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Heuristic machinery for thermodynamic studies of
SU(N) fermions with neural networks
Entong Zhao1, Jeongwon Lee2, Chengdong He1, Zejian Ren1, Elnur Hajiyev1, Junwei Liu 1 & Gyu-Boong Jo 1✉

The power of machine learning (ML) provides the possibility of analyzing experimental

measurements with a high sensitivity. However, it still remains challenging to probe the

subtle effects directly related to physical observables and to understand physics behind from

ordinary experimental data using ML. Here, we introduce a heuristic machinery by using

machine learning analysis. We use our machinery to guide the thermodynamic studies in the

density profile of ultracold fermions interacting within SU(N) spin symmetry prepared in a

quantum simulator. Although such spin symmetry should manifest itself in a many-body

wavefunction, it is elusive how the momentum distribution of fermions, the most ordinary

measurement, reveals the effect of spin symmetry. Using a fully trained convolutional neural

network (NN) with a remarkably high accuracy of ~94% for detection of the spin multiplicity,

we investigate how the accuracy depends on various less-pronounced effects with filtered

experimental images. Guided by our machinery, we directly measure a thermodynamic

compressibility from density fluctuations within the single image. Our machine learning

framework shows a potential to validate theoretical descriptions of SU(N) Fermi liquids, and

to identify less-pronounced effects even for highly complex quantum matter with minimal

prior understanding.
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Multi-component fermions with SU(N)-symmetric
interactions hold a singular position as a prototype
system for understanding quantum many-body phe-

nomena in condensed matter physics, high-energy physics, and
atomic physics 1. In condensed matter, e.g., interacting electrons
usually possess SU(2) symmetry, whereas there are emergent
higher spin symmetries for the low-energy property of systems as
the SU(4) symmetry in graphene due to the combination of spin
and valley degrees of freedom2. In quantum chromodynamics,
nuclear interactions are represented by SU(3) symmetry3,4. In the
past decades, developments in cooling and trapping of alkaline-
earth-like fermions5 have opened possibilities to achieve even
higher spin symmetries, owing to their distinctive inter-particle
interactions, and thus provided ideal platforms to study various
SU(N) fermionic systems1,6,7. Although the role of SU(N)
symmetry has been probed in optical lattices8–15, the compre-
hensive characterization of interacting SU(N) fermions in bulk,
wherein the SU(N) Fermi liquid description is valid, has still
remained challenging16–19. One of the bottlenecks is that the
interaction-induced effect enhanced by enlarged SU(N) symmetry
is sufficiently pronounced by the tight confinement only in one-
dimensional (1D)16 or two-dimensional (2D) cases18. It is only
recently that thermodynamics and contact interactions are
investigated in three-dimensional 3D SU(N) fermions17,19, but a
comprehensive experimental study of SU(N) fermions still
remains to be done. Developing experimental techniques or
designing approaches to uncover the subtle connection of various
spin multiplicity-dependent properties with the available

experimental measurements in SU(N) interacting fermions is
crucial to advance our understanding of SU(N) symmetry and the
corresponding many-body phenomena.

Here we propose a framework to use machine learning (ML) as
a guidance for the image analysis in quantum gas experiments
and demonstrate the thermodynamic study of SU(N) fermions.
The main idea of this heuristic approach can be summarized into
a three-step process as follows: (1) manually control the amount
of information within each of the images we feed to the neural
networks (NNs) during the training or testing processes; (2)
determine the relative importance of the given (or removed)
information based on the changes in the accuracy of the training
or testing processes; and (3) identify the connection between the
information and specific physical observables, which we can
further focus our analytical efforts on.

