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Correlation holes and slow dynamics induced by
fractional statistics in gapped quantum spin liquids
Oliver Hart 1, Yuan Wan2,3 & Claudio Castelnovo 1✉

Realistic model Hamiltonians for quantum spin liquids frequently exhibit a large separation of

energy scales between their elementary excitations. At intermediate, experimentally relevant

temperatures, some excitations are sparse and hop coherently, whereas others are thermally

incoherent and dense. Here, we study the interplay of two such species of quasiparticle,

dubbed spinons and visons, which are subject to nontrivial mutual statistics – one of the

hallmarks of quantum spin liquid behaviour. Our results for Z2 quantum spin liquids show an

intriguing feedback mechanism, akin to the Nagaoka effect, whereby spinons become loca-

lised on temperature-dependent patches of expelled visons. This phenomenon has important

consequences for the thermodynamic and transport properties of the system, as well as for

its response to quenches in temperature. We argue that these effects can be measured in

experiments and may provide viable avenues for obtaining signatures of quantum spin liquid

behaviour.
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Topologically ordered phases of matter have attracted much
attention over the past few decades1,2 thanks to their
unusual behaviour, which is of fundamental interest and

has potential applications in quantum information storage and
processing1,3,4. Such states are characterised for example by
subleading corrections to the ground state entanglement
entropy5,6, and by a ground state degeneracy that depends on the
genus of the space on which the system resides7. Their low-energy
excitations often take the form of pointlike, fractionalised quasi-
particles with anyonic statistics8.

While concrete and unambiguous experimental evidence for
these unusual ground state properties remains in general una-
vailable, the exchange statistics of the quasiparticles and their
fractional quantum numbers offer some of the most promising
routes to unique and experimentally accessible signatures of
topological order9,10. Examples of such excitations include the
Laughlin quasiparticles of the fractional quantum Hall effect11 or
the Majorana fermions in Kitaev-like materials12.

In the context of quantum spin liquids (QSLs)—topologically
ordered phases that arise in frustrated magnets at low tempera-
tures13–15—we reflect on the fact that realistic model Hamilto-
nians exhibiting QSL behaviour can often be constructed
with16,17: (i) a large, classical constraint that projects the Hilbert
space onto an extensive set of local tensor product states; and (ii)
quantum fluctuations. The fluctuations induce coherent super-
positions of the tensor product states, endowing the system with
quantum topological properties, but must not be strong enough
to drive the system across a confinement/Higgs transition. In
such systems, there are quasiparticles (that we dub spinons) that
violate the classical constraint; these have a large energy cost Δs

and smaller but significant hopping matrix elements of magni-
tude ts < Δs (typically of the order of the quantum fluctuation—
e.g., exchange—terms present in the system). There are also
gapped excitations, which we dub visons, that disturb the quan-
tum phase coherence amongst the constrained states, whose
energy cost Δv is perturbative in ts/Δs in the deconfined phase and
thence much smaller than both Δs and ts. Typically, the char-
acteristic magnitude of their hopping matrix elements is smaller
still, tv < Δv. A case in point is indeed quantum spin ice14 with
small transverse terms. While this may not be considered an
example of topological quantum order per se, its microscopic
Hamiltonian is nonetheless an example of how one could realise a
QSL in experiment. It features a large projective energy scale and
small transverse kinetic terms, which give rise to an eminently
accessible temperature range where the results in our paper apply.

In this scenario, it is of experimental interest to consider the
temperature range where

tv <Δv ≲T � ts <Δs: ð1Þ
Upon cooling the system, it is the highest temperature at which
one can hope to observe signatures of QSL behaviour. Any pre-
cursor diagnostics in this temperature regime would be greatly
beneficial before attempting to reach challengingly low tem-
peratures where both quasiparticle species behave quantum
coherently (T < tv). In the temperature range given by Eq. (1),
visons are thermally populated with a finite density, whereas
spinons are sparse and hop coherently across the system on a
timescale O(1/ts) that is fast with respect to the stochastic motion
of visons, which occurs on a timescale O(1/tv) or longer. It is then
natural to take a Born–Oppenheimer perspective and treat the
visons as static quasiparticles when considering the motion and
equilibration of spinons. The slow dynamics of visons allows
parallels to be drawn with Falicov–Kimball models18,19, and
models of quasi-MBL20–22 and disorder-free localisation23.

