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The impact of non-additive genetic associations
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Genome-wide association studies (GWAS) are not fully comprehensive, as current strategies

typically test only the additive model, exclude the X chromosome, and use only one reference

panel for genotype imputation. We implement an extensive GWAS strategy, GUIDANCE,

which improves genotype imputation by using multiple reference panels and includes the

analysis of the X chromosome and non-additive models to test for association. We apply this

methodology to 62,281 subjects across 22 age-related diseases and identify 94 genome-wide

associated loci, including 26 previously unreported. Moreover, we observe that 27.7% of the

94 loci are missed if we use standard imputation strategies with a single reference panel,

such as HRC, and only test the additive model. Among the new findings, we identify three

novel low-frequency recessive variants with odds ratios larger than 4, which need at least a

three-fold larger sample size to be detected under the additive model. This study highlights

the benefits of applying innovative strategies to better uncover the genetic architecture of

complex diseases.
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Genome-wide association studies (GWAS) have been suc-
cessful in identifying thousands of associations between
genetic variation and human complex diseases and traits1.

Nevertheless, for most complex diseases, only a small fraction of
their genetic architecture is known, and a small amount of the
estimated heritability is explained2. Variants that individually
have small contributions to the risk of disease, and/or are rare in
the population, are often missed by the majority of GWAS even
though they may contribute to the pathophysiology of complex
diseases. Some of the current limitations of GWAS could be
overcome by increasing sample sizes and by applying more
comprehensive analytical methods with improved imputation
strategies3. Besides, whole-exome sequencing (WES) and whole-
genome sequencing (WGS) datasets, such as the NHLBI Trans-
Omics for Precision Medicine (TOPMed) Project4, and the UK
Biobank5, are rapidly growing and expanding the range of var-
iants to be tested in genetic association studies. However, together
with the general tendency of increasing sample sizes, this imposes
additional methodological and computational challenges. These
can require scientists to restrict and simplify the analysis by
limiting it to autosomal chromosomes, to a single reference panel
for imputation, and to a single (additive) inheritance model for
association testing, leaving a relevant fraction of the genetic
architecture of the disease unexplored6.

The genetic variants that modify the risk to develop a parti-
cular complex disease may contribute to the final phenotype
through different functional mechanism defined by a particular
model of inheritance, which is further reflected in a characteristic
distribution of affected alleles across patients and healthy indi-
viduals in GWAS. For example, the additive inheritance model,
which is often the only genetic model tested, assumes that the
risk of the disease is proportional to the number of risk alleles in
an individual, i.e., that the effect of the heterozygous genotype is
halfway between the two possible homozygous genotypes.
However, some variants follow non-additive inheritance models,
which include dominant, recessive, and heterodominant. The
additive model is expected to capture a large fraction of the
genetic risk for disease7 and can identify some variants that
follow non-additive inheritance patterns. However, the additive
model is not sufficient to provide a comprehensive overview of
the genetic architecture of diseases. In particular, most GWAS
may have insufficient power to identify low-frequency variants
that show recessive effects8,9. The importance of evaluating non-
additive inheritance models is well reported in the context of
Mendelian diseases10 and occasionally for complex traits as well,
such as the recessive effects of the FTO locus in obesity11, and in
or near ITGA112, TBC1D413, and CDKAL111,14 genes in type 2
diabetes, as well as the known non-additive effects of HLA
haplotypes in autoimmune diseases15 and ulcerative colitis16.
The increasing ability to capture low-frequency variants using
modern imputation reference panels and the need to uncover the
still missing heritability estimated for most complex diseases, call
for comprehensive association strategies that should include,
among other improvements, the analysis of non-additive
inheritance models.

In this work, and to fill this gap and to determine the pre-
valence and contribution of the different inheritance patterns
involved in the genetic architecture of complex diseases, we
design and implement a comprehensive strategy for genetic
association analysis that combines imputation from multiple
reference panels with association testing under five different
inheritance models across multiple phenotypes. We apply this
strategy to the Kaiser Permanente Research Program on Genes,
Environment and Health: A Genetic Epidemiology Research on
Adult Health and Aging (GERA) cohort17, which includes
62,281 subjects from European ancestry and 22 diseases. Finally,

we release here both the summary statistics for all the models of
inheritance as well as the complete methodology, provided to the
community as an easy-to-use and standalone pipeline. This
pipeline allows the analysis of existing and newly generated
GWAS data with better efficiency and more comprehensive
testing, improving the chances of variant discovery.

Results
In order to assess the potential benefits of applying more in-depth
GWAS methodologies to available genetic datasets, and to
investigate the relative contribution of different inheritance
models to the risk to develop complex diseases, we have applied a
global analysis strategy to the GERA cohort, an age-related dis-
ease-based cohort with an average age of 63, well-powered to
study a broad range of clinically defined age-related conditions.
By using this particular cohort, we expect to minimize a possible
loss of power due to the misclassification of controls, as often
happens in datasets with younger individuals that can include
cases at pre-disease stages classified as controls.

Genotype imputation and association testing using multiple
reference panels. After applying genetic quality control to the
GERA cohort (see “Methods”), we retained 56,637 individuals
with European ancestry for further downstream analysis (Sup-
plementary Data 1). To cover the maximum number and type of
genetic variants, we next applied an imputation strategy with four
reference panels: the Genome of the Netherlands (GoNL)18,19, the
UK10K Project20, the 1000 Genomes Project (1000G) phase 321,
and Haplotype Reference Consortium (HRC)22, and imputed
11.2 M, 11.4 M, 13.1 M, and 11.7 M high-quality imputed variants
(IMPUTE223 info score ≥0.7 and minor allele frequency
[MAF] ≥ 0.001) with each panel, respectively. After combining
the results of the four reference panels by choosing, for each
variant, the panel that provided the highest imputation accuracy,
we retained a total of 16,059,686 variants covering all the auto-
somes and the X chromosome (Fig. 1a). Using this strategy we
imputed 2.6 M and 5.5M high-quality, low-frequency (0.05>
MAF > 0.01) and rare variants (0.01 >MAF > 0.001), respectively,
as well as 1.6 M indels. Note that as many as 684,393 common
variants (MAF ≥ 0.05), 255,106 low-frequency, 1.7 M rare, and all
indels (1.6 M) would be missed if only the HRC reference panel
was used. This highlights the benefit of combining different
reference panels for comprehensive association testing (Fig. 1b).