To demonstrate the proposed machinery concretely, we take a
density profile of SU(N) Fermi gases as an example and show how
it can guide the analytical studies. Besides the pronounced effects
such as atom number and fugacity, we explore the connection
between the spin multiplicity and less-pronounced features, such
as compressibility and Tan’s contact in the density profile. Based
on this machinery, we demonstrate that one can extract less-
pronounced effects even in the most ordinary density profiles and
we successfully reveal thermodynamic features, which depend on
the spin multiplicity, from density fluctuations and high-
momentum distributions. This allows one to detect the spin
multiplicity with a high accuracy ~94% in a single snapshot
classification of SU(N) density profiles. To further verify the
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Fig. 1 Distinguishing SU(N) fermions based on spin multiplicity by machine learning. a Schematic of preparing SU(N) gases in the optical dipole trap
(ODT). The momentum distribution of the SU(N) Fermi liquid of 173Yb atoms with tunable spin configuration is recorded. The collected datasets are then
fed into the NN as the input images for classification. b Examples of single experimental images of SU(N) gases. c Radially averaged optical density (OD)
profiles in different SU(N) gases. The shaded region represents the fluctuation of the density profiles. d Experimental images of SU(N) gases are loaded
into the neural network with one single convolutional layer. The black line and window represent how the kernel slides across the image. The output layer
classifies the image into one of the class (i.e., SU(1), SU(2), SU(5), SU(6)) resulting in a classification accuracy around 94%. For each input image, NN
outputs probabilities of different SU(N) with the highest value of the correct class. The output probabilities of NN are averaged over the test dataset.
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validity of the connection between the less-pronounced effects
and physical observable, we further measure the thermodynamic
compressibility from density fluctuations within a single image
benchmarking ML processes, which turns out to be in very
good agreement with SU(N) Fermi liquid descriptions. Besides
providing general-purpose methods to extract various less-
pronounced effects and consolidate our understanding of SU
(N) fermions, our approaches also complement recent ML studies
of quantum many-body physics to explore the underlying
physics20–26.

Results
Train NNs to classify SU(N) fermions. We begin by preparing
the experimental measurements with appropriate labels. Here we
choose one of the most ordinary experimental measurements for
studying SU(N) Fermi gases, the density profile, and the spin
multiplicity as the labels. In our experiment, a degenerate SU(N)
Fermi gas with N= 1,2,5,6 is prepared in an optical trap and the
density profile is recorded by taking spin-insensitive absorption
images after time-of-flight expansion, yielding the momentum
distribution. The spin multiplicity is confirmed by optical Stern
Gerlach measurements (see “Methods”). In principle, the density
profile contains the momentum-space information of SU(N)-
interacting fermions, which reflects various thermodynamic
observables, such as Tan’s contact or the compressibility, which is
the underlying reason for the success of using ML techniques to
detect the spin multiplicity. However, the effect of spin multi-
plicity on the momentum distribution is small compared to other
features such as the fugacity and atom number because of small
interaction strength. Therefore, the dataset should be prepared in
such a way that images are indistinguishable based on the pro-
nounced features (i.e., atom number or temperature), which
forces the NN to seek for less-pronounced features. We post-
select datasets and minimize possible correlations between spin
multiplicity and atom number or temperature.

In detail, we focus on the density profiles with the interaction
parameters kFas ≃ 0.3 where kF is the Fermi wave vector and as
the scattering wavelength, and we only select the profiles based
on similarities in widths of Gaussian fitting of the density
profiles to result in indistinguishable momentum profiles as
shown in Fig. 1b, c (see “Methods”). We collect 200 density
profiles for each class of SU(1), SU(2), SU(5), and SU(6)
(Fig. 1b). We randomly feed 150 of them to train the NNs by
implementing the supervised ML techniques with spin multi-
plicity as labels and use the remaining 50 profiles to evaluate the
classification accuracy that is defined as the ratio of number of
samples with predictions matching true labels to the total
sample number. To maximize the accuracy of NNs, we choose
the architecture of convolutional NNs (CNNs) that is suited to
explore the less-pronounced effects in an image (more details in
“Methods”), as shown in Fig. 1d. By choosing the suitable
structures and parameters in the CNNs, we can realize a very
high accuracy ~94%, which is much better than the random
guess (25%). We also test various unsupervised learning
techniques such as the typical principal component analysis27,28

and only get a low classification accuracy of only ~43%.
Moreover, it is worth to emphasize that the remarkably high
accuracy ~94% of NNs is achieved by using only a single
snapshot of the density profiles. All these results indicate that
there are detectable, less-pronounced features in a single
snapshot of density profile.

