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Dual Ni/photoredox-catalyzed asymmetric
cross-coupling to access chiral benzylic
boronic esters
Purui Zheng1,2, Pan Zhou1, Dong Wang1, Wenhao Xu1, Hepan Wang1 & Tao XU 1✉

The flourishing Ni/photoredox-catalyzed asymmetric couplings typically rely on redox-

neutral reactions. In this work, we report a reductive cross-coupling of aryl iodides and α-
chloroboranes under a dual catalytic regime to further enrich the metallaphotoredox chem-

istry. This approach proceeds under mild conditions (visible light, ambient temperature, no

strong base) to access the versatile benzylic boronic esters with good functional group

tolerance and excellent enantioselectivities.
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The merger of photoredox catalysis with transition metal
catalysts, named as “metallaphotoredox”, has become a
popular strategy to construct C–C bonds in the past

decade1. This dual catalytic platform has led to many new dis-
coveries, which were unfeasible or difficult to achieve with a
single catalytic system2–6. Such cooperative regime, especially
with nickel, provides a novel catalytic mode in asymmetric cross-
couplings under exceptionally mild conditions and avoids the
use of air-sensitive organometallic reagents or stoichiometric
metal reductants (Fig. 1a)7,8. Currently, dual Ni/photoredox-
catalyzed asymmetric couplings typically involve redox-neutral
methods, such as Suzuki–Miyaura reactions, but few reductive
cross-couplings have been reported9–15. We speculated that the
application of dual catalytic system in asymmetric reductive
cross-couplings could enable the use of various electrophiles and
increase the range of accessible reaction types16–18. In addition,
more ligand selections are likely to achieve high enantioselec-
tivity in the absence of stoichiometric metal reductants because
of circumventing the possible coordination between the metal
reductant and the ligand.

However, the challenges also remain. For instance, rigorous
coordinative control over several reduction cycles is needed to
avoid homo-couplings or other side products. Furthermore,
because of the high tendency to protodehalogenation of both
halide components in the presence of reducing reagents (amines,
Hantzsch ester (HEH)), the efficiency is limited. Based on these
challenges, the application of this strategy upon the enantiose-
lective reductive cross-couplings is still very less to date.

As a privileged structural class, chiral benzylic boronic esters
are important precursors in organic synthesis due to their ver-
satilities on the stereospecific conversion to many kinds of
bonds19. In addition to the ease of handling and high air- and
moisture-stability, many methods have therefore been devised to
access enantioenriched benzylic boronic esters, such as hydro-
boration of alkenes20–23 or alkynes24, and others25–28. Mean-
while, asymmetric cross-couplings are also very popular (Fig. 1b).
A palladium-catalyzed asymmetric coupling of bis(pinacolato)
diboron (B2Pin2) with aryl halides, mainly bearing electron-
donating groups, was reported by the Morken group29. A nickel-
and a copper-catalyzed enantioselective borylation of secondary
benzylic chlorides with B2Pin2, were published by the Fu30 and
Ito31 group, respectively. However, in these cases, the enantio-
meric excess (ee) values of the products were generally not ideal
(<87%). Although several racemic couplings under reductive
conditions have been developed32–36, to the best of our knowl-
edge, asymmetric reductive cross-coupling with the dual catalytic
system constitutes a potentially powerful yet unreported route to
construct chiral benzylic boronic esters. Herein, we report a Ni/
photoredox-catalyzed asymmetric coupling with broad substrate
scopes and excellent enantioselectivities (basically above 90% ee)
by using a simple, commercially available ligand (Fig. 1c).

