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Percolation of heterogeneous flows uncovers
the bottlenecks of infrastructure networks
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Whether it be the passengers’ mobility demand in transportation systems, or the consumers’

energy demand in power grids, the primary purpose of many infrastructure networks is to

best serve this flow demand. In reality, the volume of flow demand fluctuates unevenly across

complex networks while simultaneously being hindered by some form of congestion or

overload. Nevertheless, there is little known about how the heterogeneity of flow demand

influences the network flow dynamics under congestion. To explore this, we introduce a

percolation-based network analysis framework underpinned by flow heterogeneity. Thereby,

we theoretically identify bottleneck links with guaranteed decisive impact on how flows are

passed through the network. The effectiveness of the framework is demonstrated on large-

scale real transportation networks, where mitigating the congestion on a small fraction of the

links identified as bottlenecks results in a significant network improvement.
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Recent theoretical advances in network science have con-
siderably contributed to our understanding of complex
systems, cutting across many disciplines from the social

and technological sciences to the fields of ecology and biology1–12.
In many modern studies, percolation theory13 has been fre-
quently employed to characterize the structure, functionality, and
resilience of network systems. In this approach, link failure is
simulated by a percolation model which progressively removes
links from the network14,15. The impact is usually measured via
a reduction in the size of the network’s largest connected
component, or giant component (GC), as links are gradually
removed16–18. Different strategies for simulating link failures, e.g.,
random (error) or targeted (attack)19, make it possible to study a
range of different topological characteristics.

In real infrastructure networks, however, pervasive phenomena
such as various forms of congestion (e.g., traffic jams in trans-
portation or packet congestion in communication networks)
reduce the quality of flow movement on links in a continuous
manner rather than necessarily causing a complete failure. To
consider this, link-level flow dynamics on a network G can be
modeled by associating each link eij (connecting node i to node j)
with its own “quality” attribute qij∈ (0, 1], which at any time
indicates the link performance relative to an observed or pre-
determined maximum level of performance20,21. For example, in
a road traffic network with the speed on each road changing
temporally, link quality qij can be defined as the ratio of instan-
taneous traffic speed to the speed limit of the link eij22,23, or in a
communication network, quality can be defined as the instanta-
neous delivery rate of packets flowing along a link24.

Percolation models have been used to study the organization of
link-qualities in networks23,25,26. The basic concept requires
examining a single network G which may change in time, but at
each particular time, the structure and link qualities represent the
system’s state. The percolation process on G may be seen as a
function of a threshold ρ where 0 ≤ ρ ≤ 1. For any specific
threshold ρ, the idea is to delete any link in G with quality qij for
which qij ≤ ρ, leaving the subnetwork Gρ; see the process on a
small network in Fig. 1. We can then gain insights into the net-
work G’s properties by monitoring the geometrical phase tran-
sitions in Gρ as ρ varies from ρ= 0 to ρ= 1. (Note that the whole
percolation process is performed on one network snapshot, thus
the quality of links representing the state at that snapshot remain
fixed during the process.)

Of special interest is the critical percolation threshold ρ= ρc at
which the GC suddenly fragments into components of smaller

size. The percolation threshold ρc is an informative measure of
the global quality of network structure, indicating that the net-
work fails to provide global connectivity only with paths of links
having quality above ρc24,27,28. While this generic critical phe-
nomenon is of vital importance for characterizing networks, we
will show that limiting attention exclusively to the GC and its
sudden fragmentation reveals only a part of the full picture when
studying real-world problems.

The primary goal in many critical infrastructure networks such
as communication, power distribution, and water supply systems
is to serve the demand for a certain amount of flow between each
pair of nodes; we refer to such systems as “demand-serving net-
works.” In reality, the flow demand is often distributed hetero-
geneously over the origin–destination (O–D) node pairs in the
network. For example, in transportation networks, the passenger
travel demand is much larger between O–D points when one or
both of them are hotspot locations29. The larger the flow demand
between two nodes, the more crucial is their connecting paths30.
When studying percolation in demand-serving networks,
although the global connectivity is lost at percolation criticality,
yet a substantial proportion of the network’s flow demand might
be between O–D node pairs that remain connected in the sub-
critical phase. For example, if the bulk of the flow demand is
contained within isolated small and medium-sized clusters
(resulting from the GC fragmentation), the network can remain
highly functional even after the GC collapse (see the example in
Fig. 1b). In other words, the global dynamics in demand-serving
networks is not only controlled by the structure and organization
of link qualities, but also by the distribution of the flow demand.

