediately after block transitions is inconsistent with immedi-
ate reward representation as reported in previous studies16,56.

The relationships between reward expectation, behavioral d′,
and V4 spiking were examined in a previous study16 that found
the expectation of a large reward increases spike rates of V4
neurons relative to expectation of a low reward, even when d′ is
unchanged across those conditions. Consistent with this, we
found that the d′ was slower to respond to changes in reward
schedule than was V4 spiking. The early study randomly inter-
leaved different rewards conditions on a trial-by-trial basis,
whereas our task contingencies were entirely predictable over
blocks of 120 trials. We would expect to see results qualitatively
similar to the previous report16 if we randomly interleaved trials.
Unlike previously observed positive correlation between absolute
reward size expectation and V4 spiking16, we found weak
representation of reward history in single-trial V4 spike counts
using both reward-matched spike-count analysis and GLM-based
encoding models. The reward representation remained weak even
immediately after block transitions when the knowledge of
reward expectancy was crucial in motivating the animals to alter
their level of exerted attentional intensity and hence the beha-
vioral performance. In our study, the reward on each trial varied
around a mean within each reward schedule (Supplementary
Fig. 1), whereas fixed rewards were used in the earlier study. Our
additional reward-variance provided negligible covariances
between reward size and other task variables, and was crucial for
reliable isolation of multiplexed information on single trials using
GLM. Prior application of GLM-based encoding in primate
cortical areas has identified dependencies of correlated spikes on
multiplexed sensory, cognitive, and motor signals52,57. Perfor-
mance of our model fit can be further improved by taking into
account of spike history or interaction with other units within the
network52.

Previous studies have described that V4 spiking increased
when an animal intends to make a saccade toward the neuron’s
RF17,18,58,59. However, single-trial encoding shows that the
observed correlation between V4 spike counts and saccade
initiation is primarily due to perceptual signal detection and not
saccade preference. The lack of a slow latency pre-saccadic signal
in V4 spikes based on the spike counts over the 200ms stimulus
period does not fully rule out the possibility of fast pre-saccadic
modulation that is shorter than 200ms. Ablation of V4 has
revealed no effects on saccade amplitude or latency to visual
targets60,61. In partial agreement with some of these findings, our
results confirm the role of V4 in single-trial perceptual detection
of behaviorally relevant signals (orientation change) but reject a
direct contribution to saccade choice. High covariance between
signal detection and behavioral choice in previous studies may
have limited the detailed isolation of information coding of per-
ception from decision. In the present study, we identified two
types of response populations in V4 that are differentially
modulated with changes in behaviorally relevant signals. Future
work at the microcircuit level is required for detailed character-
ization of these two cell populations with respect to their inputs
and recurrent connections. Understanding the finer dynamics of
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cognitive task variants within a single trial would require mod-
eling at the time scales of single spikes52. A perceptual task with a
continuous stream of visual stimuli would be ideal to evoke a
sufficient number of spikes throughout the task period for
studying visual areas like V4 that have low activity in the absence
of visual stimulation.

Overall, our experimental framework provides new evidence
revealing details of neuronal correlates of nonselective attentional
intensity in visual cortex with reference to physiological and
behavioral state of attentiveness. This approach can be extended
to other brain areas to better understand how different cognitive
signals are distributed and read out in mediating decision and
action selection.

Methods
Subjects and surgery. Two adult male rhesus monkeys (Macaca mulatta, 13 and
9 kg) were implanted with a titanium head post using aseptic surgical techniques
before training began. After the completion of behavioral training (3–5 months),
we implanted a 10 × 10 array microelectrodes with 400 μm spacing (Blackrock
Microsystems) into dorsal visual area V4 of one hemisphere, between lunate and
superior temporal sulci (Supplementary Fig. 5). The array was placed more dorsal
with respect to the inferior occipital sulcus (ios) in monkey S compared to monkey
P. Polar angles of the recorded units’ RFs differed in the two monkeys (mean ±
SEM, monkey P, 132.4° ± 2.6°; monkey S, 108.8° ± 3.2°; p= 10−11, rank sum).
Eccentricities of RFs in the two animals did not differ (mean ± SEM eccentricity,
monkey P, 2.8° ± 0.1°; monkey S, 2.7° ± 0.1°; p= 0.18, rank sum). Similarly, RF
sizes between animals were not different (mean ± SEM RF size (1 sigma), monkey
P, 1.1° ± 0.05°; monkey S, 1.2° ± 0.06°; p= 0.76, rank sum) (Supplementary
Table 3).