Results
Reaction conditions development. We commenced our inves-
tigation of this asymmetric coupling with the reaction between 4-
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Fig. 1 TM-catalyzed asymmetric cross-couplings. a Catalytic modes on asymmetric cross-coupling. b The routes to access chiral benzylic boronic esters
via coupling. c Ni/photoredox-catalyzed asymmetric process. (TM: transition metal; PC: photoredox catalyst).
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iodobenzotrifluroride (1a) and α-chloroborane (2a) with dual Ni/
photoredox catalysts37. Systematic evaluation of all the reaction
parameters indicated that the transformation proceeded smoothly
under the conditions listed in entry 1, Table 1, to give the product
3a in 94% yield with 93% ee (Table 1, entry 1). Other Ni catalysts
gave lower conversions (entries 2–3). The use of other ligands

(L2, L3), especially the bis(oxazoline) ligand L4, which is parti-
cularly common in cross-couplings30, resulted in diminished
outcomes (entry 4–6). Examination of other photocatalysts or
solvents identified a rather significant decrease in yields and/or
enantioselectivities. (entries 7–10, see supporting information).
Although the exact reasons remain elusive, the mixed solvent

Table 1 Optimization of reaction conditions.

Cl

BPinI
+

BPin

F3C
F3C

NiBr2•DME (10 mol%)
L1 (12 mol%)

4CzIPN (PC) (1 mol%)

HEH (2 equiv.)
TEA (5 equiv.)

DME/DMA (v/v=5/1)
Blue LEDs (30 W)

NRMeMeRN

NHMeMeHN
L4L1

L2 (R = H)
L3 (R = Me)

1a 2a 3a

NC CN
N

NN

4CzIPN

N

NO

N N

O

N
H

COOEtEtOOC

HEH
Entrya Changes Yield (%) Ee (%)
1 No change 94 (86b) 93
2 Using Ni(cod)2 48 51
3 Using NiI2 43 90
4 L2 instead of L1 93 87
5 L3 instead of L1 19 91
6 L4 instead of L1 3 n.d.
7 [Ir(dFCF3ppy)dtbbpy]PF6 as PC 43 83
8 Ru(bpy)3Cl26H2O as PC 12 30
9 DME as solvent 45 94
10 DMA as solvent 42 82
11 No Et3N <5 n.d.
12 Li2CO3 instead of TEA 36 85
13 No HEH 45 78
14 No 4CzIPN 7 90
15 No Ni or no light 0 ---

aStandard conditions: 1a (1.6 equiv.), 2a (0.2 mmol), NiBr2·DME (10 mol%), L1 (12 mol%), 4CzIPN (1 mol%), HEH (2 equiv.), TEA (5 equiv.) DME/DMA (4mL, v/v= 5/1), Blue LEDs (30W), 18–25 oC,
8–10 h. Yields were determined by GC with ndodecane as an internal standard. The ee values were determined by HPLC.
bIsolated yield was given in the parenthesis.
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Fig. 2 The reaction with other reductants. Comparison reaction with other reductive conditions.
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Table 2 Scope of Ni/photoredox-catalyzed coupling of aryl iodides with α-chloroboranesa.

Late-stage functionalization

BPin

ArCl

BPin
+

NiBr2•DME (10 mol%)
L1 (12 mol%)

4CzIPN (PC) (1 mol%)

HEH (2 equiv.)
TEA (5 equiv.)

DME/DMA (v/v=5/1)
Blue LEDs (30 W)1 2
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BPin

F
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F3C
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BPin
F

Bu
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Bu

BPin

3c
56%, 96% ee

3b
65%, 90% ee

3d
62%, 90% ee

3a
86%, 93% ee

3m[b]

76%, 94% ee
3k[b] 

51%, 94% ee

3f[b]

78%, 90% ee

3u
63%, 98% ee

3q
64%, 93% ee

3p
57%, 95% ee

3n
67%, 93% ee

3r
55%, 89% ee

3t
51%, 94% ee

3v
86%, 94% ee

3s
51%, 89% ee

Bu

BPin

Bu

BPin
Cl

Bu

BPin

Ph

3w
59%, 90% ee

Bu

BPin
F

F
3x

70%,93% ee

Bu

BPin

NC

3e[b]

