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The tumor therapy landscape of synthetic lethality
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Synthetic lethality is emerging as an important cancer therapeutic paradigm, while the

comprehensive selective treatment opportunities for various tumors have not yet been

explored. We develop the Synthetic Lethality Knowledge Graph (SLKG), presenting the tumor

therapy landscape of synthetic lethality (SL) and synthetic dosage lethality (SDL). SLKG

integrates the large-scale entity of different tumors, drugs and drug targets by exploring a

comprehensive set of SL and SDL pairs. The overall therapy landscape is prioritized to identify

the best repurposable drug candidates and drug combinations with literature supports,

in vitro pharmacologic evidence or clinical trial records. Finally, cladribine, an FDA-approved

multiple sclerosis treatment drug, is selected and identified as a repurposable drug for

treating melanoma with CDKN2A mutation by in vitro validation, serving as a demonstrating

SLKG utility example for novel tumor therapy discovery. Collectively, SLKG forms the com-

putational basis to uncover cancer-specific susceptibilities and therapy strategies based on

the principle of synthetic lethality.

https://doi.org/10.1038/s41467-021-21544-2 OPEN

1 Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of
Life Sciences and Technology, Tongji University, Shanghai, China. 2 Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 3 Alibaba Cloud, Hangzhou, China. 4These authors
contributed equally: Biyu Zhang, Chen Tang, Yanli Yao. ✉email: shuyangs@shsmu.edu.cn; qiliu@tongji.edu.cn

NATURE COMMUNICATIONS |         (2021) 12:1275 | https://doi.org/10.1038/s41467-021-21544-2 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21544-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21544-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21544-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21544-2&domain=pdf
http://orcid.org/0000-0002-2417-6663
http://orcid.org/0000-0002-2417-6663
http://orcid.org/0000-0002-2417-6663
http://orcid.org/0000-0002-2417-6663
http://orcid.org/0000-0002-2417-6663
http://orcid.org/0000-0002-1342-8941
http://orcid.org/0000-0002-1342-8941
http://orcid.org/0000-0002-1342-8941
http://orcid.org/0000-0002-1342-8941
http://orcid.org/0000-0002-1342-8941
http://orcid.org/0000-0003-2578-1221
http://orcid.org/0000-0003-2578-1221
http://orcid.org/0000-0003-2578-1221
http://orcid.org/0000-0003-2578-1221
http://orcid.org/0000-0003-2578-1221
mailto:shuyangs@shsmu.edu.cn
mailto:qiliu@tongji.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Synthetic lethality occurs when the inhibition of two genes is
lethal while the inhibition of each single gene is not. It can
be harnessed to selectively treat cancer by identifying

inactive genes in a given cancer and targeting their synthetic
lethal partners. For most cancer mutations caused by a loss-of-
function, there are no targeted therapies available, and SL pro-
vides additional opportunities. The best-studied example of tar-
geted therapies exploiting the synthetic lethality (SL) principle is
the use of poly-ADP ribose polymerase (PARP) inhibitors in
breast and ovarian cancer harboring mutations in BReast CAncer
gene (BRCA). In this case, BRCA and PARP play vital roles in
DNA homologous recombination repair in response to DNA
damage, leading to the occurrence of tumorigenesis. Treatment of
BRCA-deficient tumors with PARP inhibitors generally selec-
tively kills the cancer cells in breast and ovarian cancer1.

Basically, the general concept of “synthetic lethality” can be
divided into two categories: (1) SL, which occurs between the
loss-of-function mutations for tumor suppressor genes (TSGs)
and their partner gene. This is a genetic interaction where com-
bination of two mutations or more leads to cell death, whereas a
single mutation in any of the genes does not. and (2) SDL, which
occurs between the oncogene and its partner gene2. This is a
genetic interaction where an overexpression of oncogene (Gene
B) combined with the under-expression of its partner gene (Gene
A) kills the tumor cell. (Fig. 1). Overall, SL and SDL provide
important guidance for uncovering cancer-specific susceptibilities
and identifying cancer-specific treatments.