To evaluate our imputation strategy, we used sequenced data
from UK10K, which includes 3781 sequenced genomes, to build
an in silico array of 599,208 variants. We then imputed the in
silico array using 1000G, GoNL and HRC as reference panels and
compared the imputed genotype dosages with the sequenced
genotype dosages (allelic dosage R2, see “Methods” and
Supplementary Fig. 1). Our results empirically demonstrate that
our IMPUTE2-info threshold of 0.7 is a good cutoff for well-
predicted genotypes (Supplementary Fig. 2). Moreover, the
combination of the results from the different panels based on
IMPUTE2-info values outperforms single reference panels in
terms of % of variants with allelic dosage R2 ≥ 0.5 in autosomes
(Fig. 1c) and in the X chromosome (Fig. 1d) for both SNPs and
indels (Supplementary Fig. 3).

To evaluate that our strategy is able to identify previously
known loci that are well-powered in our cohort, we performed a
power comparison under the additive model for type 2 diabetes
and age-related macular degeneration, since both are well-defined
diseases with available summary statistics. The power comparison
between our additive results for type 2 diabetes and those
from the DIAMANTE consortium24 showed that while we had an
80% power to find two variants with a p-value of 5.0 × 10−8 in
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our dataset, we found four variants with genome-wide signifi-
cance (Supplementary Data 2). For age-related macular
degeneration25, we had 80% power to find six variants with a
p-value of 5.0 × 10−8 of which we identified four of them with

genome-wide significance. The remaining two variants were
nominally significant in our study (Supplementary Data 3). These
analyses suggest that our strategy is robust to find previously
known variants given sufficient power.

Fig. 1 Graphical representation illustrating the benefits of combining the results from different reference panels. a Comparison of the number of
variants after the imputation with four reference panels (info score ≥ 0.7), and combining them, colored according to MAF and variant type (SNP vs
alternative forms of variation, such as indels). As shown in the bar plot, combining the results from the four reference panels increased the final set of
variants for association testing when compared with the results for each of the panels alone (GoNL, UK10K, 1000G Phase 3, or HRC), especially in the low
and rare frequency spectrum. For example, we covered up to 5.5M rare variants (0.01> MAF > 0.001) by combining panels, while only 2.3M, 2.9M, 3.2M,
and 3.8M of rare variants were imputed independently with GoNL, UK10K, 1000G phase 3, and HRC, respectively. b Comparison of the contribution of
each reference panel in the combined results. Each bar represents the number of variants that had the best imputation accuracy for a given reference panel.
As shown in the figure, although the HRC panel showed overall higher imputation scores, as it provided around 10 of the final 16M variants, the
contribution of the other reference panels, primarily with non-SNP variants, was substantial. Indels seen in the bar plot for HRC correspond to genotyped
indels. All variants with info score <0.7, MAF < 0.001, and HWE for controls p < 1.0 × 10−6 were filtered. c Percentage of high-quality imputed variants
(IMPUTE2-info score ≥ 0.7) with an allelic dosage R2≥ 0.5 between sequenced genotypes in UK10K samples vs variants imputed in the same UK10K
samples using 1000G phase 3, GoNL, and HRC reference panels for the autosomes. The percentage of high-quality imputed variants with allelic dosage R2

values (y axis) are represented across several MAF ranges (x-axis) for each of the reference panels and the combined panels imputed results. The
combination of the three reference panels outperforms the single reference panels with 97.74% of variants with R2≥ 0.5. d Percentage of variants in the X
chromosome with an IMPUTE2-info score ≥ 0.7 and with an allelic dosage R2≥ 0.5 for UK10K imputed genotypes across MAF ranges for 1000G phase 3,
GoNL, and HRC reference panels and the combined results. The combination of the results from the three panels outperforms single reference panels with
93.89% of variants with allelic dosage R2≥ 0.5. e Venn Diagram illustrating the loci identified by each reference panel. New loci are depicted in bold. As
shown in this figure, only 67 of the 94 GWAS significant loci were identified by all four reference panels, while 27 of them (28.7%) were only identified by
one, two, or three of the four panels.
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We next tested all the 16M variants for association with the 22
conditions available in the GERA cohort and five different
inheritance models (Supplementary Figs. 4–25). This analysis
identified 94 independent loci associated with 17 phenotypes at a
usual genome-wide significance level (p < 5.0 × 10−8) of which
63 for 14 phenotypes were also experiment-wide significant (p <
2.0 × 10−8) after considering correction for the different models
of inheritance (see “Methods”) (Supplementary Data 4). Accord-
ing to the GWAS Catalog, 68 of the 94 genome-wide significant
loci had been previously reported to be associated with the
same disease (Supplementary Data 5), whereas 26 of them
correspond to previously unreported loci with associations across
16 phenotypes (Table 1).

Of these 26 new loci, 16 correspond to common, 3 to low-
frequency, and 7 to rare variants. Only a fraction of the 26 new
loci would have been genome-wide significant by using individual
imputation panels (Fig. 1e), namely 19/26 using HRC, 14/26
using 1000G Phase 3, 13/26 using UK10K or 14/26 using GoNL.
In addition, the lead marker for three of the novel signals was an
indel, not covered by HRC, further confirming the benefits of
combining multiple panels with our approach.