47%, 94% ee

BPin

F3C

BPin

F3C

BPin

F3C

BPin

3hh
51%, 94% ee

3aa
69%, 95% ee

3bb
71%, 90% ee

3cc
77%, 95% ee

MeO2C
BPin BPin BPin

3ll
35%, 87% ee

3ii
59%, 94% ee

3jj
69%, 95% ee

3kk
55%, 94% ee

BPin

F3CO F
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F
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84%, 94% ee
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F

Aryl Scope

Chloroborane Scope

Scale Up

NHMeMeHN
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NC CN
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N
N
H

COOEtEtOOC

HEH
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BPin

3h
71%, 91% ee

Bu

BPin

MeO

3i[b]

48%, 82% ee
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BPin

3g
80%, 92% ee

Bu

BPin

3j
49%, 89% ee

Bu

BPin
MeO

3o[b] 

40%, 91% ee

Bu

BPin

Cl

3y
76%, 92% ee

Bu

BPin

TfO

3z[b]

80%, 93% ee

Bu

BPin

F3C

3a
61%, 93% ee

Chemoselectivity

Bu

BPin

3l
69%, 94% ee

Bu

BPin

Cl

3y
67%, 92% ee

BPin

F3C

3ee[b]

74%, 93% ee

O BPin

3gg
83%, 94% ee

Cl
MeO2C

Bu

BPin
ON

N O

O

N

N

3nn[c]

46%, 94% ee

Bu

BPin
O

N

O

O

3oo[b,c]

43%, 90% ee

Bu

BPinO

O

O

O

H

HH

3pp[b,c]

62%, (dr =18:1)
(1 mmol) (1 mmol)

Chloroborane Scope

3

NC

CF3

aReaction conditions: 1 (1.6 equiv.), 2 (0.2 mmol), NiBr2·DME (10 mol%), L1 (12 mol%), 4CzIPN (1 mol%), HEH (2 equiv.), TEA (5 equiv.), DME/DMA (4mL, v/v= 5/1), Blue LEDs (30W), 18–25 oC,
8–10 h. Isolated yields were given. The ee values were determined of the corresponding alcohol after oxidation by HPLC.
bIsolated yield and ee of the corresponding alcohol after oxidation were given.
c2a (2.0 equiv.).
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system possibly increased the dielectric constant of the reaction
medium30,38, thus improving the catalytic efficiency and sup-
pressing the protodehalogenation product. A trace amount of
product was detected in the absence of Et3N and a low yield was
obtained with Li2CO3 (entries 11–12). Considering Et3N can act
as a reductant in photoredox-catalyzed reactions, it is reasonable
that the reaction still worked without HEH, albeit with lower
efficiency (entry 13). The reaction can proceed for one or fewer
catalytic cycles without the photocatalyst, which may suggest a
mechanistic scenario more complex than previous proposition
(entry 14). Control reactions performed in the absence of Ni
catalyst or light resulted in no detectable product formation,
confirming the essential role of each of these components in the
dual catalytic process (entry 15).

In addition, perhaps most notable, the comparison reactions
with other common reductive systems were tested to identify the
difference and powerful efficiency of this Ni/photoredox-
catalyzed coupling (Fig. 2). The results showed that whether the
metal reductants Zn/Mn or the organic reagents B2Pin2 and
tetrakis(dimethylamino)ethylene (TDAE) gave only traces of the
product or no product, thus further strengthening the high
superiority of the dual catalytic method on this C–Cl bond
transformation.

Substrate scope. Having developed the enantioselective catalytic
reaction of this cross-coupling, we sought to investigate the
generality and utility of this dual Ni/photoredox-catalyzed
method (Some products were found to be prone to decompose in
column, thus isolated yields after oxidation were given. See
Table 2). We firstly tested various aryl iodides with either
electron-withdrawing or electron-donating groups (the reaction
with p-CF3-C6H4Br gave the product 3a in 21% yield with 91% ee
under the standard conditions). The excellent enantioselectivities
and satisfactory yields were generally given whether the sub-
stituents on the para-, meta-, or ortho- positions, in an effort to
showcase the mild nature of this transformation. The electron-
poor substrates obviously facilitated the couplings, as

