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A scalable unified framework of total and
allele-specific counts for cis-QTL, fine-mapping,
and prediction
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Genetic studies of the transcriptome help bridge the gap between genetic variation and

phenotypes. To maximize the potential of such studies, efficient methods to identify

expression quantitative trait loci (eQTLs) and perform fine-mapping and genetic prediction of

gene expression traits are needed. Current methods that leverage both total read counts and

allele-specific expression to identify eQTLs are generally computationally intractable for large

transcriptomic studies. Here, we describe a unified framework that addresses these needs

and is scalable to thousands of samples. Using simulations and data from GTEx, we

demonstrate its calibration and performance. For example, mixQTL shows a power gain

equivalent to a 29% increase in sample size for genes with sufficient allele-specific read

coverage. To showcase the potential of mixQTL, we apply it to 49 GTEx tissues and find 20%

additional eQTLs (FDR < 0.05, per tissue) that are significantly more enriched among trait

associated variants and candidate cis-regulatory elements comparing to the standard

approach.
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Genome-wide association studies (GWAS) have identified
tens of thousands of genomic loci associated with complex
traits, but most of these loci lie in noncoding regions of

the genome, indicating transcriptome regulation as a potential
key driver of disease biology. Multiple methods have been
developed to integrate GWAS results with expression quantitative
trait loci (eQTLs) and inform mechanisms underlying GWAS
loci. Two strategies are commonly employed: (1) association-
based approaches including PrediXcan1, fusion2, and smr3; and
(2) colocalization-based approaches including coloc4, eCAVIAR5,
and enloc6. Association-based approaches correlate genetic pre-
dictors of gene expression with complex traits of interest.
Colocalization-based approaches rely on high-quality eQTL
mapping and fine-mapping results to identify potentially causal
genes.

In addition to gene expression levels measured by total read
counts, allele-specific expression (the relative expression differ-
ence between the two haplotypes) provides valuable additional
information that can be leveraged to improve eQTL mapping and
fine-mapping. Several methods have been proposed to combine
total and allele-specific read counts for QTL mapping, such as
TReCASE7, WASP8, and RASQUAL9). However, running these
methods on sample sizes beyond a few hundred is generally
computationally intractable, and as a result they have not been
applied to large-scale studies like GTEx, which includes over
15,000 samples across 49 tissues. For fine-mapping, two
approaches that combine both allele-specific expression and
eQTL mapping via meta-analysis have been recently
proposed10,11. However, to our knowledge, no existing method
provides a scalable unified framework combining total and allele-
specific counts with explicit multi-SNP modeling for QTL map-
ping, fine-mapping, and prediction.

By assuming a log-linear model for transcript expression levels
with independent reads from each haplotype and weak genetic
effects, as proposed in ref. 12, we derive two approximately inde-
pendent equations for allelic imbalance (read count ratio between
the two haplotypes) and total read count. In this work, we develop a
unified framework and computationally efficient algorithms com-
bining total and allele-specific reads for QTL mapping, fine-map-
ping, and prediction. We demonstrate the resulting gain in
performance with simulations under a range of different settings,
applications to GTEx v8 data13, and comparisons to a large-scale
eQTL meta-analysis from eQTLGen14. We also generated mixQTL
results for the full set of GTEx data and make this resource publicly
available. The software, simulation, data preprocessing, and analysis
pipelines can be found at https://github.com/hakyimlab/mixqtl15,
https://github.com/liangyy/mixqtl-pipeline16, and https://github.
com/liangyy/mixqtl-gtex17. A computationally efficient GPU-
based implementation of mixQTL has been embedded in ten-
sorQTL https://github.com/broadinstitute/tensorqtl18.

Results
Overview of the statistical model. To develop a computationally
efficient approach that integrates total and allele-specific count
data, we assumed multiplicative cis-regulatory effects and noise,
similarly to the model proposed in ref. 12. For a given gene, we
modeled the haplotypic read count Yh

i , which is the number of
reads from haplotype h of individual i as

Yh
i ¼ Li � θ0;i � expðβ � Xh

i Þ � expðϵhi Þ; ð1Þ

where Li is the library size for individual i, θ0,i is the baseline
abundance (for a haplotype with the reference allele), expðβÞ is
the cis-regulatory effect (allelic fold change due to the presence of
the alternative allele), Xh

i indicates the dosage of the variant (0 if

the individual has the reference allele, and 1 if they have the
alternative one), and expðϵhi Þ is the multiplicative noise.

Calculating the total read count as the sum of the two
haplotypic counts and assuming weak cis-regulatory effects, we
derived an approximately linear model for the logarithm of the
haplotypic and total read counts (see details in Methods and
Supplementary Notes 1). In practice, we only observe the allele-
specific reads that include a heterozygous site denoted as

Y ðhÞ obs
i ¼ αi � Yh

i , which is a fraction of the total haplotypic
count. To take this partial readout into account, we modeled the
observed total and allele-specific counts as

logYð1Þ obs
i ¼ log Li þ log αi þ log θ0;i þ X1

i βþ ϵð1Þi

logYð2Þ obs
i ¼ log Li þ log αi þ log θ0;i þ X2

i βþ ϵð2Þi

log
Y total
i

2
� log Li þ log θ0;i þ

X1
i þ X2

i

2
βþ ϵ trci

ð2Þ

where the error terms are ϵ trci � Nð0; σ2

Y total
i

Þ, ϵðhÞi � Nð0; σ2

YðhÞ obs
i

Þ
and the errors of the two haplotypes are independent: ϵ(1)⊥⊥ϵ(2).
Here, we let the ϵ terms have variance inversely proportional to
the actual count and by doing so, we ensure that the variance of
the count scales approximately linearly to the mean of the count
as demonstrated in Supplementary Notes 1.2.