We focus on the case of a Z2 topological spin liquid, where
there are no direct interactions between spinons and visons that

exchange their energy. However, their semionic mutual statistics
implies that the spatial arrangement of the visons affects the
quantum kinetic energy of the spinons, which in turn mediates an
effective, nonlocal interaction amongst the visons. We find that
this interplay leads to the localisation of spinons on patches of the
system—similar to quantum wells—from which the visons have
been expelled in a manner comparable to the Nagaoka effect24,25

(see also ref. 26).
We provide an effective analytical modelling of these patches

that traces their origin to a balancing act between vison config-
urational entropy and spinon kinetic energy. A remarkable con-
sequence of this behaviour is that the self-localisation of spinons
leads to a nonthermal, cooling-rate-dependent density of spinons.
This quasiparticle excess likely manifests itself in the spin sus-
ceptibility and transport properties of the system as it is cooled
from high temperatures. Since this behaviour is inherently related
to both the fractionalised nature and the nontrivial mutual sta-
tistics of the excitations in the system, it is therefore an important
precursor of the QSL behaviour expected at lower temperatures.

Results
Model. We consider for concreteness a toric-code-inspired toy
model of a gapped Z2 QSL. A possible microscopic derivation of
the model is discussed in the Supplementary Note 1, whereas we
present here only the essential features of the model in the
temperature regime of interest. It can be summarised as a tight-
binding model of bosonic spinons with energy cost Δs and hop-
ping amplitude ts on the sites of a square lattice27. The visons live
on the plaquettes of the lattice, with energy cost Δv and occu-
pation numbers np= 0 or 1. Since the spinons and visons are
mutual semions, the latter act as sources of flux of magnitude π,
i.e., Φp= πnp,

HsðfnpgÞ ¼ �ts
X
hiji

eiAijbyi bj þ Δs

X
i

byi bi; ð2Þ

where bi; b
y
i obey the usual hardcore bosonic statistics, Aij=−Aji,

and (∇ × A)p=Φp. Within the Born–Oppenheimer approxima-
tion, the spinons remain in their instantaneous eigenstates, with
energy Es({np}), as different visons configurations {np} are sam-
pled stochastically, therefore providing an effective energy for the
latter. Both spinons and visons are created or annihilated in pairs
by virtue of their fractionalised nature.

Generally, one expects spinons in a random π-flux background
to be weakly localised (for a recent study, see ref. 28). At the
temperatures considered in this manuscript, the spinons are
sparse and the hardcore constraint makes it reasonable on
energetic grounds that they will be localised far away from one
another. It is therefore sensible in the first instance to investigate
the problem of a single isolated spinon. We will later discuss how
the results may be extended to the thermodynamic limit with a
finite density of spinons.

In order to gain insight into the behaviour of the system, we
perform parity-conserving Monte Carlo (MC) simulations of the
stochastic ensemble of visons, {np}, on a square lattice containing
L × L sites with periodic boundary conditions, combined with
exact diagonalisation of the spinon tight-binding Hamiltonian
Hs({np}) (further details are given in Methods).

Localisation of spinons. The behaviour of the system is most
intuitively illustrated by a snapshot of the vison configuration and
of the corresponding spinon ground state probability density in
thermodynamic equilibrium at temperature T, as shown in Fig. 1.
The spinons are clearly localised in circular patches from which
the visons have been totally expelled.
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We can understand this phenomenon in terms of a competi-
tion between the spinon kinetic energy, which favours regions
with a low vison density28, and the vison mixing entropy, which
favours a uniform vison density. At finite temperature the balance
produces regions of the system from which the visons are
expelled, thus providing most of the support for the spinon wave
function. In the complementary region, the spinon wave function
is exponentially suppressed29–32 and the visons are in a trivial,
noninteracting state.