Many largescale geneknockout studies using CRISPR screening
and RNAi screening such as Project Score3 and Project DRIVE4

have presented a comprehensive catalog of essential genes related
to certain phenotypes. Various methods have been proposed to
identify SL and SDL interactions based on these data, however,
the selective treatment opportunities for various tumors have not

yet been explored. To this end, we developed the Synthetic
Lethality Knowledge Graph (SLKG, https://www.slkg.net/), which
presents the comprehensive tumor therapy landscape of SL and
SDL from a drug repositioning perspective. SLKG integrates the
large-scale entity of different tumors, drugs, and drug targets by
exploring a comprehensive set of 19,987 SL and 3039 SDL pairs.
By curation with a well-defined drug repositioning scoring
schema, 155 and 88 best drug repositioning results were obtained
according to the integrative analysis of SL or SDL with tumor and
drug annotations, respectively, and most are supported by the
literature, in vitro pharmacologic evidence or clinical trial
records. In addition, 38 drug combinations were identified by
mining the knowledge graph for tumor treatments with max-
imized therapeutic effects and reduced side effects. Finally, cla-
dribine, which is a FDA-approved multiple sclerosis treatment
drug, was selected and identified as a repurposable drug for
treating melanoma with CDKN2A mutation by a comprehensive
in vitro validation, serving as a demonstrating experimental
protocol to utilize SLKG for novel tumor therapy discovery.
Taking together, SLKG forms the computational basis for
exploiting the tumor therapy landscape and repurposing known
drugs based on the principle of SL to uncover cancer-specific
susceptibilities.

Results
Uncover the tumor therapy landscape on the basis of SL/SDL.
The general framework of our study is outlined in Fig. 2. We
obtained SL and SDL gene pairs with comprehensive annotations
by searching the literature and databases spanning comprehen-
sive data sources, such as SynLethDB5, DRIVE DATA PORTAL4,
DepMap6, and Daisy7 (Fig. 2). The relationships between tumors
and mutant genes were organized through the DisGeNET8,
COSMIC9, ONGene10, and TSGene11 databases. By integrating
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Fig. 1 The principle of SL and SDL. For gene A and B, if only one gene has a mutation or an overexpression in the tumor cell, the tumor cell is still alive.
However, the pharmacological intervention of the partner gene will result in SL interaction in tumor cell which has a loss-of-function mutation of the tumor
suppressor gene (TSG) (a). In addition, the pharmacological intervention of the partner gene will result in SDL interaction in tumor cell which has a gain-of-
function mutation or an overexpression of the oncogene (b). The red star denotes a mutation. The thicker arrow denotes an overexpression. The cross line
denotes a pharmacological intervention.
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the TTD12, DrugBank13, and DGIdb14 databases, we further
organized the relationships of drugs, target genes, and known
indications into a knowledge graph. Based on these three types of
entities, we mapped mutants and target genes to SL or SDL gene

pairs, respectively. Because there is no obvious distinction
between gene A and gene B in the SL or SDL pairs, we considered
two reciprocal scenarios during the mapping, i.e., gene A maps
the mutant gene and gene B maps the target gene, and vice versa
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Fig. 2 The general framework of the SLKG and the following analysis. The study comprises five steps: (1) Entity preprocessing: the three types of entities
(gene, cancer type, and drug) are collected and analyzed to exploit the tumor therapy landscape. (2) Building of SLKG: the SLKG comprises three types of
entities and four types of relationships, which forms the computational basis from a drug repositioning perspective. (3) Scoring schema: a well-defined drug
repositioning scoring schema by integrating three core scoring functions were developed to obtain the best repurposable drug candidates. (4) Identification
and validation: the literature supports and in-vitro pharmacologic evidence were identified and validated in the top repurposable drug candidates. (5) Drug
combination identification: a computational model was developed for identifying drug combinations in a weighted bipartite graph network by an IP algorithm.
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(see Methods). The relationship between the mutant gene and
target gene was obtained on the basis of the relationship between
gene A and gene B in the SL and SDL pairs. With SL or SDL as a
bridge, the drug intervening with the target gene in SL or SDL
was identified as a repurposable drug for treating a specific tumor
with a mutant gene as the partner gene to the target gene in the
SL or SDL (see Methods).