Identification of recessive variants with large effects. The
implementation of refined GWAS strategies not only increases
the number of associated variants, but also allows the identifi-
cation of loci with large impact on the disease. Among the var-
iants that were not detected under the additive model, and hence
are expected to be missed by the majority of current GWAS, we
highlight three variants with large recessive effects. First, an
intronic indel in the CACNB4 gene, rs201654520, associated with
a nearly 20-fold increase in risk for cardiovascular disease (MAF
= 0.017, OR [CI 95%]= 19.0 [5.5–65.8], p= 4.3 × 10−8).
CACNB4 encodes the β4 subunit of the voltage-dependent cal-
cium channel. This subunit contributes to the flux of calcium ions
into the cell by increasing peak calcium current and triggering
muscle contraction. Interestingly, an intronic single nucleotide
polymorphism (SNP) within CACNB4, rs150793926, was asso-
ciated with idiopathic dilated cardiomyopathy in African
Americans26, but this variant is not in linkage disequilibrium
(LD) with rs201654520 (LD r2 27= 0.0016 for European ancestry
and LD r2= 0.0 for African ancestry).

A second recessive variant with large effect, rs77704739, near
the PELO gene, is associated with a fourfold risk for type 2
diabetes (MAF= 0.036, OR [CI 95%]= 4.3 [2.7–6.9], p= 1.75 ×
10−8). An independent signal that is about 112 K base pairs away
(rs870992, LD r2= 0.0009) was previously associated with type 2
diabetes in the Greenlandic population, also with a recessive
effect12. To provide insights into the underlying molecular
mechanisms in disease, we interrogated comprehensive catalogs
of genetic effects on gene expression: eQTLGen Consortium28

and GTEx29. The rs77704739 variant was significantly associated
with gene expression of PELO in multiple tissues, including
diabetes-relevant tissues such as adipose tissue, skeletal muscle,
and pancreas. Colocalization analyses showed a probability higher
than 0.8 in several tissues, including subcutaneous adipose tissue
and skeletal muscle, suggesting this gene as the effector transcript
(Fig. 2a, b, and Supplementary Data 6). In addition, we found that
the lead variants in the PELO locus overlap with active promoter
annotations in human pancreatic islets and open chromatin
sites highly bounded by islet-specific transcription factors30,31

(Fig. 2c).
Third, a rare indel, rs557998486, located near the THUMPD2

gene, is associated with age-related macular degeneration (MAF=
0.009, OR= 10.5, p= 2.75 × 10−8). Interestingly, the fact that we
found no SNPs in LD with this lead indel further confirms the

benefits of multiple reference panel imputation strategies that
include alternative forms of variation. The lead indel rs557998486
overlaps DNAse I hypersensitivity sites in retinal and iris cell
lines32, highlighting a candidate open chromatin region that is also
predicted to be an enhancer assigned to the THUMPD2 gene
according to GeneHancer33. One of the variants with the highest
LD with rs557998486 (rs116649730, LD r2= 0.32) is associated
with reduced expression of its nearest gene, THUMPD2 (z-score=
−4.85, p= 1.25 × 10−6), according to eQTLGen Consortium data.

Our empirical evaluation also demonstrates that our imputa-
tion approach is accurate for the new variants, including those
with a large recessive effect, and that the combination of multiple
reference panels increases the certainty of the imputed genotypes
(Table 1 and Supplementary Data 7).

Replication using UK Biobank and FinnGen. We sought
replication of previously unreported loci using UK Biobank, a
prospective cohort of ~500 K individuals aged between 40 and
695. Given the high heterogeneity in phenotype definitions in UK
Biobank compared to GERA, we tested for replication with the
same phenotype and related traits (Supplementary Data 8).
Compared to GERA, some of the conditions may not be ascer-
tained or have an age at onset later than the average age at
ascertainment in UK Biobank (56.52 years34) which could affect
the replication success. Despite these limitations, we tested the
novel variants using the corresponding inheritance model and
replicated 4 new loci with the same phenotype (Table 2).

The variant rs77704739 variant near PELO was associated with
type 2 diabetes (OR-recessive [95% CI]= 1.9 [1.4–2.6], p=
4.95 × 10−4) and metformin use (OR-recessive [95% CI]= 2.3
[1.6–3.4], p= 3.8 × 10−5) in the UK Biobank5 (Supplementary
Data 8), also only under the recessive model.

We further sought replication of the association within the
CACNB4 gene with cardiovascular disease in FinnGen, a cohort
of ~218 K Finnish individuals with an average age of 63, as it
includes individuals with a higher average age (63 vs 56 in UK
Biobank) and the risk of developing a cardiovascular disease is
well-known to increase with age35. In addition, FinnGen has a
precise and richer classification of this particular phenotype than
UK Biobank. In brief, we tested rs201654520 for association with
47 cardiovascular endpoints. Of all the conditions tested, four
(hypertensive heart disease, hypertensive heart and/or renal
disease, heart failure, and right bundle-branch block) were
nominally associated (p < 0.05). All the associations had a
direction of effect consistent with the effect observed in the
GERA cohort (Supplementary Fig. 26a). Despite the high
heterogeneity in the phenotype definitions between cohorts, we
meta-analyzed the results from these endpoints from FinnGen
with the result from cardiovascular disease phenotype from
GERA, but none of them reach the genome-wide significance (see
“Methods”) (Supplementary Fig. 26). We did not include UK
Biobank in this meta-analysis as the equivalent phenotypes were
not available or had less than 350 cases in UK Biobank, therefore,
underpowered for a recessive analysis. Notably, when analyzing
the association of rs201654520 with related quantitative traits we
found that those who were homozygous for the high-risk allele
had lower systolic blood pressure (p= 4.1 × 10−3, beta=−0.23)
(Supplementary Data 8). While lower systolic blood pressure has
been associated with increased risk of myocardial infarction in
particular circumstances, this is not the typical direction of
association, and therefore merits additional study36.