Extract less-pronounced effects in low- and high-momentum
parts. We now analyze the attributes processed by the well-
trained NNs and extract less-pronounced effects determined by

the spin multiplicity step by step. Due to the limited interpret-
ability of NNs, it is usually difficult to identify what kinds of
features the NNs use for classification. In our proposed
machinery, we examine which parts of the density profile are
related to the spin multiplicity as described in Fig. 2a. Usually, it
is more efficient to use some prior knowledge, which can be
obtained in our limited understanding of the current system or
the well-established understanding of the similar system. In our
example of studying the interacting SU(N) fermions, we use the
prior knowledge of non-interacting fermions and the associated
energy (length) scale in choosing various filters in the momentum
space. It is conceivable that our heuristic machinery can be
applied to other systems.

To do this, we manually manipulate the experimental images
and subsequently check the classification accuracy of the
manipulated images. As different information is removed in
different types of manipulated images, the classification accuracy
will decrease with different amount, which will unfold what kind
of information is more important for classification. As shown in
Fig. 2b, we first replace the whole image with the Gaussian and
Fermi–Dirac fitting profile to do the test based on the prior
knowledge of non-interacting fermions. It turns out that the
classification accuracy significantly decreases for both cases and
the accuracy drop of the Gaussian fitting profile is even more,
which implies the Fermi–Dirac type preserves the characteristics
of the original profile better than the Gaussian fit. We further test
the variations in accuracies by replacing profiles with radially
averaged profiles, which results in test accuracies higher than the
Fermi–Dirac fitting cases. However, the differences in accuracies
between the radially averaged and Fermi–Dirac are much
smaller compared to the differences between Fermi–Dirac and
Gaussian, suggesting the SU(N)-dependent modifications of the
Fermi–Dirac distribution to be small.

Now we examine the contributions of low- and high-
momentum parts by classifying the masked images with the
well-trained NN as shown in Fig. 3a, b. This is motivated by the
observation that the classification accuracy significantly decreases
with filters, with various fitting functions that remove the SU(N)-
dependent effect in the high-momentum tail. We choose two
different types of masks for the region of the replacements, which
will be referred as background and central masks, respectively.
Background mask covers from the edge of the image to some
atomic momentum kc, whereas the central mask covers from the
center to kc. Then, we replace the masked region with a fake
image generated by averaging the corresponding region of all
the images in the dataset and re-evaluate the test accuracies of the
pre-trained NN.

First, we set the cutoff momentum of kc= 70 μm−1 such that
>99% of atoms are contained within the low-momentum region
(Fig. 3a), which still allows us to classify the spin multiplicity with
the accuracy of 88%. Although this confirms that a NN perceives
spin multiplicity-dependent information in low-momentum
parts, questions remain on why the accuracies are not fully
recovered beyond 94%. Such observation confirms the impor-
tance of the high-momentum information. In Fig. 3b, we prepare
a dataset with a high-momentum part only (k > kc= 70 μm−1), in
which a low-momentum region is deliberately replaced by the
same fake image. Surprisingly, the test classification accuracy is
still >50% and the overall classification accuracy increases to 65%
when a NN is re-trained. Such a high accuracy based on the few
information of only <1% of atoms strongly implies that the high-
momentum tail is crucial for determining the spin multiplicity.
This SU(N)-dependent feature is not due to the finite resolution
of the imaging system29, as the NNs can classify the binned
image with high classification accuracy (see “Methods” for more
information).
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High-momentum tails. In light of these results, we speculate that
NNs utilize less-pronounced effects in the high-momentum part.
To confirm this, we check the dependence of classification
accuracy with the fully trained NNs on each SU(N= 1,2,5,6) class
and we find the classification accuracy increases with N in Fig. 3b.
In addition, the output probability of the correct spin multiplicity
increases with N (see Fig. 3b). These results indicate that the less-
pronounced feature being used in NNs becomes more prominent
with increasing spin multiplicity N, which is consistent with the
fact that atom–atom interactions are absent in the case of SU(1)
due to the Pauli principle in the ultracold regime, while they are
significantly enhanced in SU(6) fermions. Indeed, the amount
of short-range interactions should be revealed in the high-
momentum distribution in which the weight of such high-
momentum tail is determined by the central quantity, so-called
the contact30–32, in a dilute quantum gas. The contact governs

many other physical observables33,34 and has been probed in
strongly interacting gases33–39, and even in a weakly interacting
gas with SU(N) symmetric interactions17. It is conceivable that
the NNs detect the high-momentum distribution within a single
image in contrast to the previous work where hundreds of
momentum-space images are statistically averaged in a 173Yb
Fermi gas17. To be noted, our observation is consistent with the
direct measurement of the high-momentum tail in the region of
k/kF > 317, which is corresponding to k > 100 μm−1 for an SU(1)
gas in this work.

