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Reply to ‘Are atrial human pluripotent stem
cell-derived cardiomyocytes ready to identify
drugs that beat atrial fibrillation?’
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REPLYING TO Christ et al. Nature Communications https://doi.org/10.1038/s41467-021-21949-z (2021)

In our recent report1, we combined developmental biology-
inspired differentiation strategies of human pluripotent stem
cells (hPSCs) to derive chamber-specific cardiomyocytes2 and

a collagen-hydrogel-based tissue engineering strategy3 to generate
ring-shaped ventricular and atrial-specific engineered heart tis-
sues (EHTs). Detailed molecular, ultrastructural, and functional
phenotyping, together with targeted pharmacology, confirmed the
chamber-specific identity of the atrial/ventricular EHTs, and
demonstrated the potential of these models for disease modeling
and drug testing applications. The latter included the ability to
induce reentrant arrhythmias in the atrial EHTs and the ability to
terminate such arrhythmias with established anti-arrhythmic
agents (flecainide and vernakalant). In the accompanying com-
ment, Christ et al.4 raise concerns with regards to the relative
immature properties of the chamber-specific EHTs and their
different response to some of the anti-arrhythmic drugs tested
(vernakalant and lidocaine) in comparison to their reported
effects in adult human atrial and ventricular heart tissues.

The first point raised by Christ4 relates to vernakalant, a
multichannel blocker (that also blocks the atrial-selective ionic
currents IKur and IKAch), which is approved in the EU for acute
conversion of atrial fibrillation (AF)5. In Goldfracht et al.1, we
noted significant prolongation of APD90 values following verna-
kalant administration to atrial EHTs. Christ et al.4 refer to two
studies by Wettwer et al.6,7, in which atrial trabecula/myocytes
isolated from patients undergoing open-heart surgery were stu-
died. In one study, they noted that vernakalant administration did
not lead to APD90 prolongation in isolated atrial trabecula6. In
their second study7, they suggest that this lack of APD pro-
longation stems from the inability of IKur blockade to prolong
APD90 due to indirect activation of IKr.

To address the aforementioned comment, we first aimed to
reproduce vernakalant’s APD-prolonging effects in a different
hPSC line and using a different experimental model. To this end,
we evaluated the effects of vernakalant in a two-dimensional

human-induced pluripotent stem cell (hiPSC)-derived atrial
cardiomyocyte cell sheet model8,9. As shown in Fig. 1, vernaka-
lant also significantly prolonged APD values in this 2D hiPSC-
based atrial tissue model. These results were further corroborated
in the very recent publication of Gunawan et al.10.

We also noted in Wettwer et al.6 that although vernakalant did
not alter APD in atrial trabecula, this finding was limited to
patients with sinus-rhythm. In patients with chronic AF, how-
ever, vernakalant significantly prolonged APD90

6. This finding
also correlated with the second Wettwer paper, where pharma-
cological blockade of IKur with either 4-aminopyridine or
AVE0118 shortened APD in atrial cells from sinus-rhythm
patients, but prolonged APD in AF patients7.

Interestingly, as described in our study1, in contrast to the
ventricular EHTs, which displayed a normal activation pattern
(“sinus-rhythm-like”), the vast majority of atrial EHTs displayed
continuous fast and irregular arrhythmogenic activity due to
multiple reentrant circuits (“AF-like”)1. This arrhythmogenic
activity persisted for weeks but could be terminated, at least
temporarily, by electrical cardioversion to allow the drug studies.
Hence, one may consider the state of the atrial EHTs more
analogous to the atrial cells obtained from the AF, rather than the
sinus-rhythm, patients in the Wettwer study6. Consequentially,
vernakalant’s APD-prolonging effects in the atrial EHTs might be
in agreement with the human heart tissue studies6,7. These results
may also open the road to potentially use this model to study
certain aspects of atrial remodeling associated with atrial
tachyarrhythmias.

The mechanisms underlying vernakalant-induced APD pro-
longation in the atrial EHT model was not studied. One option
may be the known IKur blocking effect of vernakalant, which as
described in Wettwer et al.7 can also prolong APD in AF patients.
Christ et al.4 insightfully raised additional possible mechanisms,
including the blockade of a potential basal activity of the IKAch
current or the potential for a reduced repolarization reserve in the
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hPSC-derived atrial cells, as described for hPSC-derived ven-
tricular cells11.

In our study, vernakalant was able to terminate arrhythmias in
atrial EHTs and prevent their immediate reappearance. These
results are in line with multiple clinical studies showing verna-
kalant’s efficacy in terminating AF5. We did not further evaluate
the mechanisms underlying vernakalant’s success in terminating
arrhythmias in the atrial EHT model. The APD-prolonging effect
(through increase in refractory period) may contribute to this
therapeutic effect, but additional contributing factors, such as
vernakalant known ability to induce a frequency- and voltage-
dependent INa block may also play a significant role, since it
preferably effects atrial conduction at fast rates.

The second point raised relates to vernakalant’s effects on
ventricular repolarization. Vernakalant-induced changes in
APD90 values in the ventricular EHTs were small (~10% rise from
403 to 445 ms) relative to the large increase (~93%) in the atrial
EHTs. Nevertheless, based on the suggestion made by Christ, we
reanalyzed our data, using a pairwise statistical comparison, and
noted that this small increase was statistically significant. Whe-
ther this small change, which correlates with the ~20 ms QT
interval prolongation reported in clinical studies5, is relevant to
the safety of vernakalant is not known. It should be mentioned
that the FDA’s recent rejection to approve vernakalant use was
not related specifically to QT prolongation, but rather to other
adverse events (hypotension, reduced contractility, bradycardia,
conduction abnormalities, etc.) and the inability to predict
patients at risk12.