We also sought replication of the recessive association of
rs557998486 near THUMPD2 gene with macular degeneration in
FinnGen. rs557998486 was associated with increased risk of
macular degeneration in UK Biobank under the recessive model
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(OR [CI 95%]= 7.6 [1.5–37.3], p= 4.1 × 10−2), eye surgery (beta
[CI 95%]= 1.6 [0.6–2.6], p= 1.17 × 10−3) (Supplementary
Data 8), and with increased C-reactive protein, a known
biomarker for macular degeneration37,38 (beta [CI 95%]= 1.1

[0.7–1.5], p= 1.15 × 10−4) (Supplementary Data 9). In FinnGen
this variant was not significantly associated although it showed
the same direction of effect. However, the meta-analysis did not
reach the genome-wide significance (rs557998486 p= 9.6 × 10−6)
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and had a high heterogeneity (heterogeneity I2= 87.1, hetero-
geneity p= 4.3 × 10−4).

Detection ranges of the different inheritance models. Our
findings provide an empirical overview of the detection range of
five different inheritance models and show how each of them
captures a fraction of the genetic variants associated with complex
traits. Compared to current GWAS that usually only consider
additive allelic effects, we found three different scenarios. Among
all the 94 associated loci identified, 12 showed genome-wide
significance only under the additive model, 62 under both addi-
tive and non-additive models, and 20 showed genome-wide sig-
nificance only when non-additive tests were applied (Fig. 3a).
To further classify these variants, we tested whether any of the
62 variants associated with both additive and non-additive
models deviate from additivity through a dominance deviation
test11. Eleven of these 62 variants (17.7%) showed significant
deviation from additivity (dominance deviation test p < 0.05).
However, variants not showing a significant deviation from
additivity may become significant for other models with larger
sample sizes. Altogether, the dominance deviation test over the
93 autosomal loci identified 62 (66%) additive and 24 (25.5%)
non-additive associations, and 8 undetermined. Based on the
smallest GWAS p-value, we further classified non-additive asso-
ciations into 9 recessive, 13 dominant, 8 heterodominat, and
7 genotypic (Supplementary Data 4).

We also observed that each of the available models for
association testing has a different range of detection. To identify
the 94 genome-wide associated loci, the additive test, as expected,
was the most sensitive model (74 loci), followed by the genotypic
(59 loci), the dominant (56 loci), the recessive (43 loci), and the
heterodominant (32 loci). When considering known loci, 48 of
the 68 previously reported loci were identified by more than one
model in our analysis, and almost half of these (22 loci) with all
five models. In contrast, of the 26 newly discovered variants, only
8 were identified with multiple models, whereas the majority of
them (18 loci), were detected only with the additive (6 loci), the
genotypic (4 loci), the recessive (4 loci), and the dominant (3 loci)
model. Of note, 13 out of 26 (50%) novel loci were only identified
by non-additive models.

To further investigate to what extent the additive model
captures non-additive signals, and how much this depends on
sample size, we carried out power calculations on loci that we
identified only under a non-additive model, such as rs201654520
within CACNB4 gene and rs77704739 near the PELO gene. These
power calculations showed that the additive test would require a
population sample size of at least 370,646 individuals to detect the
recessive association of rs201654520 in CACNB4 (Fig. 3b), and at
least 188,637 individuals to capture the recessive signal of
rs77704739 near the PELO gene (Fig. 3c), while the population
sample size required for the recessive model was only 21,021 and
67,611, respectively. In this study, we were able to identify both
associations with a modest sample size by using the most well-
suited disease model.

The GUIDANCE framework. The complete methodology
described here and used for the analysis of the GERA cohort was
integrated into a framework, called GUIDANCE. GUIDANCE
allows the analysis of genome-wide genotyped data in a single
execution in distributed computing infrastructures without the
need for extensive computational expertise or constant user
intervention. The GUIDANCE workflow requires quality-
controlled genotyped data as input and provides association
results, graphical outputs, and statistical summaries. Integrating
state-of-the-art tools with in-house code written in Java, bash,
and R39, GUIDANCE efficiently performs large-scale GWAS,
including (1) the pre-phasing of haplotypes, (2) the imputation of
genotypes using multiple reference panels, (3) the association
testing for different inheritance models and the integration of the
results from different panels, (4) a cross-phenotype analysis when
more than one phenotype is available in the cohort (Supple-
mentary Data 10), and finally, (5) the generation of summary
statistics tables and graphic representations of the results (Sup-
plementary Fig. 27), for both the autosomes and the X chromo-
some. While GUIDANCE can be executed as a standalone
compact program it can also be used in modules (Supplementary
Fig. 28), which makes it adaptable to existing frameworks and
provides a higher level of control to users.

GUIDANCE runs in distributed computing platforms, includ-
ing the cloud, without requiring a broad background in these
environments. This is feasible since GUIDANCE was implemen-
ted on top of the COMP Superscalar Programming Framework
(COMPSs)40. The GUIDANCE workflow was implemented as a
sequential Java program containing the calls to the GWAS tools,
encapsulated in Java methods, and selected as tasks, while
COMPSs controls the execution of those tasks on the underlying
distributed infrastructure. The source code, the pre-compiled
binaries, and the documentation to use GUIDANCE are available
at http://cg.bsc.es/guidance.