It should be noted that for either SL or SDL, the mode of action
of the drugs on the target should be “inhibition”. In addition, the
mutant gene differs in SL and SDL, i.e., TSG for SL and oncogene
for SDL15,16. Therefore, filtering by these criteria, 182,460 and
1830 drug repositioning results with drug name standardization
and annotation of mutant genes were obtained according to the
SL and SDL, respectively. All these curated data sources form the
SLGK (https://www.slkg.net), which presents a comprehensive
tumor therapy landscape based on SL and SDL.

Identifying the top candidates based on a well-defined drug
repositioning scoring schema. By defining an effective drug
repositioning scoring schema, the overall therapeutic landscape
was prioritized to identify the top repurposable drug candidates.
Specifically, three core scoring functions, i.e., the SLScore
(SDLScore), DrugScore, and CancerScore, were defined by com-
prehensively considering the relationships between various enti-
ties in the SLKG. Min-max normalization was used to normalize
the scores into [0, 1]. Based on the probability distribution curve
and cumulative distribution curve of the three scores, a score
threshold was set to obtain the best repurposable drug candidates
by referring to the PanDrugs17 database. Finally, 155 and 88 best
repurposable drug candidates were obtained based on SL and
SDL, respectively (Fig. 3a–d and Methods). A three-dimensional
representation indicated that the best repurposable drug candi-
dates were enriched in the upper right side with all three scores
closer to 1 (Fig. 3e, f).

The robust rank aggregation18 algorithm was further applied to
sort the best repurposable drug candidates by integrating the
ranks scored by the individual scoring function. Among the top
20 best repurposable drug candidates based on SL, 6 candidates
were supported by the literatures19,20 (Supplementary Table 1).
For example, the third-ranked candidate indicates that rucaparib,
a treatment for breast cancer, should have potential therapeutic
effects on hereditary breast cancer and ovarian cancer syndrome,
which was also reported in a previous study19. Similarly, among
the top 20 best repurposable drug candidates based on SDL, 2
candidates were supported by the literatures21,22 (Supplementary
Table 1). For example, the sixth candidate indicates that
vandetanib, a treatment for solid tumors, should have potential
therapeutic effects for pancreatic ductal carcinoma, which is
supported by in vitro findings21.

Validating the top candidates with in vitro pharmacologic
evidence. In addition to supporting information obtained from
the literature, the drug sensitivity of cancer cell lines recorded in
the CTRP23 and GDSC24 databases, whose measure indicators are
mainly the half-maximal inhibitory concentration (IC50) and the
area under the curve (AUC), were exploited for top candidates
validation. Smaller IC50 and AUC values indicate that the cell line
is more sensitive to the tested drugs25. Based on the cancer types
provided by the Cancer Genome Atlas database (TCGA)26, we
obtained the cancer types of repurposed tumors (see Methods).
The Wilcoxon rank sum test was applied to estimate whether the
mutant type of a specific gene in the cancer cell lines was more
sensitive to the drug than the wild-type, which indicates whether
or not the drug has a potential therapeutic effect on the specific
tumor. Our comprehensive explorations indicated that the top

significant difference in SL (p= 0.011) ranked 13th among the
155 best repurposable drug candidates. The median AUC of the
BRCA1 mutant type cancer cell lines was smaller than that of the
wild-type, indicating that an FLT3 inhibitor (sunitinib) has
potential therapeutic effects for hereditary breast cancer and
ovarian cancer with a BRCA1 mutation. Similarly, the top sig-
nificant difference in SDL (p= 0.034) ranked 10th among the 88
best repurposable drug candidates. The median IC50 of the
NOTCH1 mutant type cancer cell lines was smaller than that of
the wild-type, indicating that an EGFR inhibitor (gefitinib) has
potential therapeutic effects for T-cell leukemia with a NOTCH1
mutation (Fig. 4a, b). Taking together, statistics on the in vitro
pharmacologic data of cancer cell lines validated 12 SL-based
repurposable drug candidates that account for 26% of the 47
candidates meeting the test criteria (Wilcoxon rank sum test
under the AUC measurement, Fig. 4c and Supplementary
Fig. 1a). Similarly, 6 SDL-based repurposable drug candidates
were validated and account for 23% of the 26 candidates meeting
the test criteria (Wilcoxon rank sum test under the IC50 mea-
surement, Fig. 4d).