Behavioral task. During training and neurophysiological recording, the monkey was
seated in a primate chair facing a calibrated CRT display (1024 × 768 pixels, 100Hz
refresh rate) at 57 cm viewing distance inside a darkened room. Binocular eye position
and pupil area were recorded at 500Hz using an infrared camera (Eyelink 1000, SR
Research). Trials started once the animal fixated within 1.5° of a central white spot
(0.1° square) presented on a mid-level gray background (Fig. 2a). The animal had to
maintain fixation until its response at the end of the trial. After a fixation period of
400–800ms, two achromatic Gabor sample stimuli appeared for 200ms, one in each
visual hemifield. After a variable delay of 200–300ms, a Gabor test stimulus (test 1)
appeared for 200ms at one of the two target locations, randomly selected with equal
probability. The test stimulus was identical to the preceding sample stimulus, except
for its orientation. On half of the trials, the test 1 stimulus had a different orientation
(nonmatch trial), and the monkey had to make a saccade to that target location to
receive an apple juice reward. On the remaining half of the trials, the test 1 stimulus
had the same orientation as the corresponding sample stimulus (match trial), and the
monkey had to maintain fixation until a second test stimulus with a different
orientation (test 2, 200ms) appeared in the same location after an additional delay
interval of 200–300ms. The monkey then had to saccade to that target within 500ms
(monkey P) and 470ms (monkey S) after the appearance of the test stimulus to
get a reward. Intertrial intervals varied from 2–3 s. Stimuli were presented always
in the lower hemifields at 2°–4° eccentricity. Gabors were odd symmetric with the
same average luminance as the background. Spatial frequency, size, and base
orientation of Gabor stimuli were optimized for one of the neurons recorded each
day, and remained unchanged throughout each session (left, azimuth −2.5° to −5.3°,
elevation 0.0° to −3.5°, sigma 0.35°–0.60°, spatial frequency 0.6–3.5 cycles/°; right,
azimuth 2.8°–5.5°, elevation 0.0° to −2.5°, sigma, 0.40°–0.65°, spatial frequency
0.7–3.0 cycles/°). On every trial, the orientation of the sample stimuli randomly took
one of two values, base orientation or orthogonal. Orientation change (difficulty)
remained fixed within a session and varied across sessions between 24° and 32° for
monkey S and 16° and 20° for monkey P.

Attentional intensity was controlled over blocks of trials by changing reward
volumes for correct responses over a four- to five-fold range. Every 120 trials,
reward size alternated between large and small values without any prior cue to the
animal. Reward sizes for hits (correct response in nonmatch trial) and CRs (CRs in
match trial) were adjusted as needed to encourage the animal to maintain a
behavioral criterion close to 06. Although, trial-averaged criterion within a reward
condition remained 0, there was a transient change in criterion immediately after
the block transition (reward switch) which then approached 0 over a few trials
(Supplementary Fig. 12). Distributions of reward sizes are shown in Supplementary
Fig. 1. Behavioral task was controlled using custom-written software (Lablib)62.

Electrophysiological recording and data collection. Extracellular neuronal sig-
nals from the chronically implanted multielectrode array were amplified, bandpass
filtered (250–7500 Hz), and sampled at 30 kHz using a Cerebus data acquisition
system (Blackrock Microsystems). We simultaneously recorded from multiple
single units as well as multiunits (563, monkey S; 407, monkey P) over 24 sessions

(15 for monkey S, 9 for monkey P). Before each experimental session, we mapped
RFs and stimulus preferences of neurons, while the animal fixated. These RFs were
used to optimize the stimulus parameters. Spikes from each electrode were sorted
offline (Offline Sorter, Plexon Inc.) by manually well-defining cluster boundaries
using principal component analysis (PCA) as well as waveform features. Well
isolated clusters based on J3 statistics were classified as single units63. Single units
were classified from multiunits based the isolation quality of unit clusters. The
degree to which unit clusters were separated in 2D spaces of waveforms features
(first three PC, peak, valley, energy) was measured by J3 statistics and Multivariate
Analysis of Variance (MANOVA) F statistic using Plexon Offline Sorter (Plexon
Inc.). A unit cluster of MANOVA p value of <0.01 was considered as single unit
which indicates that the unit cluster has a statistically different location in 2D
space, and that the cluster is statistically well separated. J3 measures the ratio of the
average distance between points within clusters to the average distance between
clusters. It takes a maximum value for compact, well-separated clusters (for single
units, mean J3= 3.70, SEM= 0.16; for multiunits, mean J3= 1.02, SEM= 0.02).
We analyzed only those units that were stable throughout recording sessions,
which lasted for 3–5 h. That duration limited the number of units per session. Not
every electrode provided useful data during each session (monkey P, 37–53 units/
session; monkey S, 21–51 units/session).