Evaluating detection accuracy with tunable masks. To examine
the less-pronounced effects in both the low-momentum and
high-momentum regions, and build up the concrete connections
between these less-pronounced effects and the spin multiplicity,
we now quantitatively analyze the changes inflicted on the test
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pronounced effects. b Effect of image filtering on the classification accuracy by neural networks trained with original (red) and filtered (gray) experimental
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accuracies when the cutoff momentum kc is tuned over. It is
clearly shown in Fig. 4a that the test accuracy decreases to ~25%
by complete replacements of the images by the same average
image. This accuracy is gradually recovered up to almost 90%
when kc is increased to kc ≃ 70 μm−1 being consistent with the
result in Fig. 2, as less information from the low-momentum
regime is removed. Based on replacement analysis, it is con-
ceivable that SU(N)-dependent features must exist in the low-
momentum part, as we will discuss the details below. In com-
parison, the classification accuracy of the binned images (bin
size= 5.85 μm−1) does not decrease too much, which is only a
partial removal of fluctuations. As a complementary study, we
utilize the central mask and replace the low-momentum infor-
mation up to a variable momenta of kc in Fig. 4b. The classifi-
cation accuracy gradually decreases with increasing kc from 0 to
~50 μm−1, as the information within the density profile is
increasingly removed. However, the classification accuracy stays
over 50% around kc= 50 ~ 70 μm−1, which strongly suggests that
the high-momentum tails of the density distribution still con-
tribute towards the classifications based on SU(N). Beyond kc=
80 μm−1, where the atomic shot-noise becomes comparable to
the background shot-noise level, the test accuracy rapidly drops
for the images replaced by averaged images.

Density fluctuations and compressibility. The question still
remains as to what dominant feature classifies spin multiplicity in
the low-momentum regime. Based on the significant decrease of
the accuracy with profiles being radially averaged in Fig. 2b, we
hypothesize that the NNs utilize the density fluctuation along the
azimuthal direction for classification. The amount of azimuthal
density fluctuations can be revealed in the correlation spectrum
(Fig. 2b) showing a strong signal in the original and binned
images, while flattened at all angles for the radially averaged
images.

To understand how the density fluctuations reveal spin
multiplicity, we consider the fluctuation–dissipation theorem by

which the thermodynamic compressibility κ ¼ 1
n2

∂n
∂μ can be

measured through density fluctuations (i.e., atom number
fluctuations)19,29,40,41 where n is the local density and μ the local
chemical potential. For repulsively interacting SU(N) fermions, it
is known that the compressibility κ decreases with increasing spin
multiplicity N as ðκ=κ0Þ�1 ¼ 1þ 2

π ðkFasÞðN � 1Þð1þ ϵkFasÞ,
where κ0 is the compressibility of an ideal Fermi gas and
ϵ ¼ 2

15π ð22� 4ln 2Þ42. Here, the atom number fluctuations are
further suppressed by the Pauli blocking in the degenerate regime
showing sub-Poissonian fluctuations as σ2Na

=Na / kBT where Na

indicates the atom number measured in the small volume.
Therefore, one finds the relative atom number fluctuation σ2Na

=Na

is given as

σ2Na
=Na ¼ nkBTκ

¼ 3
2

T=TF

1þ 2
π kFasðN � 1Þð1þ ϵkFasÞ

ð1Þ

In our experiment, an atomic sample ballistically expands from
the harmonic trap preserving occupation statistics of the phase
space during the expansion43,44. Instead of repeatedly producing
identical samples and monitoring a small region at the certain
position29, the relative atom number fluctuations can be extracted
along the azimuthal bins containing the same number of atoms
on average (therefore, resulting in equivalent optical density)
within a single image, even though a grouping of ideally
equivalent bins is challenging and the fluctuation measurement
is susceptible to the systematic variations. The successful
classification of the spin multiplicity with NNs now guide us to
subsequently investigate the atom number fluctuations with
conventional analysis.