We further simplified the models by combining the two allele-
specific counts and defining the baseline abundance variation as a
random effect zi (log θ0;i = population mean+ zi). Then, we
merge the total count term ϵ trci and zi into one term ezi (since ϵ asci
is approximately independent from both of them. See Methods
and Supplementary Notes 4.1). The final model is

log
Yð1Þ obs
i

Yð2Þ obs
i

¼ ðX1
i � X2

i Þβ þ ϵ asci ðallelic imbalance eq:Þ ð3Þ

log
Y total
i

2Li
� μ0 þ

X1
i þ X2

i

2
β þ ezi ðtotal read count eq:Þ ð4Þ

where ezi � Nð0;eσ20Þ and ϵ asci � Nð0; σ2 � ð 1
Yð1Þ obs
i

þ 1
Yð2Þ obs
i

ÞÞ and ezi
is approximately independent from ϵasc.

This single-SNP model extends to multiple SNPs in a
straightforward manner by using a vector of allelic dosages
(Xi1,⋯ , Xip) and genetic effects (β1,⋯ , βp) instead of the scalar
values above. Here, p represents the number of genetic variants in
the cis-window of the gene under consideration (Supplementary
Notes 3 and 5).

For cis-QTL mapping, we took advantage of the approximate
independence of the allelic imbalance and the total read counts in
Eqs. (3) and (4), solving them as separate linear regressions (for
computational efficiency) and combining the results via inverse-
variance weighted meta-analysis. We call this method mixQTL.

For the fine-mapping and prediction problems, we also
leveraged the approximate independence of the allelic imbalance
and total read count equations. We used a two-step approach in
which we first scale the two equations so that they become
independent data points with equal variances. In the second step,
we combined these data points into an augmented dataset and
applied the existing algorithms SuSiE19 and elastic net20. We term
these methods mixFine and mixPred, for fine-mapping and
prediction, respectively.

Simulation of total and allele-specific reads. To assess the
benefits of this unified framework over using only total read
counts or allele-specific expression, we simulated haplotypic reads
according to the framework illustrated in Fig. 1, with additional
details in Methods and Supplementary Notes 6. For mixQTL, we
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simulated data with a single causal variant and for mixPred and
mixFine, we simulated data with 1–3 causal variants.

For all simulation settings, we set an average library size of 94
million reads (to approximately match GTEx v8 library sizes) and
used a series of expression levels (expected value of θ0,i in Eq. (1)):
from 50 to 1 read per million, corresponding to θ= 5 × 10−5–10−6.
The fraction of allele-specific reads was kept at consistent levels
across simulations by using the same distribution of polymorphic
sites per individual.

Combining total and allele-specific read counts improves cis-
eQTL mapping. To assess the gain in power of combining total
and allele-specific read counts, we simulated 200 replicates with
allelic fold change varying among 1, 1.01, 1.05, 1.1, 1.25, 1.5, 2, 3.
We compared mixQTL with two methods: using either only
allele-specific counts (ascQTL) or total counts (trcQTL). See
details in Supplementary Notes 4.1.

All three methods had calibrated type I errors (Fig. 2a and
Supplementary Fig. 1). mixQTL outperformed both trcQTL and
ascQTL in all simulation settings, demonstrating the benefits of
combining total and allele-specific counts for cis-eQTL mapping
(Fig. 2b and Supplementary Fig. 2).

The power of ascQTL was sensitive to the number of allele-
specific reads, as expected. As shown in Fig. 2b, with θ controlling
the expression level, ascQTL yielded much higher power for
higher expression levels. In contrast, trcQTL was less sensitive to
the number of reads observed under the range of read counts in
our simulation settings. Such sensitivity differences between
ascQTL and trcQTL are consistent with the nature of count data,
where the magnitude of the noise is inversely related to the count.

Combining total and allele-specific read count improves fine-
mapping. To realistically simulate LD structure, we used the
genotypes of European individuals from the 1000 Genomes
projects phase 321 within ±1 MB cis-windows of 100 randomly
selected genes. We applied mixFine and trcFine (which uses
total read counts only; Supplementary Notes 5.3) to the
simulated data and characterized the fine-mapping results with
two metrics: (1) power curve, defined as the proportion of
detected variants among causal ones versus the number of
detected variants, where detection was defined as the variant
having posterior inclusion probability (PIP) > threshold (which
is varied to get the desired number of detected SNPs); (2) the
size of the 95% credible set (CS), which contains the causal
variant. The PIPs of both trcFine and mixFine were consistent
with the proportion of true causal variants within each PIP bin
(Fig. 3a). By combining total and allele-specific reads, mixFine
achieved higher power than trcFine (Fig. 3b and Supplemen-
tary Fig. 4) across almost all simulation settings. mixFine
achieved the highest improvement relative to trcFine at a high
expression level (θ), corresponding to high-quality allele-spe-
cific signals. The gain in power decreased with larger sample
sizes. The increased power was also reflected in the number
and size of 95% CSs containing the true signals. As shown in
Fig. 3c and Supplementary Fig. 5, mixFine identified more true
positive 95% CSs, and these 95% CSs were generally smaller
than the ones of trcFine (paired t-test p= 5.88 × 10−29)
demonstrating that mixFine can pinpoint causal SNPs more
accurately.