The goal of the present paper is to add further realism to
percolation-based network analysis by the inclusion of hetero-
geneous flow demand. We restrict our attention, first to real
transportation networks as exemplary instances of demand-
serving networks, but then demonstrate the generality of our
proposed analysis. We introduce a theoretical framework to
quantify the impact of each link’s quality (congestion) on flow
movements through the network and use it to identify the net-
work bottlenecks. We show that the percolation analysis sug-
gested here can lead to different conclusions compared to those
obtained solely from studying structural critical phenomena.

Results
The case of real infrastructure networks. We demonstrate the
application of the proposed framework, on the bus and tram
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Fig. 1 Percolation on an example demand-serving network. a Network G with size n= 5, where quality qij of each link eij is color-coded (according to the
color-bar). Matrix F quantifies the flow demand between all pairs of nodes which sums up to 100 units in total. b The percolation process is simulated by
increasing a threshold ρ while removing links eij with qij≤ ρ. Subnetwork Gρ is visualized at different ρ’s with its corresponding affected (red) and unaffected
(blue) flow demand color-coded in matrix F. In this example, by definition, the system collapses at ρc= 0.4, when the 5-nodes strongly connected GC
disintegrates into two strongly connected components of sizes 2 and 3, while unaffected demand (UD) is still at 75%. The reliability of the network G is
α= 0.65, found by calculating the area under the curve of UD versus ρ.
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(on-road) public transportation (PT) systems in two major
Australian cities, Melbourne and Brisbane, modeled using smart-
card transaction data collected during September and October
2017 in Melbourne and over March 2013 in Brisbane. On-road
PT systems are in constant conflict with road conditions, such as
crowds, traffic, and signals, all negatively affecting the traveling
flows by decelerating the PT vehicles. Separation of high demand
O–D points by local pockets of congestion is an issue of con-
siderable concern in transportation systems. The concept of travel
demand distribution is fundamental to transportation theory31,
but to date, has not been considered in percolation-based analysis
of dynamical transportation networks.

We are first interested in the network representation of the
transportation system (PT services with disregard to the
passenger activity). In this respect, network G(V,E,t) at different
times t of each particular day, was generated using the data time-
stamped within the 2-h window centered at t (see “Methods” and
Supplementary Note 1). Each node i∈V corresponds to a cluster
of closely situated bus and tram stops. A directed link eij∈ E
connects its source node i to its target node j, if there is at least
one PT service visiting node i and then j without any intermediate
stops. A directed path from node o to node d is a sequence of
links (all in the same direction) joining a sequence of distinct
nodes, where the first node is o and the last node is d. In the
second step, for each network G, the flow demand matrix F=
[fod] was generated with fod counting the number of passengers
traveling from node o to node d, respectively, as the origin and
destination points. Melbourne’s on-road PT network was
comprised of approximately an average of 5500 (2800) nodes,
10,500 (4500) links, and a flow demand derived from a part of
470,000 (210,000) trips performed during a normal weekday
(weekend day). Brisbane has a relatively smaller network with
approximately 1400 nodes and 3400 links on average over a
regular weekday.

In order to quantify the link-level road conditions, we assign a
quality attribute to each link eij, calculated as

qijðtÞ ¼
min
t0

ðτijðt0ÞÞ
τijðtÞ

; ð1Þ

where τij(t) is the travel time on the link eij at time t of the day.
The quality attribute qij(t) indicates the effect of temporal link-
level congestion on flows passing through eij. At any point in
time, a high-quality link has relatively low travel time (or
equivalently high velocity) compared to the rest of that day. In the
following, for simplicity, we refer to the network and its attributes
without the time parameter t. Figure 2a, b shows the spatial
distribution of qij on the snapshot of the on-road PT network of
Melbourne and Brisbane at 8:00 A.M. on a typical weekday. Note
that the flow-demand matrix is determined from the passengers’
activity data, while the network G and its link qualities are
determined from PT vehicles’ activity data.