To confirm this intuition, we propose a toy one-spinon model
consisting of an empty circular patch of radius ξ, to which the
spinon is confined, while the exterior of the disc is thermally
populated with visons, i.e., pðnpÞ / e�npβΔv . The characteristic
free energy F(ξ) of the system as a whole is then given by

FðξÞ ¼ j20ts
ðξ þ ξ0Þ2

þ πTξ2ln ð1þ e�βΔvÞ: ð3Þ

The first term describes the kinetic energy of the spinon, while
the latter corresponds to the entropy of the exterior vison
configurations (henceforth, we send Δv→ 0 as it is negligible at
the temperatures of interest). The prefactor j20ts is set by the
ground state energy of an infinite circular well, where j0 denotes
the first zero of the Bessel function J0(x). The energy gap between
the ground state and the first excited state of the quantum well is
much larger than the temperature of interest, and thus we assume
the spinon to be in the ground state. The phenomenological
parameter ξ0 represents effectively the penetration depth of the
spinon wave function into the vison-rich region. We extract ξ0
numerically by plotting the energy EðξÞ ¼ j20tsðξ þ ξ0Þ�2 as a
function of disc radius ξ, averaged over exterior vison configura-
tions (see Methods section). There are then no adjustable
parameters left in the model.

Minimising (3) with respect to ξ yields the typical disc radius
ξ* ~ T−1/4 when ξ*≫ ξ0. To capture thermal fluctuations in the
radius ξ, we estimate ξ* using,

ξ2� � hξ2i ¼ 1
Z

Z R

0
dξ ξ2e�βFðξÞ; Z ¼

Z R

0
dξ e�βFðξÞ; ð4Þ

where R is a cut-off that captures the effect of finite system size in
the MC simulations. Other observables may be computed in the
same vein.

In Fig. 2 we show the MC data for the average vison density
〈np〉 and the typical patch radius ξ* for a system of size L2= 202.
The vison density is a monotonic function of temperature, and it

becomes vanishingly small below a characteristic temperature T*:
As the temperature is lowered, the spinon kinetic energy becomes
dominant in the free energy and the vison-depleted patch grows.
This behaviour continues until the size of the patch becomes
comparable to the size of the system. We find good agreement
between the MC simulation and the toy model for T > T*. In our
MC simulations on systems of finite size, there exists a competing
vison configuration in which, rather than forming a disc, the
spinon density (and the corresponding vison-depleted region)
forms a strip that wraps around the torus in one direction. Such a
configuration typically has a lower vison density and is
responsible for the kink observed in the data at the temperature
Td-s (see Supplementary Note 2).

The connected correlator Cρðrp; rp0 Þ ¼ hnpnp0 i � hnpihnp0 i is

plotted for a range of separations rp � rp0 in Fig. 3. The overall
agreement between the numerical results and the toy model over
a range of distances and temperatures demonstrates that our
intuitive picture is indeed correct. The visons remain correlated
over a characteristic distance 2ξ*, the typical diameter of the
vison-depleted patch, which shrinks with increasing temperature
[see Methods for details of the calculations using the disc model,
Eq. (4)]. This picture is not modified qualitatively upon addition
of weak short-ranged spinon–vison interactions (see Supplemen-
tary Note 3).