Data analysis
Behavioral performance. All completed trials (120 trial per block) were included in
our analysis. Behavioral performance accuracy was expressed by behavioral sen-
sitivity or d′ adapted from the “Signal detection theory” model64. Sensitivity
measures subjects’ ability to detect a signal from a noise independent of the
response bias (or criterion). Behavioral sensitivity (d′) and criterion (c) were esti-
mated from hit rates within nonmatch trials and FA rates within match trials as:

d0 ¼ Φ�1ðhit rateÞ � Φ�1ðFA rateÞ ð1Þ

c ¼ � 1
2
½Φ�1ðhit rateÞ þ Φ�1ðFA rateÞ� ð2Þ

where Φ−1 is inverse normal cumulative distribution function. We measured
average d′ and c within a session across all trials for large- and small-reward blocks
separately. To examine the dynamics of d′, c, and percent correct at ith trial (i=
1–120), we measured block-averaged values for each reward conditions. Overall d′
was measured by:

d0overall ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d02InRF þ d02OutRF
� �q

ð3Þ

where d′InRF and d′OutRF are the sensitivities in the two hemifields, inside and
outside the recorded neurons’ RFs.

Pupil area. All pupil area measurements were measured binocularly at 500 Hz,
while monkeys maintained fixation in absence of a luminosity change using
infrared camera (EyeLink 1000, SR Research). Raw pupil areas were normalized
(between 0 and 1) for each session and each eye separately as:

normalized pupil area ¼ raw pupil area� PupilMin

PupilMax � PupilMin
ð4Þ

where PupilMax and PupilMin are, respectively, the maxima and minima of raw
pupil areas over 0–400 ms from sample stimulus within a session for a given eye.
Normalized pupil areas of both eyes were then averaged. Mean pupil area was
measured by averaging the normalized pupil area over 400 ms from sample
appearance.

Neuronal response. Only neurons with an average spike rate 60–260 ms after
sample stimulus onset that was significantly (p < 0.01) greater than the rate 0–250
ms before sample onset were used in the analysis. To construct PSTHs for figures,
spike trains were smoothed with a half Gaussian kernel (standard deviation of 15
ms with only a rightward tail), aligned to sample stimuli onset and averaged across
trials. A spike rate modulation (Fig. 3d) was measured by neuronal d′ as the
difference in averaged z-scored spike rates (60–260 ms after sample onset) between
the large- and small-reward blocks (correct trials). Spike rate modulation index
(MI) for other physiological and neuronal correlates (Supplementary Table 1) was
calculated as:

MIX ¼ hXlargei � Xsmallh i
hXlargei þ Xsmallh i ð5Þ

For analyzing trial-by-trial dynamics of spike counts and GLM, absolute spike
counts within 60–260 ms from sample stimuli onset (or test 1 onset) were used.

PCA was done on spike rates from 0 to 400 ms separately for each monkey in
Matlab. Each neuron had two spike rates, one each for one type of reward block
(small or large reward). For monkey P, there were total of 407 single and multiunits
(814 spike trains), and for monkey S, there were total of 563 single and multiunits
(1126 spike trains). Linear regression was fit between PC scores of spike histograms
in small- and large-reward blocks for the first three PC.
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Fano factor. Mean-matched Fano factor (Fig. 3e) was measured using spike counts
over 50 ms sliding windows in 2 ms steps for each neuron according to procedures
mentioned previously65. Then the variance and mean across trial was computed at
every time bin. The greatest common distribution of means across neurons,
attentional intensities, and time bins was measured. In order to match the mean
distribution to the common mean distribution, a different subset of neurons was
randomly chosen (20 times) at every time bin and the average Fano factor was
computed (ratio of the variance to the mean).