Furthermore, top repurposable drug candidates were verified
by clinical trial results in the ClinicalTrials.gov. Among the 88
best repurposable drug candidates based on SL, 10 of them were
identified to be in clinical trials. Similarly, among the 48 best
repurposable drug candidates based on SDL, 14 of them were
identified to be in clinical trials. Collectively, it has shown that a
substantial portion of the top repurposable drug candidates are
registered in clinical trials, further proven the reliability of the
prediction results (Supplementary Table 2).

Drug combination identification by knowledge graph mining.
The biologic process of pathogenesis is usually diverse so that a
single drug therapy that blocks one pathway often fails. It is
reported that “synthetic lethality”-based therapy will also cause
drug resistance and clinical recurrence to a certain extent due to
alternative pathways. For example, homologous recombination
can be restored through paralogues such as RAD51, PALB2, etc.,
in BRCA and PARP-deficient tumors27. Therefore, we further
explored drug combination opportunities for tumor therapy with
reduced resistance based on the SL and SDL mechanisms.

Specifically, we developed a computational model to identify
the drug combinations based on the principle of SL and SDL by
mining the SLKG with an IP algorithm (see Methods). We
identified 38 potential drug combinations without antagonism
between the 2 drugs (Supplementary Fig. 1b). For example, a
combination of erlotinib and olaparib that covers four SL pairs,
including ABCG2+ BRCA1, BRCA1+ EGFR, BRCA1+ PARP1,
and BRCA1+ PARP2, which may have a potentially enhanced
therapeutic effects with reduced resistance for hereditary breast
cancer and ovarian cancer with the BRCA1 mutation28. The
known indications for erlotinib, whose target genes are ABCG2
and EGFR, are colon cancer, glioma, head and neck cancer, etc.
Similarly, the known indication for olaparib, whose target genes
are PARP1 and PARP2, is ovarian cancer (Fig. 5a).

An enrichment of the drug Anatomical Therapeutic Chemical
(ATC) categorization is shown in Fig. 5b, indicating that these
drugs tend to come from the ATC category L (antineoplastic and
immunomodulating agents) and J (antiinfectives for systemic
use). Then, a small number of drugs can be categorized into A
(alimentary tract and metabolism), H (systemic hormonal
preparations, excluding sex hormones and insulins), N (nervous
system), S (sensory organs), and V (various). In addition, the
repurposed cancer types for category L drugs are mostly enriched
as the BRCA_OV, which are related to the mutant genes BRCA1
and BRCA2 (Fig. 5b). One possible reason for such enrichment is
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that the BRCA genes have been extensively studied in the
literatures.

A demostrating in-vitro validation of cladribine to treat mel-
anoma with CDKN2A mutation. To further demonstrate the
utility and validate the screening results of SLKG for novel tumor

therapy discovery, the top-ranked SL gene pair CDKN2A+
RRM2 (ranked 15th among the 155 curated SL) was selected as a
demonstrating experimental validation for in vitro verification.
The CDKN2A mutated melanoma cells are expected to be more
sensitive to RRM2 inhibitor cladribine that was in clinical
development for multiple sclerosis and leukemia, as reported by
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SLKG. Previous study has indicated that CDKN2A is a key
mutation for melanoma while the effective treatment of such
mutation type of melanoma is still lack. In our study, six mela-
noma cell lines were treated with cladribine. Of the drug-cell line
combinations, the melanoma cell lines exhibited diverse sensi-
tivity to cladribine. Then IC50 values were used as parameters for
drug potency. We compared drug sensitivity to CDKN2A muta-
tions identified in melanoma cell lines. In the exon regions of
CDKN2A, C32 and A375 cells showed nonsense mutations with
CDKN2A loss of function (LOF), while M14, A2058, A875, and
SK-MEL-1 were wild-type. We found consistent correlation
between CDKN2A mutations and drug sensitivity. Compared
with CDNK2AWT cell lines, CDNK2ALOF melanoma cell lines
were more sensitive to cladribine (Fig. 6a).

Due to the different genetic backgrounds of melanoma cell
lines, we adopted RNAi treatmet to knockdown CDKN2A
expression in CDKN2AWT cell line A2058. Western blotting
and RT-qPCR analysis were applied to assess the silencing

efficiency (Fig. 6b–d). As cell proliferation assays showed
abrogating CDKN2A expression renders CDKN2AWT cells more
sensitive to cladribine. Compared with their parental cell lines
and the negative control cells, the A2058 lines with CDKN2A
knockdown showed decreased cell viability after cladribine
treatment, with cell viability that dropped from 50.85 to 29.20%
(Fig. 6e).