Overall, the combined method was more powerful for
identifying causal variants, which is consistent with recent
reports10,11.

Fig. 1 Simulation scheme for total and allele-specific read counts. Step 1 simulates a gene body configuration by first simulating the number of
polymorphic sites of the gene followed by positioning these polymorphic sites uniformly across the gene body. For each individual, the heterozygosity of
these polymorphic sites is drawn from a Bernoulli distribution. Step 2 simulates the haplotypic reads by first simulating Negative Binomial library size Li,
Beta baseline abundance θ0,i, and the genetic effect β. These parameters determine the abundance θhi for each haplotypic transcript, in which the allelic
fold change, aFC, equals eβ in our parameterization. Then, the haplotypic read count Yh

i is generated using a Negative Binomial distribution given the
expected count Li ´ θ

h
i , where the reads are distributed uniformly across the gene body. In Step 3, the gene-level allele-specific counts YðhÞ obs

i are
determined by counting the reads that overlap heterozygous sites. Y total

i is calculated as the sum of the two haplotypic counts Y1
i and Y2

i .
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Fig. 2 QTL mapping performance for mixQTL and approaches based on either total reads (trcQTL) or allele-specific reads (ascQTL) on simulated data.
Each panel presents the results for two relative abundances of the gene, θ, and three sample sizes. a Type I error (y-axis) at a 5% significance level across
methods (x-axis) are shown. The dashed line represents the desired error rate under the null hypothesis. The error bar indicates the 95% confidence
interval of the estimated error rate from 200 replicates. b Power (y-axis) at a 5% significance level across methods under a range of true aFC values
(x-axis) are shown. Power is defined as the fraction of eQTLs passing the significance threshold.

Fig. 3 Fine-mapping performance of the combined (mixFine) and total read-based (trcFine) approaches on simulated data. a The observed fraction
of true signals within SNPs binned by PIP are shown (aggregated across all simulation settings) for both mixFine (orange) and trcFine (blue). The plot is
based on 10,211,200 simulations across the grid of simulation parameters. From left to right, the bin sizes for mixFine are 10,206,540, 2554, 742, 335, 234,
128, 57, 56, 67, 487 and the bin sizes for trcFine are 10,208,066, 1790, 495, 241, 152, 69, 52, 38, 48, 249. The error bars indicate the 95% confidence
interval of the estimated fraction. b The power at a PIP cutoff (on y-axis) is plotted against the number of variants passing the PIP cutoff (on x-axis) for
mixFine and trcFine. In each panel, the curve is based on 200 simulation replicates with 100 simulations having signals and 100 simulations being drawn
from the null. The solid curves indicate the mean power (recall rate) among the 100 simulation replicates with signals and the error bars indicate the 95%
confidence interval. c For the true signals captured in both mixFine and trcFine, the sizes of the 95% credible sets in the two methods are plotted (trcFine
on x-axis and mixFine on y-axis). The table shows the average difference of the size (trcFine vs. mixFine) along with the p-value under paired t-test (two-
sided). The color of a hexagonal bin indicates the count of data points in the bin. The blue bins have more than 50 counts.
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Combining total and allele-specific read count improves pre-
diction. Using the data from the fine-mapping simulation, we
tested the performance of mixPred and trcPred (Supplementary
Notes 5.3) on held-out test data. Specifically, we split each
simulation replicate into training (4/5) and test (1/5) sets. We
trained prediction models using training data and evaluated the
prediction performance on test data using Pearson correlation
between predicted and true responses. For each dataset, we
repeated the splitting-training-evaluation procedure twice to
reduce the stochasticity introduced by splitting.

Overall, mixPred achieved higher prediction accuracy than
trcPred (Fig. 4 and Supplementary Figs. 6 and 7). The gain in
performance was more apparent when the expression level θ was
higher and as a consequence the allele-specific count was larger.

mixQTL outperforms standard eQTL mapping in GTEx data.
Next, we compared mixQTL to the standard eQTL mapping
approach (denoted here simply as eQTL) used by the GTEx
consortium13, using 670 whole-blood RNA-seq samples from the
v8 release (see Methods). We included variants within a ±1 Mb
cis-window around the transcription start site of each gene.
Although mixQTL can be applied to all genes regardless of
the number of allele-specific counts, we focus on examining the
benefit of integrating allele-specific information and therefore
limit these comparisons to genes with sufficient allele-specific
counts, based on the following criteria: (1) at least 15 samples
having at least 50 allele-specific counts for each haplotype; and (2)
at least 500 samples having a total read count of at least 100. Five
thousand seven hundred and thirty four (28%) genes passed these
filters. We then stratified these genes by their median expression
level (read counts) into low, medium, and high expression tertiles.
For genes with below-threshold allele-specific counts, the calcu-
lation can be performed using total read counts only, such that all
genes considered using the standard approach are also tested in

mixQTL. Performance for these genes was similar to the standard
eQTL approach (Supplementary Fig. 8).