The toy model (3) predicts that ξ*∝ T−1/4. In a finite system of
size L2, this means that the vison density vanishes below a critical
temperature T* ~ tsL−4, as we indeed observe in the scaling
collapse in the inset of Fig. 2. By contrast, a thermodynamically
large system always contains a nonzero density ρs of spinons. In
this case, since the spinons are effecitvely hardcore bosons, we
expect the visons to form a density ρs of independent empty
circular patches. This construction applies to the dilute limit
where the patch size is significantly smaller than the average
distance between spinons, ξ� � ρ�1=2

s . Since the thermal spinon
density ρs � e�βΔs vanishes exponentially fast as T decreases33,
whereas ξ* increases only algebraically, the condition is expected
to hold in the temperature window of interest (1).

a b

*
0

Fig. 1 Equilibrium vison configuration and corresponding spinon ground
state density. a Vison configuration, {np}. The visons form an empty
circular patch surrounded by a disordered background. The inner dashed
line corresponds to the saddle point radius ξ* of the effective free energy
(3), while the outer dashed line equals the characteristic extent of the
spinon wave function, ξ*+ ξ0. b Ground state spinon density. The data are
taken from the MC simulations at T/ts= 10−3 for a system of size L2= 202

with periodic boundary conditions.

Fig. 2 Evolution of equilibrium vison density. We show the average vison
density per plaquette, 〈np〉 (blue circles, left vertical scale), and the typical
vison-depleted patch radius

ffiffiffiffiffiffi
hξ2i

p
(red squares, right vertical scale) as a

function of temperature. The numerical data are compared with the
predictions (dashed lines) of the circular disc free energy given in Eq. (3).
As temperature is lowered, the finite system makes a transition to a
system-spanning strip state (see Supplementary Note 2) at a temperature
Td-s, and becomes vison-free below T*. The solid lines through the MC data
are a guide to the eye. The calculations were performed on a system of size
L2= 202 satisfying periodic boundary conditions. The inset shows a scaling
collapse of 〈np〉 as a function of T(L/2)4/ts for L= 16 (green squares), 18
(red triangles), 20 (blue circles).
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Thermal quenches. The self-localisation of spinons has a number
of interesting consequences. Suppose we initialise the system in
thermodynamic equilibrium at some finite temperature T0, where
the condition discussed above, ξ� < ρ�1=2

s , is satisfied. Let us then
lower the temperature at a constant rate and follow the evolution
of the spinon density ρs. The largest energy scale relevant to
spinons is their cost Δs, and one therefore expects ρs � e�βΔs if
the process is adiabatic. However, the spinons are localised in
well-separated patches. To remain in equilibrium as the tem-
perature is lowered, the spinons must annihilate with one another
pairwise to reduce their density. They have two annihilation
pathways: via tunnelling between two patches—a process which is
suppressed in distance due to the localisation of the spinon wave
function—or via motion of the patches. The latter process is also
slow since it requires a coordinated change in the vison config-
uration without any energetic driving. Hence, if the cooling rate is
sufficiently large, spinon annihilation processes cannot maintain
equilibrium and ρs develops a plateau.

On the other hand, as the temperature is lowered, the patches
continue to grow at a comparatively fast rate, since the process
merely requires the (energetically favourable) pairwise annihilation
of visons at the edge of each patch. This will progress until the
patches eventually come within reach of one another and the
spinon annihilation can resume on timescales that are fast
compared to the temperature variation. This happens at the
threshold T� � tsρ

2
s . From this time onwards, the spinon density

ρs resumes its decay; however, it is kinematically locked to the
temperature via the relation T � tsρ

2
s . In other words, the spinon

density now decreases at an anomalous, out-of-equilibrium rate,
ρs � ffiffiffiffi

T
p

. A simple stochastic modelling to illustrate this out-of-
equilibrium behaviour is presented in Supplementary Note 5.

Notice that, at this point, if one were to reverse the direction of
the temperature variation, upon increasing T the patches shrink
and the spinon density ρs again remains fixed at a value that is
much higher than its equilibrium counterpart. This plateau

persists until the temperature Tth is reached, where
ρs ’ e�Δs=T th , at which point the density resumes increasing
along the adiabatic curve. One can therefore engineer corre-
sponding hysteretic loops, illustrated schematically in Fig. 4.