Discussion
Various methods have been proposed to identify “synthetic
lethality” interactions. Selective treatment opportunities for all
kinds of tumors have not yet been explored. To this end, we
developed SLKG, which presents the comprehensive tumor
therapy landscape of SL and SDL from a drug repositioning
perspective. These results form a comprehensive reference for
exploiting the tumor therapy landscape to uncover cancer-specific
susceptibilities based on the principle of SL.
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Future updates and improvements are expected for this pioneer
study including: (1) Standardizing the drug names for knowledge
graph building. The drug names are inconsistent among data-
bases. For example, the common name linsitinib is listed in
DrugBank, but its trade name OSI-906 is listed in TTD. The
current version of SLKG uses the PanDrugs drug naming system
to unify the drug name across different datasets, but future
standardization of the drug names is still needed. (2) Integrating
the SL interaction and the synthetic dosage lethality interaction

into one exploration. (3) Development of more sophisticated
knowledge graph mining and link prediction algorithms to
uncover the potential links between unconnected entities in
SLKG, and (4) Collection of more pharmacologic evidence for
repurposable candidate validation. Due to the limited data in
GDSC and CTRP, the current proportion of validation for
repurposable candidates is limited to in vitro data, collection of
more pharmacologic evidence, especially in vivo experimental
data, is required.

Fig. 5 Example of drug combinations and the visualization of the drug combinations. a Bipartite graph between drug (yellow square) and SL pairs (pink
circle). Side annotation bar represents DrugScore. b Heat map visualization between drugs and cancer types of repurposed cancers. Side annotation bar
represents the drug repositioning scores of each candidate.
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Methods
Building of SLKG. The general architecture of SLKG and the following analysis
is presented in Fig. 2. SLKG comprises three types of entities, gene, drug, and
cancer type, and these three entities are linked with four types of relationships,
(1) SL/SDL gene pairs, (2) the relationships between different cancer types and
related mutant genes, (3) the relationships between drugs and their target genes,
and (4) the relationships between drugs and their known indications (known
cancer type).

The entity and relationship construction of the SLKG. The detailed entity collection
and preprocessing of the SLKG is described as follows. First, the SL and SDL pairs
were collected and curated by integrating the information from the SynLethDB,
Daisy, DRIVE DATA PORTAL, and DepMap databases, as well as from the lit-
eratures. Second, DisGeNET v4.0 was applied to determine the cancer type
according to the defined disease class, which is the leaf node in the disease ontology
tree of the UMLS29 database. After obtaining the primary relationship between the
mutant genes and cancer types according to Concept Unique Identifiers, the
mutant cancer genes provided by the COSMIC database, which is the authoritative
resource for cancer research, were further used to screen the relationships between
cancers and mutant genes. Finally, the relationships of drugs, target genes, and
known indications were downloaded from three databases, i.e., the TTD database,
the authoritative DrugBank database, and the DGIdb database of druggable targets.
The relationships between target genes and drugs were analyzed according to the
associations of the data in these databases, respectively. Four types of relationships
were then curated on the basis of the relationships between the drugs and known
indications in the TTD (Fig. 2: step 1).

After entity preprocessing of the SLKG, drug repositioning results were mapped
and obtained. There are two reciprocal scenarios during the mapping, i.e., gene A
maps the mutant gene and gene B maps the target gene, and vice versa. When the
mutant gene is mapped to gene A, the target gene in the TTD, DrugBank, and
DGIdb is mapped to gene B, respectively, and vice versa. It should be noted that in
the DGIdb database, we must determine whether gene A or gene B is druggable
firstly before mapping. To select the mode of action of the mutant gene, the TSGs
and oncogenes were downloaded from the TSGene and ONGene databases,
respectively. Based on the organized data of the three drug databases, the mode of
action between the drugs and target genes was screened as “inhibition”. Because the

drug names differ in these databases, they were first standardized by referring to
the PanDrugs database during our data integration. The Identifier Exchange
Service tool (https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi) in the
PubChem database was applied to provide a full reference list of synonyms for
specific compounds. We selected the first item of the returned synonyms as the
standard drug name and manually modified the inconsistences. Moreover, to
annotate the expression of mutant genes in cancer and adjacent cancer tissues, the
URL link of each mutant gene in the GEPIA30 database was provided. For example,
the URL link (http://gepia.cancer-pku.cn/detail.php?gene=TP53) can directly jump
to the page for TP53. On the annotation page, the Ensemble ID, gene name, and
related summary information of TP53 are presented (Fig. 2: step 2).