Discussion
Current genetic association studies are undergoing fundamental
strategic and methodological changes to identify new associa-
tions. The gradual incorporation of WES and WGS, together with
the continuous efforts to increase the sample size, impose com-
putational and methodological challenges that cannot always be
overcome. In addition, the inclusion of the X chromosome, and
non-additive models during association testing, despite increasing
the computational burden, can also lead to the identification of
new associations. In this study, we demonstrate the value of
applying a comprehensive GWAS strategy, including denser
imputation strategies, the X chromosome, and non-additive
association tests, to an existing large-scale genetic resource, the
GERA cohort. We show that by applying more innovative
imputation protocols we increased the number and the type of
variants tested for association, including low-frequency and rare
SNPs as well as alternative forms of variation, such as indels. Our
analysis of the GERA cohort shows that between 13 and 20 of the
genome-wide significant associations (14–21%) would not have

Fig. 2 Functional characterization of the rs77704739 recessive association near the PELO gene. a Colocalization plots from LocusCompare for
the rs77704739 variant in adipose subcutaneous tissue. As seen in the plots, the signals from both eQTL data and the recessive T2D association
results colocalize. b Violin plot from GTEx showing that the recessive rs77704739 variant significantly modifies the expression of PELO gene in
subcutaneous (n= 581 independent samples) and visceral adipose tissue (n= 469 independent samples), skeletal muscle (n= 706 independent samples)
and pancreas (n= 305 independent samples). The box plots have lines extending from the boxes (whiskers) indicating variability outside the upper
and lower quartiles. GTEx V7 was used for colocalization analyses, whereas GTEx V8 was used to generate the violin plots. c Signal plot for chromosome
5 region surrounding rs77704739. Each point represents a variant, with its p-value from the discovery stage on a −log10 scale in the y axis. The x-axis
represents the genomic position (hg19). Three credible set variants are located in open chromatin sites in human pancreatic islets, one of them classified as
an active promoter and one highly bounded by pancreatic islet-specific transcription factors, such as PDX1, NKX2.2, NKX6.1, and FOXA2.
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been identified when using a single reference panel. Likewise, our
analysis in the GERA cohort demonstrates that 21% of the
associations would be missed by only testing the additive model.
Overall, 27.6% of associations would not have been identified
by applying the commonly used HRC and additive model

association testing. The inclusion of the X chromosome within
the study allowed us to identify an intronic variant (rs67648651)
associated with dyslipidemia in the RGAG1 gene among the
previously known associated loci since a variant in LD with our
top variant (rs5985471, LD r2= 0.92 for European ancestry) has
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already been associated with low-density lipoprotein
cholesterol20. This supports the value of analyzing the X chro-
mosome, which is not considered in the majority of GWAS.

In this study, we show the potential of identifying large effect
recessive associations by maximizing the use of current reference
panels and testing different inheritance models, as exemplified by
the associations with type 2 diabetes, cardiovascular disease, and
macular degeneration with variants near PELO, CACNB4, and
THUMPD2, respectively. This strategy opens new avenues for
future analyses in large-scale biobanks, as demonstrated with our
power calculations, which show that even the largest available
GWAS meta-analyses or biobanks would not have enough power
to identify these associations using only the additive model. For
example, the CACNB4 gene, associated with cardiovascular dis-
ease, would require a sample size equivalent to 370,000 indivi-
duals when using the additive test, 17 times larger than the
required sample size under a recessive analysis. After considering
all the supporting evidence illustrated with many examples in this
study, the results suggest that these new associations deserve
future validations and follow-up analysis. Therefore, this study
demonstrates the importance of a comprehensive analysis
including non-additive models when performing GWAS, which
can increase the discovery not only on GWAS relying on geno-
typing array data, but also on WES or WGS association studies.

The inclusion of non-additive associations can also have an
impact on the construction of polygenic risk scores. Current
polygenic risk scores (PRS) are calculated summing risk alleles
weighted by effect sizes from GWAS results, which have typically
tested only the additive model in the association test. Hence,
large-scale genome-wide association data accounting for different
models of inheritance and including both SNPs and alternative
forms of variation, such as indels, will also be essential to develop
more accurate genome-wide PRS, which would weight each of the
genotype carriers appropriately, rather than weighting the het-
erozygous halfway between the homozygous of the effect and
alternate alleles.

To easily apply this strategy to genetic studies we present
GUIDANCE, a standalone and easy-to-use application that
allows an efficient and comprehensive GWAS analysis in different
computing platforms, such as cloud and high-performance
computing architectures. GUIDANCE is designed to allocate an
unlimited number of reference panels. This can be useful for
GWAS performed in specific diverse populations where the
addition of a population-specific reference panel alongside the
commonly used ones could be an advantage. This feature can also
be useful when incorporating reference panels that have a better
ascertainment of other type of variation, such as structural var-
iants, with the most commonly used ones. In addition, it is
possible to launch the execution by steps, incorporating the
previously obtained results, avoiding repeating all the computa-
tions. In a moment where the community is facing computational
and methodological challenges due to the growing complexity
and size of genetic datasets, the availability of robust and

complete analysis platforms can improve the efficiency of genetic
studies, standardizing analysis strategies among meta-analysis
cohorts to ensure consistency.

Finally, to share our results with the community and to pro-
mote the analysis of non-additive inheritance models in GWAS, a
public searchable database including additive and non-additive
summary statistics for 16M of variants and 22 phenotypes is
available at the Common Metabolic Diseases Knowledge Portal
(https://cmdkp.org/), and full summary statistics both at the
Common Metabolic Diseases Knowledge Portal and at http://cg.
bsc.es/guidance.