We note that the plateaux in ρs not only signal a thermodynamic
quantity being invariant, but also indicate to a large extent that the
positions of the spinons (vison-depleted patches) do not change
(their drift motion being a slow process), leading to remarkable
memory effects. Any experimental techniques that provide access to
the spinon density or its spatial correlators will likely measure
signatures of this hysteretic, nonequilibrium behaviour. For instance,
the spinon density ρs can be directly related to the magnetic
susceptibility, χ ~ ρs, which can be probed either by thermodynamic
measurement or nuclear magnetic resonance through the Knight
shift34,35. In thermal equilibrium, ρs is exponentially suppressed due
to the large spinon gap. However, if the system is cooled rapidly, the
aforementioned nonthermal evolution of the spinon density ρs
manifests itself in an enhancement of χ with respect to the
equilibrium value, which may be detected in experiments.

Our results can also be expected to have significant repercus-
sions on transport properties where visons and/or spinons
contribute (e.g., thermal transport36). The largest effect will likely
be from the vison density (and thence their flux), which is
reduced by a factor 1− πρs〈ξ2〉 due to the spinon patches, and
correspondingly acquires a modified temperature dependence.
On the other hand, we have already discussed how the spinon
motion is expected to be slow, either via tunnelling from one
patch to another area of the system that happens to be sufficiently
vison-depleted, or via patch drift. This behaviour is in stark
contrast with the regime in which the visons are sparse or absent
and spinons can propagate freely throughout the system.

Discussion
We studied the implications of nontrivial mutual statistics and
fractionalisation on excitation densities and their correlations in

Fig. 3 Equilibrium real-space vison correlations. Connected vison correlator Cρ(r), r= (x, y), at two temperatures (marked for reference also in Fig. 2),
a, c T1/ts= 2.3 10−3 and b, d T2/ts= 9.6 10−3. a, b correspond to the MC data, while c, d are the predictions of the empty disc model. As temperature is
increased, the typical size of the vison-depleted patch shrinks and the length scale over which the visons are correlated is correspondingly reduced. The
calculations were performed for a system of size L2= 202 satisfying periodic boundary conditions.
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toric-code-inspired Z2 QSLs at finite temperature. We considered
a temperature regime of particular experimental interest in which
the low-energy visons are populated thermally, while the ener-
getically costly spinons hop coherently. The balance of spinon
kinetic energy and vison configurational entropy leads to the
emergence of vison-depleted patches in which the spinons remain
localised. Similarly to the way in which ferromagnetic order is
favoured by the kinetic energy of a single hole in the Nagaoka
effect, here the kinetic energy of a spinon favours vison-free
regions in the system. The size of the patches is determined by
temperature, with a typical radius that scales as T−1/4.

We highlighted important consequences of this phenomenon in
the nonequilibrium behaviour of the system in response to tem-
perature ramps. The diffusive motion of the patches is slow, whilst
the rate at which they can grow or shrink is energy-driven and
hence significantly faster. Since the spinons must annihilate pairwise,
this means that the spinon density ρs readily falls out of equilibrium
upon cooling the system and becomes kinematically locked to
ρs � ffiffiffiffi

T
p

. The excess of spinons with respect to their equilibrium
density at the same temperature directly affects experimentally
relevant quantities such as the magnetic susceptibility and transport
properties. Since the effect is inherently due to the combination of
nontrivial mutual statistics and fractionalisation of the excitations, its
observation would represent an important fingerprint of QSL
behaviour. Furthermore, the localisation of spinons on mobile pat-
ches would also serve as an indirect signature for the visons, which
have hitherto remained elusive in experiments37.

While the effective model that we discuss, Eq. (2), is derived
using perturbation theory (see Supplementary Note 1), we expect
that our main conclusions will be applicable outside of this per-
tubative limit. Indeed, the phenomena that we have described are
a direct consequence of (i) the mutual statistics between spinons
and visons, and (ii) the separation of energy scales. There is hence
a strong reason to believe that these phenomena are robust even
when the quantum fluctuations are more appreciable, so long as
those prerequisites hold. In particular, spinons and visons remain
good quasiparticles as long as the system is not in the immediate
vicinity of a confinement/Higgs transition.