The drug repositioning scoring schema. We developed an effective drug reposi-
tioning scoring schema by integrating three core scoring functions, including the
SLScore (SDLScore), DrugScore, and CancerScore. Min-max normalization was
used to normalize the three scores into [0, 1] (Fig. 2: step 3). First, a similar strategy
was applied to the SynLethDB database to define the quantitative score ρi to
indicate the computational and experimental evidence supporting SL or SDL
(Table 1). This experimental method is considered more reliable than the theo-
retical calculation with a higher quantitative score.
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Fig. 6 An in-vitro validation of cladribine treatment for melanoma cell lines with CDKN2A LOF mutations. a CDKN2A LOF mutations in melanoma cell
lines were correlated with sensitivity to RRM2 inhibitors. Melanoma cell lines (n= 6) were incubated with 12 different concentrations of RRM2 inhibitor
cladribine and the IC50 values of cladribine were calculated (Data are means ± SD of the mean from three independent experiments). b, c CDKN2A silencing by
siRNA in CDNK2AWT cell A2058 and P16INK4A protein was measured by western blotting analysis (n= 3 biologically independent experiments, repeated at
least 3 times independently with similar results; Mean ± SD shown; **p < 0.01, ***p < 0.001, two-tailed unpaired t test). d Relative mRNA expression was
determined at 48 h post-transfection of CDKN2A siRNAs by RT-qPCR analysis (n= 3 biologically independent experiments; Mean ± SD shown; **p < 0.01,
***p < 0.001, two-tailed unpaired t test). e CDKN2ALOF A2058 cells and corresponding control cell were treated with 1 μM cladribine measured in a 3-day
in vitro growth assay (n= 3 biologically independent experiments; Mean ± SD shown; **p < 0.01, ***p < 0.001, two-tailed unpaired t test).

Table 1 Quantitative score of SL/SDL.

Source of evidence Type of evidence ρi
Biochemical experiment CRISPR 0.98

Synlethality 0.95
Related database GenomeRNAi 0.75

Decipher 0.75
Text mining Text mining 0.8
Computational Daisy 0.5

Wang/Srihari/Ye/Srivas/Han et al. 0.25
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Because the same SL or SDL pairs can be obtained in different ways, the SLScore
(SDLScore) was calculated by integrating all the related evidences as follows:

s ¼ 1�
Yn

i¼1

1� pið Þ ð1Þ

where n is the number of collection methods and pi is the quantitative score. For
example, when the SL or SDL can be obtained through CRISPR and GenomeRNAi,
the SLScore or SDLScore is 0.995 s ¼ 1� 1� 0:98ð Þ 1� 0:75ð Þð Þ.

It should be noted that the SLscore/SDLscore is designed to measure the
reliability of SL/SDL from different types of evidences. The corresponding score is
larger when more types of evidences are collected for the same SL/SDL. Compared
to SL, SDL is relatively rarely studied at present, therefore, the evidences
accumulated for SDL are rare compared to those of SL, which made SDLscore less
discriminable compared to that of SLscore.

Second, with reference to the strategy applied in the PanDrugs database, the
drug development status, drug specificity, and database number are integrated.
Then, the DrugScore is defined as:

DrugScore ¼ maxfPre� computed DScore valueg
� ð0:01 ´Collective gene impactÞ
þ ð0:001 ´Database factorÞ

ð2Þ

Where Pre-computed DScore value considers the drug development status and the
type of target gene (Table 2), which are calculated as:

Pre� computed DScore value ¼ Drug Status þ Target Gene Type½ � ð3Þ

Finally, the CancerScore is collected from the DisGeNET database. After
obtaining the three core scoring functions, the min-max normalization conversion
function is applied:

x0 ¼ x �minðxÞ
maxðxÞ �minðxÞ ð4Þ

To decide the threshold score of the best drug repositioning candidates, we
further investigated the probability distribution curve and cumulative distribution
curve of the three scoring functions. In the probability distribution curve of the
drug repositioning results based on SL, the distribution of the DrugScore and
SLScore was ideal in that it was enriched in the area with the higher score, while the
CancerScore was enriched in the area with a lower score (Fig. 3a). In the
cumulative distribution graph, the proportion with a CancerScore greater than 0.7
was ~1% and became stabilized (Fig. 3b). Consequently, the thresholds of the three
scoring functions are listed as follows (Supplementary Table 3):

SLScore 0; 1½ �> 0:7

DrugScore 0; 1½ �> 0:8

CancerScore 0; 1½ �> 0:7

ð5Þ

Similarly, in the probability distribution curve of the drug repositioning results
based on SDL, the distributions of the DrugScore and SDLScore were ideal in that
they were enriched in the area with the higher score, while the CancerScore was
still enriched in the area with the lower score (Fig. 3c). In the cumulative
distribution graph, the proportion with a CancerScore greater than 0.3 was ~10%
and became stabilized (Fig. 3d). Consequently, the thresholds of the three scoring
functions are listed as follows (Supplementary Table 3)

SDLScore 0; 1½ � > 0:8

DrugScore 0; 1½ � > 0:5

CancerScore 0; 1½ � > 0:3

ð6Þ

Development of the SLKG webserver. The SLKG webserver is available at https://
www.slkg.net/, developed by Bootstrap+Vue+Jquery+D3js, which makes the
interface friendly access (Fig. 7a). The backbone of the knowledge graph archi-
tecture is constructed with Neo4j, which is a graph-based database platform
powering knowledge graph building and following analysis. SLKG provides seven
query modules based on SL and SDL, including searching for SL (SDL) pairs by
gene symbol (Fig. 7b), searching for cancer type by mutation gene (Fig. 7c),
searching for mutant gene by cancer type (Fig. 7d), searching for target gene by

drug name (Fig. 7e), searching for drug name by target gene (Fig. 7f), searching for
repurposable drugs by cancer type (Fig. 7g), and searching for repurposed cancer
types by drug (Fig. 7h). In addition, users can select various restrictions to filter the
results based on their own demands. The search results can be downloaded for
further study.

In vitro pharmacologic evidence collection and validation of top repurposable
drug candidates. The in vitro pharmacogenomics data recorded in the GDSC and
CTRP databases were downloaded for validation. The responses of 1067 cancer cell
lines to 251 anticancer drugs are described in the GDSC with measurements of the
IC50 and AUC. The sensitivity data of 481 small molecule drugs in 664 cancer cell
lines with measurement of the AUC were also obtained in previous study related
to CTRP.

The names of the repurposed cancer types were standardized based on TCGA.
For example, Ovarian Carcinoma corresponds to the OV (Ovarian serous
cystadenocarcinoma) cancer type (Supplementary Table 4).

We further investigated collected cancer cell lines with the cancer types and
mutant genes annotations provided in COSMIC. The cancer cell lines with a
consistent mutant profile as indicated by the SL/SDL were denoted as mutant type,
and otherwise as wild-type. The pharmacologic data of both mutant and wild-type
cancer cell lines for the best repurposable drug candidates were selected and
compared using the Wilcoxon rank sum test to determine whether the mutant type
was more sensitive than that of the wild-type to the repositioned drug (Fig. 2:
step 4).

Finally, by a comprehensive search of the clinical trial records, top repurposable
drug candidates were further verified by clinical trial records. In our study,
comprehensive clinical study data from ClinicalTrials.gov is investigated and
utilized. The best repurposable drug candidates were selected and retrieved with
existing clinical trial records in the ClinicalTrials.gov, further indicating whether
the candidates have been gone into clinical trials (Fig. 2: step 4).

Drug combination identification. We provide a computational model for iden-
tifying drug combinations based on the principle of “synthetic lethality” in the
SLKG via an IP algorithm, which was formulated as the mining of a weighted
bipartite graph network with drugs as the nodes on the right side of the network
and SLs as the nodes on the left side of the network (Fig. 2: step 5). We did not
identify drug combinations for SDL due to the limited number of SDLs collected in
the SLKG.