Methods
Empirical evaluation of the imputation strategy. To empirically evaluate our
imputation strategy, we extracted the corresponding genotypes in UK10K for each
variant present in the genotyping array used in GERA to build an in silico array of
599,208 genotyped variants for the 3781 UK10K individuals. We then imputed the
data using the 599,208 variants as a backbone, using 1000G, GoNL, and HRC as
reference panels. We used IMPUTE2 to impute the genotypes. We also combined
the imputed results based on the highest imputation accuracy according to the
IMPUTE2-info values as we did with the GERA cohort. We transformed the
IMPUTE2 genotype probabilities into genotype dosages and calculated the r-
squared correlation (R2) between the imputed genotype dosages and the sequenced
genotype dosages from UK10K, termed allelic dosage R2 (Supplementary Fig. 1).

GUIDANCE workflow description. By combining and integrating state-of-the-art
GWAS analysis tools into the COMP Superscalar programming Framework
(COMPSs), we developed GUIDANCE, a standalone application that performs
haplotype phasing, genome-wide imputation, association testing, and PheWAS
analysis of large GWAS datasets (Supplementary Fig. 27).

As shown in Supplementary Fig. 27, GUIDANCE’s workflow starts with
quality-controlled genotype data and ends with providing association results,
graphical outputs, and statistical summaries.

Once everything is settled in the GUIDANCE configuration file, GUIDANCE
performs an efficient two-stage imputation procedure, by pre-phasing the
genotypes into whole haplotypes followed by genotype imputation itself41.
SHAPEIT242 or EAGLE243 and IMPUTE223 or MINIMAC444 can be used for
pre-phasing and genotype imputation, respectively. In addition, GUIDANCE
accepts one or multiple reference panels, allowing the integration of the results
obtained from all panels by selecting for each variant the genotypes from the
reference panel that provides the highest imputation accuracy according to the
IMPUTE2-info score or MINIMAC2 r2 (Supplementary Fig. 29). GUIDANCE also
performs a post-imputation quality control to eliminate low-quality imputed
variants under the basis of the IMPUTE2-info score or MINIMAC2 r2 and
the MAF.

After genotype imputation and post-imputation quality control, GUIDANCE
applies SNPTEST for association testing, where additive, dominant, recessive,
heterodominant, and genotype models can be analyzed. Here, the user can decide
to include several covariates for the association test, such as principal components
to adjust for population stratification, or any other confounders. GUIDANCE also
allows testing for multiple phenotypes or for a single phenotype with different
covariates in the same execution. After association testing, variants are filtered by
the deviation from Hardy–Weinberg equilibrium (HWE) p-value. Finally,
GUIDANCE generates summary reports for each trait with all the inheritance
models tested in the association and the corresponding graphical representation,
i.e., Manhattan and quantile–quantile (Q–Q) plots (Supplementary Fig. 4–25), also
providing a matrix identifying cross-phenotype associations (Supplementary
Data 10).

GUIDANCE can be executed as a standalone compact program or as
independent modules (see Supplementary Fig. 28 for a list of independent
modules) to facilitate the use of GUIDANCE into existing frameworks.

Fig. 3 Results from the analysis of additive and non-additive inheritance models. a The Venn Diagram shows the number of loci that were identified
when analyzing multiple inheritance models. As seen in the Venn Diagram, the strongest association for 37 of the 94 associated loci was non-additive.
Moreover, the analysis of non-additive models was crucial for the identification of 13 novel (in bold) associated loci. b Power calculation of the
rs201654520 indel in CACNB4 associated with cardiovascular disease. The results show that the additive-based test would require a population sample
size of 370,646 individuals to find this recessive association, while the population sample size needed for the recessive model was 21,021. c Power
calculation of the rs77704739 variant near the PELO gene associated with type 2 diabetes. The results show that the additive-based test would require a
population sample size of 188,637 individuals to find this recessive association, while the population sample size needed for the recessive model is 67,611.
d Power calculation of the rs557998486 indel near the THUMPD2 gene associated with age-related macular degeneration. The results show that the
additive-based test would require a population sample size of 6,493,419 individuals to find this recessive association, while the population sample size for
the recessive model is 475,952.
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Further details can be found in the configuration file from the GUIDANCE
execution at http://cg.bsc.es/guidance. Specific documentation to use this
framework is available at http://cg.bsc.es/guidance, as well as the source code and
the pre-compiled binaries that are available in the Download section.

The analysis of GERA cohort
GERA cohort description. GERA cohort data was obtained through dbGaP under
accession phs000674.v1.p1. For further information about the specific phenotypes
(ICD-9-CM codes) included in GERA, visit its website on dbGaP (https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetPdf.cgi?id=phd004308). The Resource
for Genetic Epidemiology Research on Aging (GERA) Cohort was created by a RC2
Grand Opportunity grant that was awarded to the Kaiser Permanente Research
Program on Genes, Environment, and Health (RPGEH) and the UCSF Institute for
Human Genetics (AG036607; Schaefer/Risch, PIs). The RC2 project enabled
genome-wide SNP genotyping (GWAS) to be conducted on a cohort of over 100 K
adults who were members of the Kaiser Permanente Medical Care Plan, Northern
California Region (KPNC), and participating in its RPGEH. The resulting GERA
cohort is composed of 42% of males, 58% of females, and ranges in age from 18 to
over 100 years old with an average age of 63 years at the time of the RPGEH survey
(2007). Nineteen percent of the individuals are from non-European ancestry, while
81% are described as white non-Hispanic participants. After an explicit require-
ment of consent by email, data from 78,486 participants were deposited in dbGaP,
with similar demographic characteristics to those of the initial genotyped cohort.

Quality control. A subset of 62,281 subjects of European ancestry underwent
quality control analyses. A three-step quality control protocol was applied using
PLINK45,46, and included two stages of SNP removal and an intermediate stage of
sample exclusion.

The exclusion criteria for genetic markers consisted of proportion of
missingness ≥ 0.05, HWE p ≤ 1 × 10−20 for all the cohort, and MAF < 0.001. This
protocol for genetic markers was performed twice, before and after sample
exclusion.