The percolation process on a snapshot of Melbourne’s PT
network is illustrated in Fig. 2c, indicating a percolation threshold
of ρc= 0.39 when global connectivity is lost. However, as our
analysis shows, over 80% of trips are between O–D node pairs
that still remain connected even though ρ has reached the
percolation threshold (when only the links with quality q > ρc are
present). This highlights a problem with interpreting ρc as a
reliability index (as per refs. 26,27,32) if the main interest is on
heterogeneous passenger flow demand. This motivated us to
develop a new approach to capture the reliability of hetero-
geneous demand-serving networks.

Unaffected demand and network reliability. In this study, link
removal in the percolation process should be viewed as a

hypothetical procedure that unpacks the organization of con-
gestion within a snapshot of the network in time. As explained
before, the procedure is built upon constructing the subnetwork
Gρ which inherits all the links from the original network G except
the most congested (lowest quality) links with qualities q ≤ ρ. By
gradually increasing ρ, and at each step removing the shell of
most congested links, the procedure extracts a series of subnet-
works Gρ, each providing a different level of flow movement on
the actual network. The impact of different levels of congestion
on flows can then be examined by studying the properties of
subnetworks Gρ, ρ∈ (0,1].

Our approach is based on monitoring what we refer to as
unaffected demand (UD), and requires keeping track of the flow-
demand between all O–D node pairs during the percolation
process. The network’s flow-demand is represented by the matrix
F= [fod] of order n equal to the network size, where entry fod is
the amount of passenger-flow from origin node o to destination
node d (see Fig. 1a). The matrix is normalized by dividing by the
total demand 1Tn F1n, to give F=ð1TnF1nÞ. (Here, 1n is a column
vector of all n elements equal to one).

Using F that gives the flow-demand between any O–D pair, we
can then calculate the UD as the percolation procedure proceeds
and as low-quality links are removed. At any threshold ρ, the flow
demand between an O–D pair is said to remain “unaffected” by
link removals if there is at least one directed path from o to d
remaining on Gρ. To assist in interpreting this, consider a link
that is part of a path that begins from origin node o and reaches
destination node d. When the link is removed (because it has
fallen below threshold in quality), then the fraction of the
demand f od=ð1TnF1nÞ remains unaffected by the link removal if
and only if there is still at least one other directed path from o to
d. We thus define UDρ as the fraction of the total flow between all
the O–D pairs that remain unaffected at threshold ρ of the
percolation process. In other words, UDρ is equal to the fraction
of the demand on G that can travel between their O–D nodes
without having to traverse any link with quality below the
threshold ρ. See “Methods” for the formulation of UDρ.

It is instructive to examine how UDρ varies with increasing ρ
on the example network shown in Fig. 1a, where the total volume
of flow demand is 100 by some arbitrary unit of measurement
and UD0= 100/100 initially. When ρ= 0.3 (Fig. 1b), two links of
the lowest quality (colored red) are removed, but this does not
affect the flow between any pair of nodes, and thus UD0.3= 1.
When ρ= 0.4, however, removal of the link 1→ 4 prevents flows
from reaching nodes 2 or 4 from either node 1, 3, or 5, by any
path on G0.4. The proportions of affected flows sum up to 25/100,
thus the UD drops to UD0.4= 0.75.

We now present our key index for assessing the reliability of
demand-serving networks. We define the demand-serving
reliability α, as the area under the curve of UDρ over the domain
of ρ (hatched area under the curve in Fig. 1b). In compact form,
this can be formulated as

α ¼
Z 1

0
UDρdρ ¼

Z 1

0

tr ðRρF
TÞ

1T
n F1n

dρ; ð2Þ

where tr(.) is the trace of the n × n square matrix. As seen in Eq.
(2), it is also possible to formulate UDρ, and as a result α, in
simple mathematical terms making use of the network’s so-called
reachability matrix R and the flow demand matrix F (see
“Methods”).

The meaning of UDρ and α, becomes clearer from viewing
plots as in Fig. 2d. In such plots, if UDρ rapidly drops at relatively
low ρ values, then most of the flow demand is constrained to
traverse low-quality (congested) links. This in turn lowers the
area under the curve of UDρ, and the reliability α will
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consequently be low. If UDρ does not drop rapidly until much
larger ρ values, then most of the demand is between node pairs
that are connected via paths of high-quality links, and the
reliability α will be high. Hence, reliability α gives an indication of
how well the flows pass between their O–D points given the
organization of congestion on the network. (See Supplementary
Note 2 on the relevance of the links’ flow-capacity to our
reliability analysis.)