To verify this less-pronounced feature, we choose a series of bins
containing ~450 atoms on average in a line-of-sight integrated
density profile along the azimuthal direction (Fig. 4c) and analyze
the statistics. To have a sufficiently large number of bins for
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statistical analysis, we perform the measurements at varying

momenta on the ring with ðk2x þ k2yÞ
1=2 ’ 28 µm−1 around the

center of the distribution. Both the temperature and spin
multiplicity are known to affect the atomic-density fluctuations
through the change in compressibility. Therefore, we normalize

relative atom fluctuations by the temperature as ζSUðNÞ ¼
σ2Na

Na
= T
TF

to reveal SU(N) interaction effect from a single snapshot. In
Fig. 4d, we then plot the statistical value of ζSU(N)/ζSU(1). This
measurement indeed reveals the normalized thermodynamic
compressibility κ/κ0= ζSU(N)/ζSU(1) showing the enhanced interac-
tion kFas(N− 1). The error bar indicates the SE from 150 different
density profiles. Whereas the scaling of the measured density
fluctuation with N is in good agreement with theoretical
prediction, experimental results for SU(N > 1) lie systematically
below theoretical ones. The discrepancy may be due to interactions
that remain finite during the expansion, which could slightly
perturb the occupation statistics of the phase space. Considering
the fact that the change of the compressibility is not significant for
N= 5 and 6 in Fig. 4d, the high classification accuracy of NNs
using the low-momentum part highlights the superior capabilities
of a single snapshot approach using ML. In contrast to the
conventional analysis that focuses on a single observable, NNs take

a holistic approach in utilizing multiple features simultaneously.
Our measurement is consistent with recent experiments in which
thermodynamics is studied by monitoring the density fluctuations
and expansion dynamics in degenerate 87Sr atoms19.

Discussion
To scrutinize the effects of SU(N) symmetric interactions, we
have provided the NN with altered images and probed specific
attributes of the profiles independently. We found that the high-
momentum tail and density fluctuation information significantly
contribute to the SU(N) classification process. First of all, the
high-momentum tails of atomic-density distributions are expec-
ted to exhibit Tan’s contact, which encapsulates the many-body
interactions through the set of universal relations. Although the
previous work required averaging of hundreds of images for the
detection of the SU(N)-dependent contact17, the NN’s ability
makes it possible to obtain the single-image distinguishability of
the SU(N) class after training. However, the exact mechanism
behind how the trained network collects the required information
for extraction of the contact, whether it is through superior noise
suppression or signal enhancement, is not known and is left for
future work. Furthermore, it is conceivable that the regression

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Partially binned
Partially replaced by averaged image

Replaced region

kc

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Radius of replaced region kc (μm-1)

kc
Replaced region

c

d

a

b
 kx (μm-1)

0-50 50 100-100

-50

0

50

 k
y 
(μ

m
-1
)

100

-100

0.0 0.2 0.4
 OD

k

Atom density

lowhigh

At
om

 n
um

be
r d

is
tri

bu
tio

n
 a

ro
un

d⎯
N
a

-200

0

200

SU(1)

SU(2) SU(5)
SU(6)

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6
SU(N)

N
or

m
al

iz
ed

 c
om

pr
es

si
bi

lit
y 
κ/
κ 0

Fig. 4 Verification of ML-aided detection : density fluctuations and thermodynamic compressibility. a, b Classification accuracy of the correct class as a
function of the cutoff momentum kc of the mask. The dotted line indicates the accuracy of 94%. c Measurement of density fluctuations with a snapshot. In
a line-of-sight integrated density profile, a series of bins containing on average Na atoms are chosen along the azimuthal direction. Each bin is about 10 (in
azimuthal direction) by 17 (in radial direction) µm−1, which is much larger than the optical resolution of the imaging system. The density profile at kx= 0 is
shown. d The normalized compressibility of SU(N) fermions κ/κ0 is measured by relative density fluctuations as κ/κ0= ζSU(N)/ζSU(1). The error bar shows
the SE. The dashed line indicates the theory curve κ=κ0 ¼ ½1þ 2