For the individuals, we considered the following exclusion criteria: gender
discordance, subject relatedness (pairs with PI-HAT ≥ 0.125 from which we
removed the individual with the highest proportion of missingness), sample call
rates ≥ 0.02, and population structure showing more than four standard deviations
within the distribution of the study population according to the first seven
principal components (Supplementary Fig. 30). After QC, 56,637 subjects remained
for the analysis (Supplementary Data 1).

Analyzing GERA cohort using GUIDANCE. GUIDANCE pre-phased the genotypes
to whole haplotypes with SHAPEIT2, and then performed genotype imputation
with IMPUTE2 using 1000G phase 3, UK10K, GoNL, and HRC as reference panels.
After filtering variants with an info score < 0.7 and a MAF < 0.001, we tested for
association with additive, dominant, recessive, heterodominant, and genotypic
logistic regression using SNPTEST, and including seven derived principal com-
ponents, sex, and age as covariates. To maximize power and accuracy, we com-
bined the association results from the four reference panels by choosing for each
variant, the genotypes from the reference panel that provided the best IMPUTE2-
info score.

For chromosome X we restricted the analysis to non-pseudoautosomal (non-
PAR) regions. For the haplotype phasing of chromosome X, we used the --chrX
flag required for SHAPEIT to only phase female samples since males only have one
X chromosome, and to impute missing data in male samples. We did the same
imputing genotypes using IMPUTE2 as it requires the -chrX flag alongside the
sample file with the sex information. In the association test, we used -method
newml from SNPTEST to ignore samples with missing sex or males encoded
wrongly (males should be coded 0/1, as homozygote females), and to assume a
model of full X inactivation. Hence, the logistic regression model assumes a
complete inactivation of one allele in females and equal effect size between males
and females. For heterogeneity between males and females, and to allow a complete
inactivation of the X chromosome in females, we used -stratify_on sex to separate
the effects and the baselines of males and females, accounting for hemizygosity for
males, while for females, we followed an autosomal model.

Finally, we excluded variants with HWE controls p < 1 × 10−6 and with a case
count for homozygous for the alternative allele below three in the final results for
the recessive and genotypic model, as we observed a trend for genomic inflation
and deflation in the recessive and genotypic model before removing these variants.

Identification of known and new associated loci. After the association test, GUI-
DANCE provided a list of variants that passed the p-value threshold specified in
the configuration file (i.e., p ≤ 5.0 × 10−8). Using the IRanges R package47, all the
genome-wide significant variants were collapsed into ranges (500 kb) that define
each associated locus.

To distinguish between known or new associated regions, for each top variant
we looked for any proxy variant with an LD r2 > 0.35 in the GWAS catalog
(accession 5 September 2019) associated with the same phenotype or a related one
(for example, bone mineral density, cholesterol levels or diastolic/systolic blood
pressure phenotypes for osteoporosis, dyslipidemia or hypertension, respectively).
HLA regions at chromosome 6 were excluded since the particularities of these

regions required further detailed studies on their LD pattern. Proxies were selected
using LDlink (https://ldlink.nci.nih.gov/)48.

We defined an experiment-wide significant p-value cutoff of p < 2.0 × 10−8 by
applying the Bonferroni correction for 2.5 effective test (5.0 × 10−8/2.5 effective test).
This factor of 2.5 was obtained from a simulation study when four genetic models
(additive, dominant, recessive, and genotypic) are used49 since the genetic models are
not independent. However, a new simulation study including the heterodominant
model should be done for a more accurate effective number of tests.

Replication with UK biobank
Phenotype curation. UK Biobank participants agreed to provide detailed infor-
mation about their lifestyle, environment, and medical history, to donate biological
samples (for genotyping and for biochemical assays), to undergo measures, and to
have their health followed (http://www.ukbiobank.ac.uk/).

When collecting and analyzing a wide range of phenotypes from the UK
Biobank, a central challenge was the curation and harmonization of the vast array
of categorizations, variable scalings, and follow-up responses. Fortunately, to this
end, the PHEnome Scan ANalysis Tool (or PHESANT: https://github.com/
MRCIEU/PHESANT)50 performs much of the transformations and recodings
required to generate meaningful, interpretable phenotypes.

We have made further adjustments based on user feedback, owing to the value
of transparency in generating our phenotype guidelines. Applying these changes to
the PHESANT source code, phenotypes were parsed using our modified version
(github.com/astheeggeggs/PHESANT) on a virtual machine on the Google Cloud
Platform.

We first restricted to the subset of European individuals, before passing the
resultant phenotypic data to PHESANT. The ‘variable list’ file and ‘data-coding’
file, whose formats are defined in the original version of PHESANT were updated
as new phenotypes were added in the latest UK Biobank release. Recodings of
variables, and inherent orderings of categorical variables, are defined in the ‘data-
coding’ file. The ‘Excluded’ column of the ‘variable list’ file defines the collection of
variables that we do not wish to interrogate.

A high-level overview of the PHESANT pipeline, our defaults, and the
associated short flags for the phenomescan.r code are displayed in Supplementary
Fig. 31. In addition to the inverse-rank normalization applied to the collection of
continuous phenotypes, we also consider the raw version of the continuous
phenotype, with no transformation applied to the data.

Curation of the ICD10 codes was carried out separately for computational
efficiency. For the ICD10 phenotype, individuals are assigned a vector of ICD10
diagnoses. We truncated these codes to two digits, and assigned each individual to
either case or control status for that ICD10 code in turn by checking if their vector
contains that code. Throughout, we assumed the data contained no missingness, so
the sum of cases and controls throughout was the number of individuals in our
‘European’ subset of the UK Biobank data. As in the PHESANT categorical
(multiple) phenotypes, ICD10 code case/control phenotypes were removed if <50
individuals had the diagnosis.