All three approaches mixQTL, aseQTL, and trcQTL were
relatively well-calibrated when permuting data in four randomly
selected genes (Supplementary Fig. 9). The estimated effect sizes
were consistent with allelic fold change estimates from the main
GTEx v8 analysis (Supplementary Fig. 10).

To further compare the performance of the methods, we used
eQTLGen14, a large-scale meta-analysis of over 30,000 blood
samples, as our “ground truth” eQTL discovery reference
(Supplementary Notes 8). We selected a random subset of
100,000 variant/gene pairs tested by eQTLGen with FDR < 0.05 as
the set of “ground truth” eQTLs. We also selected a random set of
100,000 variant/gene pairs with p > 0.50 as a background set of
“non-significant” eQTLs. Among these pairs, 96,660 and 78,691
of the “ground truth” and “non-significant” pairs had matching
data in GTEx.

For the “ground truth” eQTLs, mixQTL yielded more
significant p-values compared to the standard eQTL, ascQTL,
and trcQTL approaches (Fig. 5). The “non-significant” variant/
gene pairs showed moderate enrichment for small p-values for all
methods (Fig. 5b), likely reflecting a combination of false
negatives in eQTLGen and potential false positives in our
analysis. Overall, we found that mixQTL achieves increased
power compared to standard eQTL mapping on real data for the
set of genes with sufficient total and allele-specific read counts.

As an intuitive measure of improved performance, we
estimated the effective sample size gain of mixQTL compared
to standard eQTL mapping as the median of the ratio between
mixQTL χ2 statistics and eQTL χ2 statistics. mixQTL showed a
29% increase in effective sample size compared to the standard
eQTL mapping approach (Fig. 5c).

To account for the trade-off between true- and false-positive
rates, as well as between precision and power, we used receiver

Fig. 4 Prediction performance of the combined (mixPred) and total read-based (trcPred) methods on simulated data. a The overall distribution of
Pearson correlations between predicted and observed total count abundance in log scale, i.e., log ðY total

i =LiÞ, for mixPred (orange) and trcPred (blue) across
all data splits are shown. For each panel, the plot is based on 200 simulation replicates. In the boxplots, the lower and upper hinges show the first and third
quartiles and the middle line shows the median. The whiskers extend from the hinge to the maximum and minimum at most 1.5× the interquartile range. All
data points beyond the end of the whiskers are plotted individually. b For each split, the prediction performance of mixPred (y-axis) is plotted against the
prediction performance of trcPred (x-axis).
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operating characteristic (ROC) and precision-recall (PR) curves
to compare the performance of mixQTL and standard eQTL
approaches using the eQTLGen “ground truth” and “non-
significant” eQTLs. We found that mixQTL achieves higher
performance in both ROC (Fig. 5d) and PR curves (Fig. 5e).
Consistent with simulation results, this gain is more significant
for genes with higher expression levels.

To determine whether the eQTLGen-based analysis above
depended on the selected random subset of cis-eQTLs, we
repeated the analysis for multiple samplings of eQTLGen results
and found no substantive differences in the results.

mixQTL is scalable to full GTEx eQTL analysis. To compare the
performance and computational cost of mixQTL and the existing

QTL mapping approaches which can leverage both total and
allele-specific counts, we ran RASQUAL on two of the GTEx
tissues, kidney cortex (sample size= 73; a subset of 4596 genes)
and whole blood (a subset of 192 genes; Supplementary Notes 9).
We observed concordant effect size estimates (Supplementary
Fig. 11A). As expected, because RASQUAL models counts
directly instead of approximating them with a log-linear model, it
yielded more significant results than mixQTL (Supplementary
Fig. 11B). On average, RASQUAL took 47 seconds per gene in
kidney cortex and 826 seconds per gene in whole blood whereas
mixQTL took 0.065 seconds (723 times faster) and 0.33 seconds
(2480 times faster), respectively.

Given this computational efficiency, we decided to run
mixQTL on the 49 tissues from the GTEx v8 release. This

Fig. 5 Performance of mixQTL on GTEx v8 whole-blood RNA-seq. a QQ-plot of nominal p-values for a random subset (size= 96,660) of cis-eQTLs (FDR
< 0.05) reported in eQTLGen. b QQ-plot of nominal p-values for a random subset (size= 78,691) of variant/gene pairs with p-value > 0.5 in eQTLGen. c χ2

statistics from eQTL analysis (x-axis) and mixQTL analysis (y-axis) among a random subset (size= 96,660) of cis-eQTLs (FDR < 0.05) reported in
eQTLGen. Two randomly selected genes (ENSG00000115607 and ENSG00000213462) are highlighted in red and green, respectively. d, e ROC and PR
curves for mixQTL and the standard eQTL method measured in eQTLGen. Each panel shows the results of genes stratified by expression level tertiles.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21592-8

6 NATURE COMMUNICATIONS |         (2021) 12:1424 | https://doi.org/10.1038/s41467-021-21592-8 | www.nature.com/naturecommunications

https://useast.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000115607
https://useast.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000213462
www.nature.com/naturecommunications


corresponded to 15,201 samples in total, and took ~54 CPU
hours in total (without permutations).

mixQTL’s runtime scaled linearly as a function of sample size
(Supplementary Fig. 12A), with the tissue with the largest sample
size (skeletal muscle, n= 706) taking 0.34 seconds per gene on
average.