π kFasðN� 1Þð1þ ϵkFasÞ��1
with the uncertainty represented by the shaded region

considering the SE of ζSU(1). The inset shows the distribution of the atom number per bin from three images for each spin multiplicity. The distribution is
plotted around the average normalized by the degenerate temperature, ðN� NaÞ=ðT=TFÞ, where Na is the average atom number.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22270-5

6 NATURE COMMUNICATIONS |         (2021) 12:2011 | https://doi.org/10.1038/s41467-021-22270-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


algorithms can be used to extract the change of contact for dif-
ferent spin multiplicity in future works.

The second dominant feature for the SU(N) classification is the
density fluctuation within the profile. Both the temperature and
spin multiplicity are known to affect the atomic-density fluctua-
tions through the change in compressibility. Sub-Poissonian
density distributions have been observed in degenerate Fermi
gases of atoms29,40 and molecules41, where multiple images were
used to obtain the statistics. The suppression of the density
fluctuation was also observed in SU(N) fermions allowing for the
thermodynamic study19. For a single image, there exists multiple
sets of density fluctuation measurements at varying momentum,
where each measurements form a ring around the center of the
distribution. Considering the decreased SU(N) classification
accuracy from the radially averaged datasets, the fluctuation
information might have been utilized in addition to the contact,
to reflect the effects of compressibility. Lastly, we found that the
low-energy part of the density profile does not exhibit a signature
as strong as the previous two features. Although there has been a
report of SU(N)-dependent modifications to the density dis-
tribution limited to the 1D case16, the corresponding beyond
mean-field effects in 3D remains challenging to be measured
experimentally.

In conclusion, we have demonstrated the capabilities of the
proposed machinery by classifying SU(N) Fermi gases with their
time-of-flight density distributions. The NN provides classifica-
tions with an accuracy well beyond the conventional methods
such as principal components analysis. By applying different
types of manipulations, we also find that the NNs combine the
features from a high-momentum signal and density fluctuations
together, to distinguish SU(N). Future directions include predic-
tions of T/TF of SU(N) Fermi gases based on regression algo-
rithms and explorations of human feedbacks to the ML process
for feature extractions. Feature extraction through ML may guide
us to investigate the right information and facilitate research in
many-body quantum systems.

Methods
Sample preparation. We prepare a balanced ultracold Fermi gas of 173Yb atoms
with SU(N) symmetric interactions as large as N= 6. (shown in Fig. 1a). We begin
by loading a laser-cooled, six-component Fermi gas, where the nuclear spin states
are equally populated, into a three-dimensional optical dipole trap (ODT). The
atoms are further evaporatively cooled in the ODT to a temperature range of
0.2–1.0 T/TF, where TF is the Fermi temperature. During the evaporation, different
spin configurations are prepared via an optical pumping process using a narrow
line-width transition of 1S0(F= 5/2)→ 3P1ðF0 ¼ 7=2Þ at a wavelength of λ=
556 nm. The σ±-polarized pumping light removes unwanted mF states of the
ground manifold of 1S045 and produces a Fermi gas with tunable SU(N) interac-
tions, as the nuclear spin relaxation rates are negligible in our experiment. After the
evaporative cooling, the ODT is further ramped up in 60 ms, to obtain large-
enough trap frequencies (ωx, ωy, ωz)= 2π × (1400, 750, 250) Hz before 4 ms of
time-of-flight expansion. We measure the density distributions by taking absorp-
tion images using a spin-insensitive 1S0(F= 5/2)→ 1P1ðF0 ¼ 7=2Þ transition at
399 nm. The images are taken in random order with respect to their spin config-
urations, to avoid the possibility of a classification based on fluctuations in the
background. The spin configuration of the sample can be monitored by the optical

Stern Gerlach measurement. In general, the atom number of different spin states
has a fluctuation of ±2% of the total atom number.