Spike-count correlations. Pearson correlation coefficients were computed for pair of
simultaneously recorded units on spike counts over 200 ms (60–260 ms from
sample stimuli onset), defined as the covariance of spike counts normalized by the
variances of individual neurons:

ρ12 ¼
Cov r1; r2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var r1ð Þ ´Var r2ð Þp ð6Þ

where r1 and r2 are spike counts of neuron 1 and neuron 2 across trials. Pairwise
spike-count correlations were binned according to the geometric mean of the evoked
responses of the two neurons in 5 Hz intervals. Evoked response was computed and
subtracting by the trial-averaged baseline spike rate (–200 to 0ms from sample onset)
from the trial-averaged spike rate during the sample (60–260ms from sample onset)
(Fig. 3f). The last bin (25Hz) included all evoked responses > 25Hz.

Overlap between neuron’s receptive field (RF) and sample stimulus. The strength of
visual drive of a RF by the sample Gabor stimulus was estimated by the extent of
overlaps between the spatial RF and the stimulus (Fig. 4). For each neuron, spatial
RF was measured and fit using a bivariate Gaussian. We then calculated overlaps
between probability densities of spatial RF (bivariate Gaussian fit) and the Gabor
stimulus. The overlap varied from 0 to 100%, where 0 being no overlap (very weak
visual drive by the stimulus) and 100% being complete overlap between the RF and
the stimulus (maximum visual drive).

Reward-matched average spike counts. Trials were sorted into nine different bins
with 50% overlap (bin size, 0.2; overlap, 0.1) depending on the normalized reward
size on the preceding trial. Trials were further separated based on whether they
occurred within the first 1–10 trials or within the last 60 trials (61–120) from the
first correct response after the reward switch. Spike counts of each neuron were
measured for these two sets of trial groups.

Linear regression: pupil area–spike count–attentional intensity. Average pupil area
over 0–400 ms from sample onset and spike counts from 60 to 260 ms on each
individual trial were used for linear regression analysis for pupil area versus spike
count and average attentional intensity (“low” and “high”) (Fig. 5j, left). The pupil
area was modeled as:

pupil area ¼ a � spike countð Þ þ b � attentional intensityð Þ ð7Þ
where a and b are the regression coefficients. All the trials across small- and large-
reward conditions that occurred after the first correct response (hit or CR) fol-
lowing the reward switch were included in the analysis. In a second model:

pupil area ¼ a � spike countð Þ ð8Þ
each neuron was fit separately for two reward conditions, small and large (Fig. 5j,
right). For this model, we used a subset of trials with matched pupil areas between
the two reward conditions. Standardized coefficients were compared across neu-
rons that were fit at significant level of p < 0.05 (F-test).

Pupil area–spike count cross-correlation. We measured cross-correlations between
two time series, spike rates and pupil area, as a function of time lag over 700 ms
period around the sample stimulus on (−350 to 350 ms) for each neuron. Single-
trial spike trains were binned in a 10 ms sliding window (2 ms increments) and
converted to spike rates. Pupil area time series was sampled at 500 Hz and directly
used for the cross-correlation analysis. Single-trial cross-correlations were aver-
aged, and trial-shuffled values were subtracted separately for trials with small- and
large-reward conditions.

Spike-triggered averaged pupil area. We measured a STA-pupil area for each neuron
within a time window of 0–400ms from sample stimulus onset, across all trials. The
time series of pupil areas were aligned to individual spikes, and averaged. Finally,
trial-shuffled STA was subtracted from this averaged STA-pupil area for each neuron.

Generalized linear model (GLM). GLM regression was used to estimate the rela-
tionship between single-trial spike responses and reward expectancies, attentional
intensity, behavior choices, and stimulus parameters. Single-trial stimulus evoked
spike counts were modeled to follow a negative binomial distribution. The negative
binomial distribution is well suited for the purpose, as spike-count variances of
cortical neurons are most often equal to or greater than their means (Supple-
mentary Fig. 21)65,66. Reward expectancy was represented by reward history on ten
trials preceding the trial being considered. Mean pupil area during 400 ms fol-
lowing stimulus onset served as a proxy for attentional intensity. A categorical

saccade choice variable could take two values: saccade (hit and FA) or no saccade
(CR and miss). For fitting of test 1 spike counts, an alternate categorical task
variable “stimulus orientation change” (Δori) was used instead (Fig. 7a). This
perceptual variable had two values: orientation change (nonmatch trial) or no
orientation change (match trial). The product of the absolute orientation of Gabor
stimulus and neuron’s orientation tuning filter served as a test 1 stimulus feature
variable. There were four different orientations of test 1 stimulus. There were no
correlations (partial) among predictor variables (Supplementary Fig. 22). For the
GLMs on test 1 spikes, in addition to the predictor variable covariances, we also
cross-checked the correlation between model-predicted spike counts due to test
1 stimulus feature and Δori in order to isolate the orientation tuning-related effect
on the perceptual variable Δori. We considered only the neurons that showed
correlation (Spearman) of <0.2 for further analysis.