Let ∣GCρ∣ be the size (number of nodes) of the GC in Gρ. In the
“Methods”, we show that when flow demand distribution is
homogeneous (i.e., the passenger flow fod is the same between all
reachable pairs of nodes o and d), then on any large-enough
undirected network, we have jGCρj � n:

ffiffiffiffiffiffiffiffiffi
UDρ

p
at any threshold

ρ during the percolation. Thus, only by assuming a uniform flow
demand over the network, UD is able to replicate the percolation
analysis based on monitoring the GC; this is also confirmed
numerically later in the paper. Second, with heterogeneous flow
demand, the above relation no longer holds, and the fall-off of
UD as a function of ρ provides its unique description of the
system dynamics. By aggregating UD’s description of the system,
α provides a simple and useful indication of network reliability.

Bottleneck identification. Improving the infrastructure networks
via protection or enhancement of a minimal set of links is cur-
rently receiving intense research interest20,33,34. Our framework
suggests a new approach for identifying network bottlenecks.
Here, inspired by the work on the maximum capacity paths
problem35, we introduce the link criticality score sij, which
quantifies the overall role of each link eij in impeding the
network flows.

Suppose there is a set of different directed paths Ψod that
connect node o to node d (see Fig. 3a). On each path ψ∈Ψod, we
search for the link with the minimum quality (Fig. 3b). Among
those particular links, we choose the link with the maximum
quality (Fig. 3c), denote it by e�od , and refer to it as the “limiting
link” associated with the O–D node pair (o,d). For simplicity, let
us assume that each link quality value on the network is unique.
Then, there will be only a single limiting link between any
reachable pair of nodes. For a link eij, if it is never found to be the
limiting link between a node pair, it will have a criticality score of
zero. If eij ¼ e�od for only a single pair (o,d), then the link
criticality score sij will be the fraction of the total demand that

flows from o to d, i.e.,

sij ¼
f od

1TnF1n
: ð3Þ

The index relies on the feature that, for a given O–D pair, during
the hypothetical percolation process, as soon as the threshold ρ
reaches the quality of the associated limiting link, removal of the
latter causes complete rupture of all paths between the O-D pair
on Gρ. This means the limiting link has the lowest quality, that
flows are constrained to traverse in order to travel between their
origin and destination nodes on the actual network G. If the link
eij is the limiting link between several node pairs (see
Supplementary Fig. 3A), Eq. (3) extends to

sij ¼
X

o;d2V;e�od¼eij

f od
1TnF1n

: ð4Þ

We have identified an important relationship that connects the
link quality (qij), the link criticality score (sij), and the network
reliability (α), namely X

eij2E
sij:qij ¼ α; ð5Þ

as proven in “Methods” (and illustrated in Supplementary
Fig. 3B). It can be rigorously shown that for any link eij,
increasing qij within a non-empty range will increase the network
reliability α, with the magnitude of increase being proportional to
sij (see Supplementary Note 3). (This is a nontrivial problem since
alteration of the quality of any link in the network can change the
criticality score of multiple links.) Therefore, after ranking the
links according to their criticality scores, a desired number of the
top-ranked links can be identified as network bottlenecks.

Numerical simulations were used to test how accurately the
ranking of links based on link criticality scores (CS ranking) can
identify network bottlenecks. To this end, first, a simple intuitive
method was used to find the true bottleneck links, i.e., the ground
truth. The method requires perturbing the quality qij of individual
links by a small positive amount ε (we chose this to be ε= 0.01),
one by one, and then ranking the links according to their ability
to perturb the reliability score α. The link whose perturbation
increases the reliability α the most is deemed to be the most
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Fig. 2 Real on-road public transportation (PT) networks. a, b The network representation of the PT system with color-coded link qualities q at t= 8 (8:00
A.M.), for Melbourne on 1 September 2017 (a), and for Brisbane on 1 March 2013 (b). c Percolation process on Melbourne’s network shown in (a). The size
of the giant component ∣GC∣ and the size of the second-largest component ∣SC∣ are plotted as functions of the threshold ρ. The critical threshold ρ= ρc is
determined as the point of maximal ∣SC∣ (vertical dashed gray line). d Percolation process on Melbourne’s network shown in (a). Unaffected demand is
plotted as a function of ρ (UDρ) which at percolation critical threshold shows the value of UDρc