So far we have ignored for simplicity any interaction terms
between the quasiparticles. While these terms are generally
expected, so long as they do not cause the quasiparticles to
condense, they only affect the phenomena we discuss quantita-
tively and not qualitatively. Indeed, interactions between visons
would merely alter the form of the classical entropic term in Eq.
(3); and short-ranged interactions between spinons are altogether
negligible in the regime where the size of their patches exceeds the
characteristic interaction length scale. The only couplings worth
investigating in detail are those between spinons and visons,
through which the latter can act as diagonal disorder for the
former thence also leading to localisation. As we discuss in
Supplementary Note 3, in systems satisfying the condition (1),
this effect alone is too weak to lead to the formation of well-
defined depleted patches.

It is interesting to draw an analogy between the mechanism
discussed in our work and the behaviour of type-I super-
conductors. Indeed, the expulsion of visons from spinon patches
operates in a similar manner to the Meissner effect where mag-
netic vortices are expelled from the superconductor, driven in
both cases by a reduction in the quantum kinetic energy of the
system38. The fact that a very closely related mechanism operates
robustly in real materials, leading to experimentally measurable
properties, supports the claim that our results are not inherently
limited to the theoretical model considered in our work.

We therefore expect our results to apply to gapped Z2 spin
liquid candidate materials. For the gapless Z2 spin liquids hosted
by Kitaev materials, there exists a temperature regime similar to
Eq. (1), where the spinons remain quantum coherent whereas the
visons are thermally populated. It would be interesting to
examine to what extent our results may be generalised to
this case.

We note that interference effects also play a role in topological
systems with more exotic statistics between the quasiparticles. As
shown in ref. 28, one may generally expect localisation effects,
although there are important quantitative differences with respect
to the time-reversal-symmetric Z2 case. Moreover, if we consider
for instance ZN theories, the entropy of the exterior vison con-
figuration in Eq. (3) increases, S / lnN , favouring a smaller
vison-depleted region. All these, as well as the case of non-
Abelian statistics, are interesting directions for future work.

Other interesting and open questions include the role of dis-
order, in particular on transport properties, if it is capable of
localising the spinons or pinning the visons in a way that sig-
nificantly alters the circular shape of the patches. One could also
consider how the mechanism generalises to higher-dimensional
systems (d > 2), both in topological as well as fractonic systems.
Mutual statistics is likely to produce similar interference effects;
however, dimensionality will play an important role, in particular
because topological quasiparticles embedded in higher dimen-
sions usually take the form of extended objects (e.g., closed loops
or membranes). Understanding how these quasiparticles may
become localised is a challenging and interesting question in its
own right39.

Fig. 4 Nonequilibrium response of the spinon density to a temperature
cycle. a Schematic illustration of the nonequilibrium spinon density. The
system is initially prepared in equilibrium at temperature Tb. If temperature
is then lowered at a sufficiently large rate, ρs falls out of equilibrium—the
patches grow in diameter but their diffusive motion is slow. At Tc, the
typical separation of the patches becomes comparable to their radius ξ, and
the closest pairs begin to annihilate. The density then remains kinematically
locked to 1/ξ2 as pairs continue to annihilate. If the direction of temperature
variation is then reversed at Td, ρs develops another plateau as pairwise
annihilation of spinons ceases and the diameter of the patches shrinks. This
continues until a sufficiently high temperature, Te, is reached at which
thermodynamic equilibrium is restored. The behaviour of the vison-
depleted patches at each of these temperatures is depicted in b–e. The
patches are qualitatively represented by the solid circles and identified by
the colour of their Voronoi cell.
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Finally, in our simulations we observed an instability in the
shape of the patches at low temperature (from circular to strip-
like, see Supplementary Note 2). While in our case it is merely a
finite size effect due to the spinon wave function overlapping with
itself across the periodic boundary conditions, it nonetheless
suggests that a similar (possibly nematic) instability may occur in
a thermodynamic system when the patches approach one
another. Investigating this instability is an interesting future
direction, as it affects the spectral properties of the spinons, and
possibly alters in a measurable way the response properties of the
system.