Association testing and meta-analysis for UK Biobank phenotypes. We performed
the association testing for the curated phenotypes as implemented in SNPTEST for
additive, dominant, recessive, heterodominant, and genotypic inheritance models,
as it has been described in the “Analyzing GERA cohort using GUIDANCE”
section. For all genotypic variants identified in the discovery stage, we assigned the
recessive model after we identified it as the underlying model.

After the association testing, we filtered and ordered all the phenotypes based
on the p-value for the best model of inheritance obtained from the GERA cohort
analysis, with special consideration to equivalent phenotypes or related traits.

With the association testing results of both GERA cohort and UK Biobank, we
meta-analyzed the results using METAL51. We use the inverse variance-weighted
fixed-effect model for all the variants except for the rs557998486 variant associated
with macular degeneration, since its beta, calculated with the em method from
SNPTEST, was inflated. Therefore, we performed a sample size-based meta-
analysis, which converts the direction of the effect and the p-value into a z-score.

For biomarkers, only the results from the first visit were taken into account
since <10% of the cases were present in the second visit.

Association testing and meta-analysis with FinnGen. We used SAIGE52 for recessive
association testing using sex, age, PC1–10, and batch as covariates. We analyzed
FinnGen release 5 that contains 218,792 individuals with a median age 62.6 and a
mean age 59.8.

For the cardiovascular disease endpoints, we meta-analyzed the results using
rmeta R package53. For macular degeneration, we meta-analyzed the results using
METAL as described in the previous section.

Dominance deviation test. To detect genuine differences between additive and non-
additive signals, we performed a dominance deviation test for all 93 autosomal
genome-wide significant loci.

Dominance deviation was tested by a logistic regression analysis using PLINK
(v1.90b6.9, www.cog-genomics.org/plink/1.9/). Sex, age, and the first 7 PCs were
included as covariates.
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Definition of 99% credible set of PELO locus. For the PELO locus, the fraction of
aggregated variants that have a 99% probability of containing the causal one was
identified. The 99% credible set of variants for the region was defined with a
Bayesian refinement approach54, considering variants with an r2 > 0.1 with the
leading one.

For each variant within the PELO locus, the credible set provides a posterior
probability of being the causal one54. The approximate Bayes factor (ABF) for each
variant was estimated as

ABF ¼ ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

eðrz
2=2Þ; ð1Þ

where

r ¼ 0:04

ðSE2 þ 0:04Þ ; ð2Þ

z ¼ β

SE
: ð3Þ

The β and the SE result from a logistic regression model testing for association.
The posterior probability for each variant was calculated as

Posterior probabilityi ¼
ABFi
T

; ð4Þ
where ABFi corresponds to the approximate Bayes’ factor for the marker i, and T
represents the sum of all the ABF values enclosed in the interval. As commonly
employed by SNPTEST, this calculation assumes that the prior of the β is a
Gaussian with mean 0 and variance 0.04.

Finally, the cumulative posterior probability was calculated after ranking the
variants according to the ABF in decreasing order. Variants were included in the
99% credible set of the region until the cumulative posterior probability of
association got over 0.99.

Gene expression and functional characterization. The eQTLGen Consortium
(https://www.eqtlgen.org/cis-eqtls.html, last access on July 2019) and GTEx portal
(https://gtexportal.org/, last access on July 2019) were used to find associations
between our novel genetic associations and gene expression. When the variant was
not available in the resources, a proxy SNP was used instead.

To determine whether any identified overlap between GERA GWAS loci and
eQTLGen or GTEx eQTLs was due to a true shared association signal, we
performed a colocalization analysis. Colocalization was assessed by a Bayesian test
using summary statistics from both studies55: summary statistics from the cis
eQTLGen and GTEx were downloaded from the eQTLGen website and GTEx
portal, respectively. The test was performed using the R package coloc v3.2-155–57.
The test provided a posterior probability for the GWAS locus and the eQTL to
share the same causal variant(s).

We integrated available epigenomic datasets to examine the role of human
pancreatic islet transcriptional regulation underlying rs77704739 association with
type 2 diabetes. We used the WashU EpiGenome Browser (http://
epigenomegateway.wustl.edu/browser/, last access on July 2019) and previously
published RNA-seq, ATAC-seq, and ChIP-seq assays of H3K4me3, H3K27ac,
Mediator, CTCF, and islet transcription factors (FOXA2, MAFB, NKX2.2, NKX6.1,
and PDX1) in human pancreatic islets30,31 and islet regulome annotations31.

Comparison of power calculation under different inheritance models. Power calcu-
lations were performed using libraries epiR58 and GeneticsDesign59. For each
variant, the power was computed across different allele frequencies and sample
sizes. Frequencies of homozygous for different allele frequencies were estimated
assuming Hardy–Weinberg equilibrium. The sample size needed to achieve 80%
power was plotted against the allele frequency. For the additive model, we chose the
observed odds ratio for the additive model, whereas the observed odds ratio for the
recessive model was chosen for the recessive model.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The complete summary statistics from this study have been deposited and are available to
download at the Common Metabolic Diseases Knowledge Portal (https://cmdkp.org/)
and at http://cg.bsc.es/gera_summary_stats.

Code availability
GUIDANCE60 is available at https://gitlab.bsc.es/computational-genomics/guidance
(https://doi.org/10.5281/zenodo.4446121). A zipped folder containing the code used to
generate the results presented in the article can be found in GitLab (https://gitlab.bsc.es/
computational-genomics/guidance) and Zenodo (https://zenodo.org/record/4446121#.
YASVmWhKiUk) and can be cited with the DOI 10.5281/zenodo.4446121. It contains
example configuration files, explanations on how to execute the framework, a
containerized version of the pipeline, and the source code. More detailed instructions can
be found on its website (http://cg.bsc.es/guidance/).
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