� 0:8 (marked by dashed gray lines). The area hatched in
red corresponds to the reliability α of the network in (a). Streetmap layers in a and b ©OpenStreetMap contributors44.
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critical link etc. Through this brute-force procedure, the true
ranking (TR) of the criticality of all links are obtainable.

We applied the ranking schemes on random geometric graphs
(RGGs) with n= 100 nodes spread over the space [0,10]2

uniformly at random, and links connecting any pair of nodes
with distance less than r0= 1.5 (which ensures connectivity and
having over 300 links36).

To compare CS and TR rankings, we took the set of k top-
ranked links in each ranking and counted the number of common
links between them. Figure 4 shows the number of common links
between the CS and true top-bottlenecks of the network for k=
1, 2,…, 150, averaged over 500 realizations. We also compared
against the ranking obtained by the conventional index edge
betweenness centrality37 (EB), and a randomly shuffled ranking.
The set of CS bottlenecks was found to be almost exactly the same
as the set of true bottlenecks (TR) with (on average) 98–100% of
their elements matching for different k values. The EB and the
shuffled rankings were by far inferior to the CS scheme as Fig. 4
shows, although as might be expected, the EB ranking had a
higher accuracy compared to the shuffled ranking. Note that
unlike the brute-force approach used to find TR, the criticality

score s of all network links can be calculated via scalable
algorithms, e.g., our suggested modified Dijkstra’s algorithm (see
Supplementary Note 3).

Application to public transportation networks. We return now
to using the above tools to study the PT networks of Melbourne
and Brisbane. Figure 2c illustrates the percolation process on
Melbourne’s bus and tram (on-road) PT network (at 8:00 A.M.
on 1 September 2017) through ∣GC∣ and the size of the second-
largest component (∣SC∣) as functions of ρ. In practice, the per-
colation threshold is determined as the threshold ρ= ρc at which
∣SC∣ is maximal38. In Fig. 2c, the point of maximal ∣SC∣ captures
the GC collapse, however, this was not always the case at other
times and dates. The GC fragmentation during the percolation
process was often blurred out rather than demonstrating a drastic
change in ∣GC∣, or in other cases, appeared as multiple peaks in
∣SC∣ which makes it difficult (if not impossible) to identify the
critical threshold (Supplementary Fig. 4); ref. 39 reports similar
observations in the road network of multiple cities. The index α
evaluates the network according to the whole percolation process
and does not depend on the existence of a clear phase transition,
making the above issue irrelevant.

Figure 2d demonstrates the percolation process shown in
Fig. 2c, but this time with UD as a function of ρ. As pointed out
before, at the critical percolation threshold ρc= 0.39 where the
global connectivity on Gρ breaks down, we see that UD0.39= 0.8.
Thus, 80% of all the trips on the network G are between O–D
node pairs that remain connected after the breakdown of the GC,
and only via paths of links with q > 0.39. This empirically
demonstrates how characterizing a network based on ρc alone
can be misleading when flow demand distribution is hetero-
geneous. In effect, during the percolation process, UD does not
necessarily decline with the same rate as pairwise connectivity
(see Supplementary Note 4 and Supplementary Fig. 5). For
Melbourne’s PT network, the number of connected node pairs
on Gρ decreases faster than UDρ, meaning that demand is higher
within clusters of high-quality links in the network.