At FDR cutoff 0.05, on average, mixQTL identified 1440 more
genes and about 618,000 more eQTLs than the standard eQTL
approach (Supplementary Fig. 12B and C). The full summary
statistics of mixQTL are publicly available (Supplementary Data 1).

Fine-mapping and prediction model building in GTEx data.
We applied mixFine to the GTEx v8 whole-blood RNA-seq data,
using the same subset of genes with high expression and allelic
counts that were used in the comparison of mixQTL vs. standard
eQTL approach above. We compared mixFine to the SuSiE fine-
mapping approach19, applied to inverse normal transformed
expression values in the standard eQTL mapping pipeline13. We
corrected for sex, five genetic principal components, WGS plat-
form, WGS library prep protocol (PCR), and 60 PEER factors.
We refer to the latter as the “standard approach” below for
simplicity.

To compare the power of causal variant detection, we
performed a subsampling analysis on a random subset of 1000
genes. First, we defined “consensus SNPs” as the variants with
PIP > 0.5 in both mixFine and the “standard approach” using all
samples. Similarly, a variant was defined as “top SNP” if it was the
most significant variant within the 95% CS for both mixFine and
the “standard approach”. Then, we compared how well the
“consensus SNPs” and “top SNPs” were detected by mixFine and
the standard fine-mapping approach using only a subset of
samples. We subsampled to 90%, 80%,⋯ , 30% of samples, and
repeated each random subsampling step 10 times.

Among the 1000 genes, there were 272 “consensus SNPs” being
identified in the full data. At each subsampling level, mixFine, on
average, detected more “consensus SNPs” than the standard
approach (Fig. 6a) and performance improved most on the more
highly expressed genes (top tertile) (Supplementary Fig. 13).
Moreover, mixFine detected “top SNPs” in 95% CSs with an
average size of 9.5 variants, whereas the corresponding 95% CS
from the standard approach had 14.6 variants on average
(Supplementary Fig. 14). Furthermore, since the power gain
would be more apparent in small sample sizes, we ran mixFine
and standard eQTL approach in 26 GTEx v8 tissues with sample
size <260. We examined the enrichment of the top QTL and PIP
in different functional annotations, including regulatory element
annotations, candidate cis-regulatory elements (cCREs)22, and
the GWAS catalog (Supplementary Notes 10). We found that the
variants with the most significant mixQTL p-value or the highest
mixFine PIP were more enriched in GWAS catalog variants and
cCREs than the standard approach. We found enrichment of
enhancer, promoter, and transcription factor binding sites but the
difference in enrichment between mixQTL and standard QTL
methods was not significant (Supplementary Fig. 16). The
reduced enrichment compared to cCREs are likely due to the
fact that we used tissue-specific annotations for cCREs and cross-
tissue annotations for enhancers, promoters, and TFs. These
results indicate that, when sufficient counts are available,
mixFine, the multi-SNP model combining total and allele-
specific counts, can better pinpoint causal cis-eQTLs than the
standard approach on real data.

To compare the performance of mixPred and the standard
method on real data, we implemented a cross-validated evalua-
tion pipeline where we split the GTEx v8 whole-blood data into k
folds. At each fold, we trained the prediction model using one

fold of the data and evaluated the performance (by Pearson
correlation between predicted and observed log ðY total

i =LiÞ) on
the remaining (k− 1) folds. We applied this evaluation pipeline
to mixPred and the standard approach (elastic net as in ref. 1) on
the same 1000 genes as the subsampling analysis with k= 10, 9,
…, 2 (corresponding to sample size= 67, 75,⋯ , 335). At the
same sample size, we observed, on average, significantly higher
performance in mixPred as compared to the standard approach,
and the performance gain was greater for smaller sample sizes
(Fig. 6b and Supplementary Table 1).

Discussion
We proposed a unified framework that integrates both allele-
specific and total read counts to estimate genetic cis-regulatory
effects, resulting in improved eQTL mapping, fine-mapping, and
prediction of gene expression traits. Our suite of tools (mixQTL,
mixFine, and mixPred) can be scaled to much larger sample sizes
(thousands) due to the underlying log-linear approximation. By
assuming weak multiplicative genetic effects consistent with
observations (most estimated log allelic fold changes of cis-eQTLs
have a median absolute value of 0.153 and a 95th percentile of
0.845 (Supplementary Fig. 15)), we transform the observed read
counts into two approximately independent quantities: allelic
imbalance and total read count. Leveraging this independence, we
developed computationally efficient approaches that integrate
both allele-specific and total reads.

Specifically, mixQTL estimates the genetic effect separately for
allelic imbalance and total read counts, and combines the
resulting statistics via meta-analysis. These calculations have
computationally efficient closed-form solutions, enabling their
use in permutation schemes applied to compute FDR in eQTL
mapping23–25.