Data preparation. All snapshots are first preprocessed by the fringe removal
algorithm reported in ref. 46. Then, cropped images are loaded into the NN for
further classification. For SU(N) data, it is natural to prepare the same number of
atoms per spin at constant T/TF, in which the normalized density profile is the
same for different SU(N) cases. In this case, however, we find that the diffraction of
the imaging light induces fringe patterns that depend on the total atom number in
the experiment. One can normalize the image by the total atom number, but we
inevitably change the level of background noise. Therefore, we keep the total atom
number unchanged, otherwise the NN uses the background fringe patterns or
noises to classify the SU(N) data. In our experiment, we post-select 200 images per
each SU(N) class by using a Gaussian fitting, which allows us to obtain samples
with similar profiles but different T/TF. If we have kept different SU(N) gases at
constant T/TF, the profiles are identical in the unit of kF, instead of pixel. Subse-
quently, 75% of the data is used for training NNs and the remaining is for test.

Machine learning. ML, a sub-field of artificial intelligence, allows us to understand
the structure of data and deduce models that explain the data. Traditionally, ML
can be classified into two main categories, supervised and unsupervised learning,
based on whether there are labels or not for training. Supervised learning usually
trains a model from a known dataset of input data {xi} and output labels {yi} so that
the model can find a correspondence rule xi↦ yi, which allows us to predict the
labels of data beyond the training dataset. In contrast, unsupervised learning is
used to classify the data into several different clusters based on the potential
patterns or intrinsic structures in the dataset without any prior knowledge of the
system or data properties.

Convolutional neural network. ML techniques used in this work are based on
CNNs, which takes a supervised learning approach for classification task. NNs,
inspired by the biological NNs that constitute animal brains, are composed of a
series of artificial neurons, among which the connection is a real-valued function
f : Rk ! R, parameterized by a vector of weights ðw1;w2; :::;wi; :::Þ ¼ w 2 Rk

and the activation function ϕ : R ! R, given by

f ðxÞ ¼ ϕðw � xÞ with x ¼ ðx1; :::; xi; :::Þ 2 Rk: ð2Þ
By combining the artificial neurons in a network or in a layer of network, we obtain
NNs. In recent years, CNNs have shown stronger validity and better performance
than regular NN in image recognition. Similar to the regular NNs, CNNs also
consist of a sequence of layers and each layer receives some inputs, performs a dot
product, and optionally follows it with a nonlinear activation function. However,
unlike a regular NN, a CNN usually has several convolutional layers where neurons
are arranged in two dimensions, providing an efficient way of detecting the spatial
structure. The convolutional layer first accepts an input 2D image from the pre-
vious layer or the whole NN. Then, the kernel of the convolutional layer slides (i.e.,
convolve) across the width and height of the input image, with dot products
between the kernel and the input being computed. Consequently, we obtain a 2D
feature map in which each pixel is the response at the corresponding position. If
the convolutional layer has N different kernels, the same procedure will be repeated
for each kernel and finally N 2D feature maps will be produced. These 2D feature
maps will then be loaded into the next layer as input.

Training and evaluating the NN. The CNNs used in this study are realized by
using the Tensorflow in Python47. We have attempted different architectures and
found that the result is not sensitive to the choice of architecture such as the
number of layers or the kernel size. Therefore, we remove superfluous layers to
simplify our model. The concrete parameters taken in this work are listed in
Table 1.

To train the network on the data with different spin configurations, the model is
compiled with a cross-entropy loss function. During the training process, the
weights of model are updated based on Adam algorithm48, to minimize the loss
function with a learning rate of 1 × 10−4, which is a hyper-parameter that controls

Table 1 Network architecture and parameters used in this work.

Layer Layer name Function Description

1 Input Image input 201 × 201 Images
2 Conv. layer Convolution 24 24 × 24 Convolutions with stride (1,1)
3 ReLU Activation function ReLU function
4 Pool layer Average pooling 2 × 2 With stride (1,1)
5 Dropout Dropout 50% Dropout
6 Fully conn. layer Fully connected Fully connected layer with 4 neurons
7 Softmax Activation function Softmax function
8 Output Classification output Probability with classes N=1,2,5,6
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how much the network changes the model each time. The maximum training
epochs are limited to 1000, and the accuracy and loss are monitored during the
training process for selecting the model with best performance. After full training,
we evaluate the trained model on the test dataset.