Methods
Monte Carlo simulations. The thermal average of an observable O that is diagonal
in the plaquette operators assumes the form

hOi ¼ 1
Z

X
fnpg

TrOðfnpgÞ exp½�βHsðfnpgÞ � βNvΔv �; ð5Þ

where Hs({np}) is the spinon tight-binding Hamiltonian (2), the trace is over the
spinon degrees of freedom given a vison configuration {np}, and Nv= ∑pnp is the
total vison number. Z ¼ P

fnpge
�βNvΔv Tre�βHsðfnpgÞ is the partition function of the

system.
Averages of the form (5) can be evaluated efficiently using Markov chain Monte

Carlo (MC) applied to the vison degrees of freedom {np}. The proposed updates of
the system must however respect the constraint (when imposing periodic boundary
conditions) that the total flux threading the lattice, Φt= ∑pπnp, equals an integer
multiple of 2π (equivalently, the total number of vison excitations must be even).
Note that the global fluxes threading the torus are chosen to vanish. We make use
of the following discrete update, which explicitly preserves the parity of the total
number of vison excitations:

(i) choose two plaquettes p, p0 (with p≠ p0) at random, and propose the
corresponding update to the vison configuration:

np ! n0p � 1� np;

np0 ! n0p0 � 1� np0 ;

(i) construct the new spinon tight-binding Hamiltonian H0 � Hsðfn0pgÞ by
drawing a string γpp0 between the two flipped plaquettes, i.e., setting Ass0 !
Ass0 þ π along the bonds belonging to the path, hss0i 2 γpp0 ;

(ii) diagonalise the new spinon Hamiltonian H0
s to obtain the full energy

spectrum;
(iii) accept the proposed update according to the Metropolis acceptance

probability: minð1; tre�βH0
=tre�βHÞ, where H=Hs+NvΔv.

The initial state of the system is set using a random distribution of visons living
on the plaquettes with density ρv= 1/2 (using even system sizes only, which implies
that ρvL2 is even, as required). The system is then gradually cooled using O(104) MC
sweeps, where one MC sweep of the system is equal to L2/2 individual MC steps of
the form (i)–(iv). For example, in our simulations of a system of size L= 20,
decreasing temperatures Tn are taken between T/ts= 0.1 and T/ts= 2.5 10−4, in 27

logarithmically-spaced increments, with an equilibration time tn ¼ d4 expðα=TnÞe,
where α is chosen such that ∑ntn ~ 104. Measurements are then made after this time
at each temperature Tn. The parameters in the above cooling protocol are chosen to
ensure that the system remains in equilibrium for each measurement. This was
checked by calculating the system’s characteristic relaxation time, deduced from the
decay of the vison autocorrelation function, at several temperatures throughout the
cooling protocol (taking care to account for metastability). Finally, the results are
averaged over 29 independent cooling histories.

In the limit βΔv≪ 1, the vison energy cost can be safely neglected. We have
indeed checked explicitly that adding a small vison chemical potential contribution
to the energy of the system does not alter our results quantitatively. Further, one
may show using the effective disc free energy that our results are likely to be
qualitatively unchanged as long as Δv≲ T* ~ ts/L4. The vison chemical potential
only has an appreciable effect when T ≳ Δv≳ T*, in which case, the energetic
(rather than entropic) cost of visons becomes substantial, and consequently their
density is trivially suppressed.