Furthermore, the simple multi-SNP extension and the
approximate independence of the terms enable use of a two-step
inference procedure. In the first step, the allelic imbalance and
total read count are scaled such that the error terms have the
same variance. And in the second step, given their approximate
independence, the pair of equations (from allelic imbalance and
total counts) can simply be input into existing fine-mapping and
prediction algorithms.

We showed through simulations and applications to GTEx v8
data that our suite of methods outperforms methods that rely on
total read counts alone. Compared to existing QTL mapping
methods that integrate total and allele-specific reads, such as
RASQUAL9, mixQTL has slightly lower power (Supplementary
Fig. 11B). This is expected since RASQUAL models count data
directly and mixQTL relies on approximations. However, the
computational burden of RASQUAL is prohibitive for large
datasets. In practice, the most suitable approach will depend on
computational capacity and sample sizes. For datasets with small
sample sizes (e.g., fewer than 100 samples), RASQUAL or WASP
remain preferable. The computational efficiency of mixQTL
makes it applicable to large sample sizes, and, moreover, enables
using the mixQTL model in place of the standard eQTL mapping
approach that relies on inverse normal transformed counts.

Given the unified modeling framework and computationally
scalable tools proposed here, we anticipate that combining total
and allele-specific read counts will find widespread use for cis-
QTL mapping, fine-mapping, and prediction of gene expression.

Methods
Notation and terminology. It is described in Table 1.

Statistical model of cis-regulation. For individual i, let X1
i and X2

i be the number
of alternative alleles in each of the two haplotypes at the variant of interest. Let Y1

i
and Y2

i be the number of reads coming from each of the two haplotypes (i.e.,
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haplotypic counts; in practice, these quantities are unobserved) and Li the library
size for individual i. As proposed in ref. 12, we use the concept of allelic fold change
(aFC) to represent the genetic effect on cis-expression. We denote θ0,i as the
baseline abundance of the transcripts originating from each of the gene haplotype
without considering genetic effect. Let β be the genetic effect of a variant of interest,
which is defined as the log fold change relative to the reference allele. Then, the
transcript abundance of each haplotype h after accounting for the genetic effect is
θhi ¼ θ0;i ´ gðβ;Xh

i Þ where gðβ;Xh
i Þ is eβ if Xh

i is the alternative allele; otherwise

gðβ;Xh
i Þ ¼ 1. We model read count Yh

i as

logYh
i jLi; θhi � Nðlog ðLiθhi Þ; τhi Þ: ð5Þ

In an RNA-seq experiment, a fraction of reads contribute to allele-specific read
counts. Let αi denote the fraction of allele-specific reads in individual i, which depends
on the number of heterozygous sites within the transcript. Instead of observing
haplotypic counts Y1

i and Y2
i , we observe total read count Y total

i and gene-level allele-

specific read counts Yð1Þ obs
i and Y ð2Þ obs

i . Similarly, we further assume that the baseline
abundance of allele-specific reads per haplotype is θ0,i × αi, so we have

logYð1Þ obs
i jLi; θ1i ; αi � Nðlog ðαiLiθ1i Þ; τð1Þi Þ ð6Þ

logYð2Þ obs
i jLi; θ2i ; αi � Nðlog ðαiLiθ2i Þ; τð2Þi Þ

logY total
i jLi; θ1i ; θ2i ¼ log ðY1

i þ Y2
i ÞjLi; θ1i ; θ2i

ð7Þ

� Nðlog ½Liðθ1i þ θ2i Þ�; τiÞ ð8Þ

Linearizing the model by approximation. Based on the model described above
along with approximations under weak effect assumptions, we propose the fol-
lowing linear mixed effects model (see Supplementary Notes 2 for derivation):

log
Y total
i

2Li|fflfflfflfflffl{zfflfflfflfflffl}
Y trc
i

¼ μ0 þ zi þ
X1
i þ X2

i

2|fflfflfflffl{zfflfflfflffl}
Xtrc
i

βþ ϵtrci
ð9Þ

log
Y ð1Þobs
i

Y ð2Þobs
i|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Yasc
i

¼
ðX1

i � X2
i Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Xasc
i

βþ ϵasci
ð10Þ

zi � Nð0; σ20Þ; ϵ trci � Nð0; σ
2

Yi
Þ; ϵ asci � N 0;

σ2Y ð1Þ
i Y ð2Þ

i

Y ð1Þ
i þ Y ð2Þ

i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
σ2=wi

0BBB@
1CCCA; ð11Þ

where zi is the individual-level random effect capturing the between-individual
variation of θi,0. Notice that the individual-level random effect cancels out when we
take the difference between the two log-scale allele-specific read counts (allelic
imbalance in log scale). The scaling of ϵtrc and ϵasc in Eq. (11) is to ensure that
variance of read count scales linearly with the magnitude of read count (see
Supplementary Notes 1.2). In other words, this model ensures Var(Y) ≈ constant ×
E(Y), such that over-dispersion is implicitly taken into account.