For a sample y1, y2,…, yn of independent response variable y from an
exponential family, there exists a linear predictor β0+ β1x1+ ⋅⋅⋅+ βkxk of the
response variable y. The mean response ðμy ¼ E yjx1; ::; xk½ �Þ depends on the linear
predictor through a link function g (·):

gðμyÞ ¼ β0 þ β1x1 þ � � � þ βkxk ð9Þ
where xj (j= 1, 2,…, k) is a set of independent predictor variables. Assuming that
the spike-count responses in nonoverlapping time intervals are independent and
variance is equal or greater than (over dispersion) the mean, they can be modeled
as negative binomial variables. As the mean spike count is always positive, it can be
modeled as:

μy ¼ exp β0 þ β1x1 þ � � � þ βkxk
� �

ð10Þ
The probability density function for a random variable for which there are y

successes of Bernoulli trials until θth failure occurs follows a negative binomial
distribution:

Pðy; μy ; θÞ ¼
Γ y þ θð Þ
Γ θð Þy!

μyy θ
θ

ðμy þ θÞyþθ ð11Þ

with a mean μy and variance V (y):

μy ¼
θp

1� p
ð12Þ

Vy ¼ μy þ
μ2y
θ

ð13Þ

where p is probability of success of each Bernoulli trial. 1/θ is the dispersion
parameter (θ is also called as shape parameter). Γ is gamma distribution. The
likelihood for a negative binomial random variable yi (i = 1, 2,…, n) that depends
on a set of k predictors of xi,j (j= 1, 2,…, k):

L Pð Þ ¼
Yn
i¼1

Γ yi þ θð Þ
Γ θð Þyi!

μ
yi
yi θ

θ

μyi þ θ
� �yiþθ ð14Þ

The log-likelihood is:

LL β0; β1; ¼ ; βk; θ
� � ¼ log L Pð Þð Þ ð15Þ

The predictor coefficients βj (j= 1, 2,…, k) and shape parameter θ are obtained
from maximum likelihood estimates by solving:

∂LL
∂βj

¼ 0; j ¼ 1; 2; ¼ ; k ð16Þ

∂LL
∂θ

¼ 0 ð17Þ
GLM was implemented in Matlab separately for each neuron. In order to

compare different predictor coefficients, they were converted post hoc into
standardized coefficients:

β0j ¼ βj ´
σy
σx

; j ¼ 1; 2; ¼ ; k ð18Þ

Standardized coefficient corresponds to the log ratios of the mean responses (in
units of standard deviation) due to one standard deviation change in the predictor
variable, holding all other variables constant.

Goodness of GLM fit and model comparison. Goodness of fit for a given GLM was
measured by residual deviance (D) and pseudo R2 (Cragg and Uhler’s method) value.
Residual deviance measures how close the predicted values from the fitted model match
the actual values from the raw data:

D ¼ 2 LL saturatedmodelð Þ � LL modelð Þ½ � ð19Þ
The saturated model comprises a model for which the number of parameters equals the
number of samples. Thus, the predicted response in the saturated model is same as the
observed response. Deviance measures lack of fit in maximum log-likelihood estimations
similar to the residual variance in ordinary least squares methods. The lower the
deviance, the better is the model fit. For a large sample size and small deviance, it
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approximately follows chi-square distribution of n− k− 1 degrees of freedom. A statistic
that indicates value of a proposed model is based on how well the model predicts data
compared to a null model having a single predictor β0:

χ2 ¼ D null modelð Þ � D modelð Þ ð20Þ

¼ 2 LL modelð Þ � LL null modelð Þ½ � ð21Þ
The test statistic χ2 follows an approximate chi-square distribution of degrees freedom
n− k. We tested at a level of significance p < 0.05.
As the ratio of the likelihoods reflects the improvement of the proposed model over

the null model (the smaller the ratio, the greater the improvement), a pseudo R2 was
computed based on Cragg and Uhler’s approach that falls between 0 and 1:

R2 ¼
1� L nullmodelð Þ

L modelð Þ
h i2=n

1� L null modelð Þ2=n
ð22Þ

where n is the number of observations in the data set. Different models were compared
by their R2 values.