demonstrated with compounds 3a–3f. The reactions with strong
electron-rich aryl iodides (3i) led to a decreased but still accep-
table results, thus serving to highlight the complementary and
discrepant nature of this method compared to the established
method with palladium where the two-electron transmetalation
regime was involved29. The chemoselectivity with different elec-
trophiles was studied under the current conditions. The exclusive
selection on aryl iodide was observed in the presence of aryl
chloride or triflate group (3x, 3y, 3z) while a mixture was
obtained with 1-bromo-4-iodobenzene as a substrate, possibly
due to the existing reactivity of aryl bromides. It is worth men-
tioning that, this method can afford high enantioselectivities not
only for the bulky or ortho-substituted aryl substrates as previous
reports29–31, but also for the less sterically hindered components
(such as 3g, 3h), thus expanding its application in organic
synthesis.

The scope of α-chloroborane was then explored in the dual
catalytic system. Overall, a wide range of the chloroboronic
esters could be smoothly transferred to the corresponding
products with very high ee values. For the complex molecules
(3nn-3pp), this Ni/photoredox-catalyzed coupling was also
suitable, thus demonstrating the potential of this methodology
in the late-stage functionalization. The reaction also exhibited
comparable efficiency on a larger scale, as the products (3a, 3y)
were isolated in good yields and undiminished ee on a 1 mmol
scale. In addition, Table 2 also highlighted the robustness on
functional group compatibility of this approach. The trifluor-
omethyl (3a, 3v), trifluoromethoxy (3b, 3p), ester (3c, 3hh, 3ii),
amide (3f), nitrile (3e, 3n, 3dd), aryl halides (3d, 3w, 3x),
triflate (3z), phenol (3m), ether (3i, 3ee), alkyl chloride (3ff,
3gg), alkenyl (3mm) groups were all compatible under the
optimized conditions.

Competing and comparison reactions. To clarify the features on
this dual catalytic system, competing reactions were conducted.
Although both electron-rich and electron-poor aryl iodides can
participate in this transformation, the substrate with an electron-

 Comparison reactions
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3a/3i (20:1)
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b

Fig. 3 Competing and comparison reactions. a The reaction with aryl halides with different properties. b Test on the α-bromo- or α-iodoborane.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21947-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1646 | https://doi.org/10.1038/s41467-021-21947-1 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


withdrawing group favored when both are present, as evidenced
by isolation of product 3a in Fig. 3a. Steric effect was also
investigated. When 1d and 1u were used simultaneously, the less
sterically hindered component gave the main product 3d.

α-Bromo- and α-iodoboranes, which are often used in Ni-
catalyzed cross-couplings34,39, were also tested (Fig. 3b). Surpris-
ingly, when α-bromoborane was employed, the target product
was isolated in only 30% yield with a similar enantioselectivity. A
trace amount of product was observed in GC when the more

active α-iodoborane was used. The protodehalogenation product
was the main product in these two reactions. These results show
the importance of concerted rates of reductive processes in this
dual catalytic system and the difference from the single catalytic
regime.

Further applications. One advantage of this method is that the
resulting molecules contain a versatile boron group, which is con-
venient for further functionalization to construct many other chiral

a

b

Cl
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Ar

I +
'standard condition'
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+
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BPin

F3C

Fig. 5 Mechanistic studies. a Cyclization reactions. b Reactions with radical probe.
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Fig. 4 Further application of the products. Derivatization of the chiral benzylic boronic esters.
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bonds. We demonstrated this in a series of examples in Fig. 4. For
example, the boranes can be oxidized to chiral alcohol (4a) or
transformed to the potassium trifluoroborate salt (4b) in good
yields. The chiral 1,1-diarylalkanes, which are widely useful but not
easily accessible, can be conveniently obtained from these products
with a Pd-catalyzed coupling reaction (4c). Meanwhile, some other
Csp3–Csp2 bonds were readily formed to introduce alkenyl or het-
erocycles according to the reported methods (4d, 4e)40,41.