Fig. 6 Performance of mixFine and mixPred on GTEx v8 whole-blood RNA-seq. a The fraction of detected "consensus SNPs'' among all 272 "consensus
SNPs'' in full data as a function of subsampling level, for mixFine and the standard approach, are shown. The subsampling analysis are repeated 10 times. The
plot shows the results of all the ten replicates. b The Pearson correlation between observed and predicted expression across all models trained from 1000 genes
are shown. "Standard'' corresponds to the elastic net model as implemented in ref. 1. The results are stratified by sample size used for training. For each sample
size, the distribution of the Pearson correlation across all cross-validation folds and genes are shown (the corresponding total number of observations is shown
in the parentheses). In the boxplots, the lower and upper hinges show the first and third quartiles and the middle line shows the median. The whiskers extend
from the hinge to the maximum and minimum at most 1.5× the interquartile range. All data points beyond the end of the whiskers are plotted individually.
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Since ϵ asci is approximately independent to ϵ trci (see Supplementary Notes 4), ϵ trci
and zi can be merged into one term ezi . So, we can further simplify Eqs. (9), (10) as

Y trc
i ¼ μ0 þ Xtrc

i βtrc þ ezi;ezi � Nð0;eσ20Þ ð12Þ

Y asc
i ¼ Xasc

i βasc þ ϵasci ; ϵasc � Nð0; σ2=wiÞ ð13Þ
Equations (12), (13) are applicable to both single SNP and multi-SNP scenarios. In
the single-SNP case, Xi and β are scalars, and in the multi-SNP case, Xi and β are
replaced by vectors including all SNPs within the cis-window (see Supplementary
Notes 3).

Numerically efficient QTL mapping leveraging approximate independence of
allelic imbalance and total read count. The likelihood function corresponding to
the proposed model in Eqs. (12), (13) approximately takes the form

Y
i

PrðY total
i ju0;eσ20; βÞ � Pr Y ð1Þobs

i

Y ð2Þobs
i

jσ2; β
 !

;

factoring into total read count and allelic imbalance components. (see Supple-
mentary Notes 2.2). This means that the likelihood for total read count and the
ratio of allele-specific read counts provide approximately independent information
on β, and enables us to solve each component separately and combine the results
via meta-analysis (standard approach with independent studies26). Specifically, we
fit βtrc and βasc using total and allele-specific observations as two separate linear
regression problems, and meta-analyze the results using inverse-variance weighting
(see details in Supplementary Notes 4.2).

Two-step inference procedure for multi-SNP model. The prediction and fine-
mapping problems both rely on the linearized model Eqs. (12), (13), but with
different objectives. For prediction, the objective is to find the best predictor,
whereas for fine-mapping, the objective is to infer whether βk is non-zero. Existing
solvers for both prediction and fine-mapping use total read information only and
assume that data (X, y) follows the model y= Xβ+ ϵ, where the noise term ϵ is
independent across the rows of the data matrix. We will refer to this model as the
‘canonical’ linear model. We propose a two-step inference procedure that first
processes the data such that it approximates y= Xβ+ ϵ, and then uses existing
solvers for prediction and fine-mapping problems, respectively.

For the first step, we process total and allele-specific reads separately to fit the
‘canonical’ linear model. Specifically, we estimate σ2 from (Yasc, Xasc) based on Eq.
(13) by further assuming the genetic effect as random effect and estimating σ2 using
R package EMMA27. And similarly, based on Eq. (12) and the random effect
assumption, we estimate eσ20 from (Ytrc, Xtrc). To account for the intercept term μ0
in Eq. (12), we center Ytrc and Xtrc by subtracting the mean values across all

samples and then scale the centered (Ytrc, Xtrc) by 1=beσ0. And similarly, we scale
(Yasc, Xasc) by w=σ̂. These linear transformations ensure that the transformed

ð~Y trc
; ~X

trcÞ and ð~Yasc
; ~X

ascÞ both approximately follow Y= Xβ+ ϵ. The

implementation details are described in Supplementary Notes 5. At the second
step, we concatenate the transformed data from both total and allele-specific read
counts as ð~Y; ~XÞ, which is compatible with existing solvers for prediction and fine-
mapping problems.

Adjusting for covariates. When analyzing real data, we need to take covariates
such as sex, batch effect, population stratification into account. Here, we adapt the
procedure which has been proposed previously12. We regress out the effect of
covariates beforehand and use the residual as the response in both QTL mapping
and fitting multi-SNP model. Specifically, let c1,⋯ , cK denote the K covariates to be
considered. We first regress Ytrc against c1,⋯ , cK jointly and select the covariates
with nominally significant coefficients (p < 0.05). Then we regress Ytrc against the
selected covariates jointly and set the residuals as the adjusted Ytrc for QTL
mapping and multi-SNP inference downstream.

Simulation scheme. We simulate RNA-seq reads with total and allele-specific
readouts as sketched in three steps in Fig. 1. In step 1, we specify, for each indi-
vidual i, the position of heterozygous sites within the gene body. The expected read
count from each haplotype transcripts, E ðYh

i Þ, is determined by the RNA-seq
library size Li, the baseline abundance of the transcript θ0,i, and the genetic effect β.
In step 2, given the expected haplotypic count, we draw Yh

i from Negative Binomial
to model the variation among count data. In step 3, we position the reads randomly
along the gene body and readout observed allele-specific count Y ðhÞ obs

i by counting
the number of reads overlapping heterozygous sites simulated in step 1. The total
read count readout is Yi ¼ Y1

i þ Y2
i , which is independent of the number of

heterozygous sites.
To survey a wide range of parameters, we simulate data with a grid of

parameters. We vary sample size among 100, 200, ..., 500. At library size around
90 million, we vary the level of θ0,i to cover the gene with different expression
levels, among 5 × 10−5, 2.5 × 10−5, 1 × 10−5, 5 × 10−6, 2.5 × 10−6, 1 × 10−6. The
genetic effect, aFC, is set to 1 (null), 1.01, 1.05, 1.1, 1.25, 1.5, 2, 3 in the single-SNP
model. For the multi-SNP scenario, we set the number of causal SNPs between
1 and 3 with heritability from 0.2 to 0.55. The number of polymorphic sites
within the gene body is centered around 10 with minor allele frequency from
0.05 to 0.3. A detailed description and parameter settings are provided in the
Supplementary Notes 6.