Predictor importance. The absolute value of the z-statistic of each estimated predictor
coefficient measures a relative importance of that predictor variable:

zj ¼
βj

SE βj

� �
������

������
; j ¼ 1; 2; ¼ ; k ð23Þ

where SE is the standard error.

Cross-validation. Predictive performance of the GLMs was measured by 10 fold
(K) cross-validation. Observations in each neuron’s data set were split at random into K
partitions. GLM fit on K− 1 training partitions was repeated and the remaining partition
was used for validation. This cross-validation was repeated K times at each time one of
the partitions served as the validation set:

Error ¼ 1
n
∑
K

k¼1
∑
nk

i¼1
yi;k � ŷi;k
� �2 ð24Þ

Decoding of saccade selection, behavioral choice, and orientation change detection.
Saccade selection between saccade (hit and FA) and no saccade (miss and CR) was
decoded from spike counts during the test 1 stimulus period based on Bayesian inference
of maximum posterior probability using saccade GLM (Fig. 7d). According to Bayes’ rule,
the posterior probability density of the estimated choice given a spike-count response is:

P xjYð Þ ¼ P Y jxð ÞP xð Þ
P Yð Þ ð25Þ

where P (Y) is a normalization term independent of x. Also, assuming that there is no prior
knowledge on x, (P (x)= constant), maximizing the posterior is equivalent to maximizing
the log-likelihood function used in the GLM encoding model. A random pair of trials one
from saccade trial (hit or FA) and another from no saccade trial (miss or CR) were selected.
For each of these two trials, we evaluated the likelihoods of observed spike counts being
consistent with spike counts under the two possible saccade responses (saccade versus no
saccade) for each well fitted (p < 0.05) neuron within each session. The sum of the log-
likelihood ratios across the neurons recorded in that session amounts the predicted
probability of a saccade choice on that trial. The discrimination of a saccade from no
saccade was counted as correct only when the decoded saccade commitment on both trials
of the selected pair match with the observed data. Thus, the chance performance is 0.25, the
joint probability of a set of two binary random variables.
Prediction of a choice response comprises either selecting a hit over a miss (nonmatch

trials), or selecting a CR over a FA (match trials). Spike counts during the test 1 stimulus
were fit with the same saccade GLM mentioned in the previous section (Figs. 6a, bottom,
and 7d–f) except the miss and FA trials were randomly resampled in order to balance the
number of different trial types (hits, misses, CRs, and FAs) within each session. This was
to avoid any bias in decoding accuracy toward a particular choice (hits over misses or
CRs over FAs), as the number of correct trials (hits and CRs) was systematically higher
compared to the number of incorrect trials (misses and FAs). For measuring choice
prediction, decoded saccades were converted into four choices—hit, miss, CR, and FA
according to the decoded saccade values and whether the trial was a match trial or
nonmatch trial. A pair of trials was randomly selected either from hit and miss
(nonmatch trials) or FA and CR (match trials). A correct prediction of decoded choice
required both of the selected trials to be correctly discriminated (hit from miss or FA
from CR). Chance level for correctly predicting hit over miss and CR over FA is 0.25.
Similar to the saccade choices, prediction accuracy for an orientation change detection

was estimated using a Δori GLM fit on the test 1 spike counts (Fig. 7a). A random pair of
trials one from nonmatch trials and another from match trials was selected. Probabilities
of an orientation change detection on these trials were estimated based on the sum of the
log-likelihood ratios across simultaneously recorded neurons (p < 0.05; Δori GLM) in
that session. An instance of accurate decoding of an orientation change occurred when
both of the trials correctly predicted observed orientation change over a no change. The

chance level is 0.25. In Fig. 7f, individual sessions were sorted according to the number of
neurons that were well fit (p < 0.05) with the GLM encoding model.

Statistical analysis. Unless otherwise specified, we used paired t-test and multifactor
repeated measured ANOVA for comparing normally distributed data sets. Nor-
mality was checked with Kruskal–Wallis test.

Ethical approval. Animal experimentation: all experimental procedures were
approved by the Institutional Animal Care and Use Committee protocol 72355 of
the University of Chicago and were in compliance with US National Institutes of
Health guidelines.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper as an excel file (*.xlsx). All other data sets generated
and analyzed in the current study are available from the corresponding author (S.G.) on
reasonable request. Software codes for the behavioral task can be found in the GitHub
repository (https://github.com/MaunsellLab/Lablib-Public-26-Feb-2021/tree/V1.0)62.
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