Mechanistic studies. To give some insights into the mechanism
of the coupling, some experiments were performed (Fig. 5). The
substrate 2d with an alkene chain was investigated. The cycliza-
tion product 5a was isolated in 52% yield and direct cross-
coupling 3qq was only detected in 5% GC yield, indicating the
production of the radical intermediate. The same conclusion is
also deduced from the reaction with radical clock substrate 2e
(Fig. 5a). Although it was reported that an alkyl halide can be
reduced to a radical species via a single-electron reduction by
photocatalysts42, herein, the luminescence quenching experi-
ments indicated that HEH and Et3N are more likely to quench
the excited state of 4CzIPN (Fig. 6). The reactions with a radical
probe also proved this point (Fig. 5b). In the absence of Ni/L1, the
α-chloroborane can not react with 1,1-diphenylethylene 6 to give
any radical-trapped product 7. However, in the stoichiometric
studies with Ni(cod)2/L1, product 7 can be obtained in 30% yield
with no enantioselectivity. Hence, the free alkyl radical should be
generated from α-chloroborane by the reduction of Ni species
rather than 4CzIPN43–46.

Based on these experiments, a proposed mechanism is shown
in Fig. 7. Light excitation of photocatalyst 4CzIPN generates the
photoexcited [4CzIPN]*, which is reduced by HEH or Et3N to
the reduced ground-state photocatalyst [4CzIPN]·-. Then, com-
bination with the nickel cycle, it is responsible to produce a
boron-stabilized radical I. Meanwhile, the oxidative addition of
aryl iodide to the ligated Ni(0) II forms a Ni(II) species III. Then
oxidation by radical I accesses the high-valent Ni(III) inter-
mediate IV, and subsequent reductive elimination affords the
product and releases Ni(I) species V. Reduction of V would
regenerate the Ni(0) and 4CzIPN catalyst, closing the dual
catalytic cycle. However, at this moment, we can not exculde
another catalytic cycle in which the alkyl radical is trapped by Ni
(0), then the alkyl Ni(I) species is oxidated by aryl hailde47,48.

Discussion
In summary, herein a dual Ni/photoredox-catalyzed asymmetric
reductive cross-coupling of aryl iodides with α-chloroboranes was
developed. The mild conditions enable the process to give
excellent enantioselectivities and accommodate a broad palette of
architectures with many functional groups. Mechanistic studies
suggest the alkyl radical is probably generated via reduction by

nickel. The resulting chiral benzylic boronic esters, which have
important versatilities in organic synthesis demonstrated the high
potential of this transformation.

Methods
General procedure for the dual catalytic coupling. In a N2-filled glovebox, an
oven-dried 10-mL Schlenk tube containing a Teflon stir bar was charged with
4CzIPN (0.002 mmol), NiBr2·DME (0.02 mmol), L1 (0.024 mmol), HEH (0.4
mmol), TEA (1.0 mmol). Then the tube was sealed with a septum and taken out.
DME/DMA (v/v= 5/1, 4 mL) were added via syringe under N2 atmosphere. After
stirring for 30 min at room temperature, aryl halide (0.32 mmol) and α-
chloroborane (0.2 mmol) were added. The reaction mixture was stirred and irra-
diated under blue light (λ= 450–455 nm) for 8–10 h, while the temperature was
controlled at 18–25 °C. Upon completed, the mixture was diluted with EtOAc and
quenched with water. The aqueous solution was extracted with EtOAc three times.
The combined organic layers were dried, concentrated and purified by flash col-
umn chromatography using PE/EtOAc as the eluent to afford the coupling pro-
duct. The ee value was determined by high-performance liquid chromatography
analysis using the corresponding alcohol after oxidation of the product.
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Nickel
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I
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Et3N
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Et3N
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Fig. 7 Proposed mechanism. A proposed catalytic cycle for the dual
catalytic coupling.

Fig. 6 Stern–Volmer quenching experiments. a With substrate 2a. b With HEH. c With Et3N.
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