Analysis of GTEx v8 data. We downloaded the phased genotypes, total read count
matrix, and variant-level allele-specific read counts for whole blood from GTEx
release 813 via dbGaP (accession number phs000424.v8.p2). To obtain gene-level
read counts, we summed over allele-specific counts at all the heterozygous sites for
each gene haplotype. We also obtained library size, sex, and genotype PCs from
GTEx v8. For comparisons with the inverse normalization-based approach, we also
downloaded normalized expression matrices.

Table 1 Summary of notation and terminology used in the paper.

Notation Description Synonym in text Observable

i Individual index. — —
h Haplotype index, with h= 1, 2 for diploid. — —
Xh
i Alternative allele count (0 or 1) of the variant linking to the gene haplotype h. Allelic dosage Yes

Li The total number of reads in the RNA-seq library. Library size Yes
Yh
i Count of reads originated from gene haplotype h. Haplotypic (read) count No

YðhÞ obs
i Allele-specific read count that gets aligned to the gene haplotype h. Allele-specific (read) count Yes

Y total
i Total count of reads originated from any of the two gene haplotypes (sum). Total (read) count Yes

θ0,i The abundance of the gene haplotype relative to the total transcriptome when the
linked causal variants are all in reference alleles

Baseline (relative) abundance No

θhi The abundance of the gene haplotype h relative to the total transcriptome in individual i (Relative) abundance; expression
levela

No

β The log fold change of gene haplotype abundance when linking to alternative allele
relative the reference allele

Allelic fold change (aFC) in natural
log scale

No

Yð1Þ obs
i

Yð2Þ obs
i

The ratio of the allele-specific counts between two haplotypes Allelic imbalance Yes

Y trc
i Shorthand of the term log Ytotal

i
2Li

. — —

Y asc
i Shorthand of the term log

Yð1Þ obs
i

Yð2Þ obs
i

— —

θ Only used in simulation where θ= E(θ0,i) expression levelb —

The "Description” column contains a brief definition of each "Notation”, and the "Synonym in text” column contains the corresponding terminology used in the text. The "Observable” column indicates
whether the entity is an observable variable or not.
a,bExpression level does not strictly refer to θhi or E(θ0,i), but, more generally, it refers to the abundance of the gene transcripts relative to the transcriptome.
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Similarly to the GTEx v8 analyses13, we restricted the analysis to the cis-
regulatory window defined as 1Mbp up/downstream of the transcription start site
of each gene.

To obtain the PEER factors for mixQTL analysis, we ran peertool28 on a

matrix with value log ðYi;g

2Li
Þ for individual i and gene g (imputed by k-nearest

neighbors if Yi,g is zero using impute::impute.knn in R).
We considered very large allele-specific counts to be likely alignment artifacts

and removed individuals with allele-specific read counts greater than 1000. To
further limit the influence of large count outliers on the estimated log fold change,

β̂
asc
, we set the largest weight 1

Yð1Þobs þ 1
Yð2Þobs

� ��1
to be at most K fold to the smallest

one, where K ¼ minð10; samplesize =10Þ.
Specific analyses focused on high or low expression were performed with

different gene filtering criteria as stated in the Results section.
For analyses of the full GTEx v8 dataset, we built a data analysis pipeline at

https://github.com/liangyy/mixqtl-gtex/tree/master/mixqtl which relied on the
tensorQTL implementation of mixQTL. We included all genes regardless of
expression level and analyzed the 22 autosomes for each of the 49 tissues.
Specifically, since mixQTL can only work with non-zero total read count, we
imputed the samples with missing total read count as 1. And in the mixQTL call, all
total read counts were included and all allele-specific counts with more than 15
reads (on both haplotypes) were included.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Genotype-Tissue Expression (GTEx) project’s raw whole-transcriptome and
-genome sequencing data are available via dbGaP accession number phs000424.v8.p2. All
processed GTEx data are available via the GTEx portal (http://gtexportal.org/). The
download links to the mixQTL full summary statistics for 49 GTEx tissues are listed in
Supplementary Data 1.

Code availability
Softwares mixQTL, mixFine, and mixPred in R https://github.com/hakyimlab/mixqtl15.
A reproducible pipeline for the simulated data and some GTEx data analysis https://
github.com/liangyy/mixqtl-pipeline16. A reproducible pipeline for the massive GTEx
data analysis https://github.com/liangyy/mixqtl-gtex17. A GPU-based implementation
embedded in tensorQTL https://github.com/broadinstitute/tensorqtl18.
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