After constructing the weighted bipartite graph network, the IP algorithm was
applied to identify the drug combinations that cover the most SL pairs of shared
mutant genes by maximizing the summation of the corresponding DrugScore with
the following optimization function:

maxZ ¼
Xn

i¼1

Xm

j¼1

disij
� �

ð7Þ

Subject to ¼
Xn

i¼1

di ¼ 2 ð8Þ

where n represents the number of drugs; m represents the number of SL pairs; di is
1 or 0, corresponding to whether or not drug i is selected, respectively; and Sij is the
DrugScore for drug i in SL j.

After solving the optimization function to obtain the optimal drug
combinations, it was necessary to consider the antagonism between drug
interactions. The DrugComb database was used to filter the antagonistic drug
interactions with an “S” score lower than 5, where the “S” score is presented to
evaluate the interaction of drug combinations at their IC50

31.
It should be noted that the ATC Classification System is applied to categorize

the drugs in our system. The ATC code comprises 7 digits and divides the drug into
5 levels, the first of which is an anatomic classification divided into 14 categories.
We used the CID (Compound ID) to obtain the ATC classification of
corresponding drugs annotated in the PubChem database.

An in-vitro validation of cladribine to treat melanoma with CDKN2A mutation
Cell lines and materials. The four human melanoma cell lines used, A375, C32,
A2058, and SK-MEL-1, were obtained from American Type Culture Collection
(Manassas, USA), which have been authenticated by the provider. A875 was
derived from National Infrastructure of Cell Line Resource (Beijing, China) and
M14 was derived from Mingzhou Biotechnology (Ningbo, China) which have been
authenticated by us. All melanoma cell lines were cultured according to the
manufacturer’s protocol. RRM2 inhibitor Cladribine (S1199) was purchased from
Selleck Chemicals (Texas, USA).

Cell proliferation assays. Cell Counting Kit-8 assay was performed in accordance
with the manufacturer’s recommendations by Beyotime Biotechnology (Shanghai,
China). Briefly, 2000 cells per well in 96-well plates were untreated or treated with
indicated doses of Cladribine and incubated for 48 or 72 h. Cell Counting Kit-8
reagent was added to each well and absorbance value was measured after 2 h
incubation at 37 °C.

Table 2 Pre-computed DScore value.

Drug status Type of target gene Pre-computed DScore value

Approved Direct target 1
Others 0.8

Clinical trials Direct target 0.6
Others 0.4

Experimental Direct target 0.2
Others 0.1
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RNAi treatment. For experiments involving siRNA-mediated depletion, two dif-
ferent CDKN2A siRNAs (siRNA1 and siRNA2) were designed and synthesized
from GenePharma (Shanghai, China) with following targeted sequences: siRNA1,
5′- CACCAGAGGCAGUAACCAUTT−3′, and siRNA2, 5′-CCCAACGCACCG
AAUAGUUTT−3′. The siRNA transfection was performed with Lipofectamine
3000 from Thermo Fisher (Massachusetts, USA) according to the manufacturer’s
instructions. The silencing efficiency was assessed by western blotting and reverse
transcriptase-quantitative real time PCR (RT-qPCR) analysis. Antibodies used for
western blotting including CDKN2A antibody (Cell Signaling Technology, #80772,
1:1000 dilution) and GAPDH antibody (Cell Signaling Technology, #5174, 1:1000
dilution). For quantification of western blotting, signal for each band was

quantified using ImageJ and normalized to loading control. Ratios of signal were
calculated as a ratio of the relevant normalized signal quantifications.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
SL and SDL gene pairs with comprehensive annotations are available from synlethDB
and Daisy. The relationships between tumors and mutant genes are available from
DisGeNET, COSMIC, ONGene, and TSGene. The relationships between drugs and

Fig. 7 The query modes of SLKG webserver. a Homepage of SLKG. b–h 7 query modules to explore the tumor therapy landscape based on the principle of
“synthetic lethality”.
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target genes are available from TTD, DrugBank, and DGIdb. The pharmacogenomics
data for validation can be downloaded at GDSC and CTRP. Source data are provided
with this paper. The Synthetic Lethality Knowledge Graph (SLKG) is available at https://
www.slkg.net/.
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