The third point raised by Christ4 relates to the effect of the
class Ib anti-arrhythmic agent lidocaine on the chamber-specific
EHTs. Lidocaine application slowed conduction in both the
ventricular (by ~66%) and atrial EHTs (by ~25%). However, the
study in the atrial EHTs was probably not powered enough to
identify statistical differences. It is possible that increasing the
number of experiments (beyond the current five data points that
are not normally distributed) would have resulted in the statistical
significance. Consequentially, we agree with Christ4 that the
absence of lidocaine-induced conduction slowing should not be
used as a signature of an atrial tissue phenotype. Nevertheless, it
is interesting to note that the greater conduction slowing observed
in the ventricular EHTs correlates with the clinical use of lido-
caine in treating ventricular, but not atrial, arrhythmias.

Finally, we agree with the general notion that the relative
immaturity of hPSC-derived cardiomyocytes (hPSC-CMs) in
terms of their molecular, ultrastructural, metabolic, contractile,
and electrophysiological properties remains a major challenge in
the field. In this respect, it is important to note that the relatively
immature cellular electrophysiological properties referred to in
our study (depolarized RMP, slow AP upstroke) were measured
from single-cell, early-stage, chamber-specific hPSC-CMs prior to
their use for creation of the EHTs. It is possible that both the
prolonged culture time, as well as the 3D engineered tissue
environment and mechanical conditioning can induce a certain
degree of maturation, as previously described13. Although patch-
clamp recordings were not repeated after EHT creation, indirect
evidence, such as the response to Na+ channel blockers and the
somewhat improved conduction properties, may point to such a
process. Ongoing efforts in the field are geared toward the
development of strategies to induce the maturation status of
hPSC-CMs by using combinational hormonal treatments14,15,
optimizing extracellular matrix composition16, mechanical and
electrical training13, and inclusion of non-myocytes cardiac cells,
such as fibroblasts and endothelial cells17. Such strategies can be
used in the future to also promote the maturation the chamber-
specific cardiomyocytes.

In conclusion, we thank Christ et al.4 for raising these issues
that helped us clarify some of the results of our study and raised
awareness for the need for critical interpretation of the new
model. Like any new model, the recently described chamber-
specific EHTs models1,18,19 possess advantages and shortcomings,
which need to be recognized for optimal model utilization and
accurate interpretation of the results.

Importantly, the chamber-specific EHTs represents an unpre-
cedented opportunity to perform high-throughput drug screens
to identify potential new treatment drugs for AF, which are
eminently needed. These candidate drugs can then be further
validated using adult human cardiac tissue, as suggested by Christ
et al4. We and others will continue to improve the hiPSC-based
cardiac tissue models, for example, by advancing its maturation
status13,18,19, by introducing chamber-specific anatomical fea-
tures (using organ decellularization or 3D bio-printing), and by
including supporting non-myocytes17, such as cardiac fibroblasts
and vascular cells to develop more clinically relevant multicellular
tissue models. Introducing fibroblasts, for example, may allow to

Fig. 1 Effect of vernakalant on APD in hiPSC-derived atrial cell sheets. A Example of optical action potentials acquired from the two-dimensional hiPSC-
derived atrial cell sheets at baseline (top) and following treatment with 30 µM vernakalant (bottom). Notice the atrial-like triangular-shaped optical action
potential morphologies and the longer APD after the drug treatment. B APD80 color-coded maps depicting APD80 values at each pixel of the atrial cell
sheets at baseline (top) and following vernakalant treatment (bottom). C Summary of mean APD80 values at baseline and upon administration of 30 µM
vernakalant. Note the significant (**P= 0.0074, two-sided paired t test, n= 6) APD80 prolongation (from 115 ± 12 to 168 ± 20ms) following the drug
treatment. Source data is provided as a Source data file.
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evaluate the role of cardiomyocyte–fibroblast interactions and, if
stimulated, also of fibrosis in AF. We hope that the current work
along with the discussion raised by the commentary of Christ
et al.4, will advance the field forward, raise new questions and
challenges, and facilitate further progress.

Methods
Generation and mapping of hiPSC-derived atrial tissues. A hiPSC-derived atrial
cardiomyocyte cell sheet model was prepared, as previously described8,9. Briefly,
differentiated hiPSC atrial cells were seeded as dense 20 µl droplets containing
~700,000 cells on Matrigel-coated 35 mm plastic dishes. The resulting atrial cell
sheets were cultured in 2 ml RPMI/B27 medium. At days 5–10, specimens were
loaded with the voltage-sensitive dye FlouVolt and studied using an EM-CCD-
based optical mapping system.

Statistical analysis. GraphPad Prism6 was used for statistical comparisons.
Continuous variables are expressed as mean ± SEM. Paired t test was used to
compare the effects of Vernakalant on the hiPSC-derived atrial cell sheets (Fig. 1)
and on the ventricular EHTs (reanalysis of the data in Goldfract et al.1). P < 0.05
was considered statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper.

Code availability
Data are collected and analyzed using a custom-designed software (kindly provided by
Prof. Bum-Rak Choi, Brown University).
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