We characterize the performance of trained NNs by obtaining the overall
classification accuracy, which is defined as the ratio of number of samples with
predictions matching true labels to the total sample number. For one single image
loaded into the NNs, e.g., the softmax activation function normalizes the output
values {σc} by PðcÞ ¼ eσc=∑4

c¼1 e
σc , which allows a probabilistic interpretation for

the different classes denoted by the subscript c. When calculating the classification
accuracy, the class with highest probability P(c) is selected as the prediction from
NNs. As a complementary analysis of NNs, we also evaluate an output probability
matrix that hints how the NNs perform among different classes, such as that shown
in Figs. 1d and 3. In the probability matrix, every element Ai,j represents the
probability P(c) averaged over the results for all images with the true label j and
prediction i.

Manipulation of SU(N) data. In this work, we manipulate the experimental images
to remove different types of information. In Fig. 2, we examine the binned image,
radially averaged image, Fermi–Dirac fitting profile, and Gaussian fitting profile.
The blurring of adjacent pixels effectively changes subtle features in SU(N) gases due
to finite optical resolution, e.g., it will decrease the measured atom number
variance29. We minimize this effect by binning the data using a sufficiently large bin
size29. The whole image is partitioned into bins with the area of n μm−1 × n μm−1

without overlapping. In each bin, the averaged optical density with the bin is
calculated and the value is subsequently used to fill all the pixels of the bin to
maintain the original size of image. We attempted several different bin size n from
2.34 to 11.70 μm−1 and the result is robust against the bin size, as shown in Fig. 5.

For the radially averaged images, we first divided all the pixels into several bins
based on the distance from the center of the atom cloud, then averaged the pixels in
the same bin. The degenerate Fermi–Dirac and Gaussian profiles are fitted by the
2D Thomas–Fermi and Gaussian distribution, respectively. It is worth noting that
both density fluctuations and high-momentum information are effectively removed
from both fitting cases. Therefore, the comparison between Fermi–Dirac and
Gaussian profiles may allow one to investigate possible next-order effects by which
NNs detect the changes in T/TF.

In Fig. 3, we first divide the whole image into two parts, low-momentum and
high-momentum regions, based on whether the distance from the center of the
atom cloud is larger than 70 μm−1 or not. Next, we replace one of the two parts
with a fake image, which is generated by averaging the corresponding region of all
the images (N= 1,2,5,6) in the dataset. As all the test images are same in the
replaced region, the information in that region can be considered as removed. In
Fig. 4a, b, the procedure is the same as in Fig. 3 with variable cutoff momenta. For
the partially binned images, the corresponding region is replaced by a
binned image.

Data analysis. In Fig. 2a, we calculate the azimuthal correlation spectrum at k=

58.5 μm−1, which is defined as CkðθjÞ ¼
∑i ½PkðθiÞPkðθiþjÞ�

∑iP
2
kðθiÞ

, where Pk(θi) represents the

optical density for a specific pixel at k ~ 58.5 μm−1 and angle ~ θi. The formula can

be further derived from the Fourier transform F as G ¼ F�1ðjF ðPkÞj2 Þ
jPk j2 . The azimuthal

correlation spectrum shows how the image looks like its own copy after rotating a
specific angle. For a radially averaged image, the correlation becomes 1 at any
angle, indicating no density fluctuations. When the image is binned, densities are
only locally averaged resulting azimuthal correlation at nonzero angle < 1.

Figure 4d shows density fluctuations measured along azimuthal bins containing
the same number of atoms within a single image. Total 24 bins are chosen at the
distance of 22 ~ 34 μm−1 from the center of the cloud. Redundant pixels are
removed at the border to keep all bins having the same number of pixels. The size
of each bin is much larger than the optical resolution of the imaging system.

Data availability
The data that support the finding of this work are available from the corresponding
authors upon request.

Code availability
The code developed during the current study is available from the corresponding authors
upon request.
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image, binned image, and radially averaged image.
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