Spinon ground state energy. The empty disc model assumes that the spinon
energy E(ξ), corresponding to a disc of radius ξ surrounded by disordered visons,
can be parametrised as

EðξÞ ¼ j20ts
ðξ þ ξ0Þ2

: ð6Þ

The numerator j20ts is fixed by the large ξ behaviour—in this limit, the energy
should be asymptotically described by that of a free particle in an infinite circular
well of radius ξ. Hence, j0 is the first zero of the Bessel function J0(x). The

parameter ξ0 represents phenomenologically the penetration depth of the spinon
wave function into the disordered vison background surrounding the empty
circular patch.

In order to fix the value of ξ0, we sample random configurations of visons in
which there exists an empty disc of radius ξ, and in the complementary region the
visons appear randomly with probability 1/2 per plaquette:

pðnpÞ ¼
0 if jrpj< ξ;
1
2 otherwise :

(
ð7Þ

The resulting ground state energy of the spinon is then averaged over the
exterior vison configurations. The resulting averaged energy is plotted in Fig. 5, and
a fit to Eq. (6) is performed, leading to the value ξ0= 1.64(2). This value does not
exhibit significant variation with system size L.

The same method may be applied to the strip vison configuration (discussed
further in Supplementary Note 2), also shown in Fig. 5, in which the spinon wave
function wraps around the torus in one direction. There are two such
configurations in a square system with periodic boundary conditions. The energy
of a strip of width 2ξ may be parametrised as

EðξÞ ¼ π2ts

4ðξ þ ~ξ0Þ
2 : ð8Þ

Fitting the numerical data with this function gives a value ~ξ0 ¼ 1:565ð3Þ.

Effective empty disc model. The average area π〈ξ2〉 of the vison-depleted patch
at a given temperature T= β−1 may be calculated using the disk free energy in
Eq. (3):

hξ2i ¼ 1
Z

Z R

0
dξ ξ2e�βFðξÞ; ð9Þ

where Z ¼ R R
0 dξ e�βFðξÞ . Since for temperatures satisfying T≫ Δv the exterior

region has a vison density of 1/2, the average vison density over the system as a
whole is

hnpi ¼
1
2

1� hξ2i
R2

� �
: ð10Þ

Further, since the model assumes that the vison occupation numbers are
perfectly correlated within the empty patch, and uncorrelated outside, we may
approximate the connected vison correlator in the following way. For two
plaquettes separated by the vector r, with r= ∣r∣, the number of correlated pairs
that reside within the disc of radius ξ is given by

Aðr; ξÞ ¼ Θð2ξ � rÞ 2ξ2 arccos
r
2ξ

� �
� r
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ξ2 � r2

q� �
; ð11Þ

i.e., the area of intersection of two circles, each with radius ξ, whose centres are

Fig. 5 Parameterising the spinon ground state energy. Average ground
state energy of a spinon subjected to a vison distribution in which there
exists an empty disc of radius ξ (blue circles), or the vison-depleted region
forms a strip of width 2ξ that wraps around the torus in one direction (red
triangles), surrounded by a disordered region of π-fluxes with average
density 1/2. The dashed and dotted lines correspond to the best fit to
functions shown in the legend. The data are averaged over 250 flux
realisations in a system of size L2= 402, and the error bars denote the
standard deviation of the energy at a given disc radius, not the error in the
mean. The parametrisation chosen for E(ξ) on the vertical axis is merely a
matter of convenience.
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separated by a distance r. Θ(x) is the Heaviside step function. As required, A(r; ξ)
vanishes for r > 2ξ, and A(0; ξ)= πξ2. The density-density correlator may then be
approximated by the cylindrically symmetric function

CρðrÞ ’
hAðr; ξÞi
Aðr;RÞ � hξ2i2

R4 : ð12Þ

The predictions of Eqs. (10) and (12) are plotted in Figs. 2 and 3, respectively.
In Fig. 6 we compare the analytical expression for the correlator Cρ(r) as a function
of temperature, for a range of distances r, with the corresponding MC data.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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