We also examined both reliability α and ρc on Melbourne’s
(Brisbane’s) PT network over the main functioning hours of the
system during September and October 2017 (March 2013),
separately for weekdays and weekends. Temporally, ρc had
relatively large fluctuations over the day, and there appeared to
be no repeating pattern on a day to day comparison (see Fig. 5a, c
for Melbourne and Brisbane networks, respectively). In contrast,
the proposed reliability measure α followed a clear daily pattern
(see Fig. 5b for Melbourne and Fig. 5d for Brisbane’s PT network)
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Fig. 3 Finding the limiting link between an origin-destination node pair. a A small network with color-coded link qualities q, where as an example, we
demonstrate the process to identify the limiting link between the O–D node pair (1,4) having a directed flow demand of f1,4. b The available paths from node
1 to node 4 (and path’s minimum-quality link) are 1→ 2→ 3→ 4 (e2,3), 1→ 5→ 2→ 3→ 4 (e2,3), 1→ 5→ 6→ 4 (e5,6), 1→ 5→ 6→ 9→ 4 (e5,6), 1→ 7→
8→ 9→ 4 (e7,8). c Among the minimum-quality links on these paths, e2,3 has the maximum quality. Just below the threshold ρ= 0.6, still, two paths
connect node 1 to node 4, but then with e2,3 removed, node 4 becomes unreachable from node 1 on G0.6. The limiting link associated with node pair (1,4) is
e2,3, thus, an increase in q2,3 will increase the lowest quality that the flow from node 1 to node 4 is constrained to interfere with. The ratio of f1,4 to the total
demand, is added to criticality score s2,3 of the link e2,3 to reflect the importance of its quality q2,3 for flow movement over the network.

Fig. 4 Assessing the accuracy of link criticality score index in identifying
the true bottlenecks. The true ranking of links (TR) in terms of their
improvement effect on network reliability α, is compared to rankings based
on link criticality score (CS), edge betweenness centrality (EB), and
randomly shuffled rankings of links. Each curve shows the number of
common links between the set of top-k true bottlenecks and top-k
bottlenecks of another ranking scheme. A ranking equal to TR leads to a line
lying on the diagonal dashed line.
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with variations that have a relatively small standard deviation.
(Supplementary Note 5 and Supplementary Fig. 6A, C provide
more details concerning ρc and α and their comparison.) The
approximately 10% drops in α at 8:00 and between 16:00 and
18:00 are associated with weekdays’ morning and evening peak
commuting periods when high rates of congestion and large
numbers of commuters predictably increase the conflict between
PT system and road conditions. Consistency of the daily
evolution of α (for both Melbourne and Brisbane networks) with
the circadian rhythm of urban human mobility and its low
variability over different days indicate its success in unraveling
the repeating daily pattern in complex interactions between major
constituents of the system, namely, supply network structure,
link-level congestion, and passenger flow demand (see Supple-
mentary Note 5 for more detail). The results also suggest that
Melbourne’s PT network is relatively stable over a day, despite
multiple periods of intense traffic, which is partially due to more
available PT services during the rush hours which increase the
number of links and thus network density (see Supplementary
Fig. 7).

Despite the larger flow demand and more extensive conges-
tions during weekdays, α was larger for weekdays compared to
weekends in Melbourne (Fig. 5b). This is because Melbourne’s PT
network is fine-tuned for weekday demand, operating with a
higher number of services during weekdays as compared to
weekends. The larger number of PT services not only resulted in a
larger number of network links but also led to a significantly
higher link density during weekdays when compared to weekends
(see Supplementary Fig. 7B). Higher link density of the network
on weekdays means the availability of more paths between nodes
and that if a path between two nodes includes congested links, it

is generally more likely that an alternative less congested path
exists. We also observed that in Melbourne’s PT network during
weekends a significantly larger proportion of the trips are to/from
the central business district (CBD) area, where the links are often
subject to a higher level of congestion than elsewhere in the
network. Lower link density of the network together with the
large proportion of the passengers traveling to/from CBD on
weekends, results in more conflict between flows and congestion
(that is what α measures) which is reflected with the lower
network reliability α during weekends. (From UD’s perspective, a
larger proportion of the network demand has to pass through
lower-quality links during weekends compared to weekdays.) In
Brisbane, however, although the network has more links during
weekdays, links (PT services) are supplying the transportation
between a larger number of nodes, which keeps the link density of
the network approximately the same between weekdays and
weekends. As a result, unlike Melbourne, α fluctuated within
approximately the same range during both weekdays and
weekends for Brisbane’s PT network (Fig. 5d). Yet, similar to
the case of Melbourne’s PT network, the daily evolution of
Brisbane’s PT network reliability α on weekdays had distinct
patterns from that of weekends.

Bottlenecks of real transportation networks. Link criticality
scores vary over time in temporal on-road PT networks. There-
fore, we calculated the mean criticality score of each link over the
course of the available data, and identified the network bottleneck
links as those with the largest mean criticality scores, separately
for weekdays and weekends. The identified bottlenecks were
found to be robust, appearing with high criticality scores on most
days (Supplementary Fig. 8).

The spatial distribution of link criticality scores over
Melbourne’s weekday PT network is portrayed in Fig. 6a (see
also Supplementary Fig. 9A for Melbourne’s weekends and
Supplementary Fig. 10A for Brisbane). Pockets of traffic
congestions and crowds, which decrease the quality of PT
network links, are usually formed around the high-demand urban
hotspots. As a result, links with large criticality scores were found
to be situated in urban hotspots and the areas surrounding them,
making the spatial distribution of link criticality scores in
surprising alignment with the urban morphology. Specifically,
Melbourne’s biggest urban shopping center was surrounded by
links with high criticality scores, and the top bottlenecks were
mostly distributed around the single most significant hotspot of
Melbourne which is the CBD. Furthermore, universities are good
examples of urban hotspots that are only fully active on weekdays.
Among the top bottlenecks of Melbourne’s network, we observed
links to and from major universities (Fig. 6b) emerging only on
weekdays (see Supplementary Fig. 9B). Given that the proposed
method does not incorporate any geospatial information from the
network, the surprising alignment between the locations pinned
by identified bottlenecks and the urban hotspots, suggests that the
method is capturing the actuality.

We also observed that four out of the top ten pain points on
Melbourne’s road network reported in the media40 are over-
lapping with or in very close proximity to our identified top
bottlenecks at morning rush hour. Since almost half of the
reported ten points do not have bus or tram services in conflict
with the road conditions, the results suggest that our methodol-
ogy does indeed work well.

Bottleneck amelioration. It is interesting to compare the effec-
tiveness of our proposed CS-based bottleneck identification
scheme, to other well-established bottleneck identification
schemes. In particular, we compare against the bottlenecks

a
Melbourne

b

c
Brisbane

d

Fig. 5 Reliability of the on-road public transportation (PT) networks.
a, b Temporal evolution of ρc (a) and α (b) for Melbourne’s PT network,
during weekdays (green) and weekends (purple). At each time t, curves
show the mean, and shaded areas indicate the standard deviation of values
around the mean, over September and October 2017. c, d Temporal
evolution of ρc (c) and α (d) for Brisbane’s network averaged over the days
in March 2013, separately for weekdays and weekends.
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identified based on the widely used edge betweenness (EB) cen-
trality measure, here referred to as EB bottlenecks. We also use an
extended version of the EB scheme, which incorporates the
demand distribution by weighting the O–D node pairs when
calculating the EB centrality of links, here referred to as Weighted
EB or simply WEB. Alternatively, bottlenecks can be identified
among the links removed at percolation criticality as used in
ref. 26, which we refer to as PC bottlenecks. These bottlenecks
termed “red bonds” in percolation theory41, glue the GC together
by connecting the communities of higher-quality links. (For a
more detailed description of the above approaches, see Supple-
mentary Note 6.)

To compare these approaches, we separately ameliorated the
bottlenecks of each type and monitored the response of the
network in terms of changes to the demand-serving reliability α.
In practice, the most obvious proposal for enhancing the
reliability of an on-road PT network is to reduce the conflict of
PT vehicles with road conditions at network bottlenecks, which
can be achieved, for example, by giving signal priority to PT
vehicles or allocating segregated (exclusive) PT lanes. Here, the
bottlenecks are taken to be the top 2% most critical links in
the network over time, according to each approach. Let B denote
the set of bottlenecks identified by one of the schemes.
We ameliorated the bottlenecks by synthetically increasing the
qualities of bottleneck links eij∈ B, to unity (qij= 1). Figure 6c
(Supplementary Fig. 9A) compares the impact of ameliorating the
bottlenecks identified by the four different approaches, as
functions of time during weekdays (weekends) in Melbourne;
see Supplementary Fig. 10B for Brisbane’s PT network.
Amelioration of the CS bottlenecks resulted in more than 23%
(26%) improvement in reliability α of Melbourne’s PT network,
on average during weekdays (weekends). However, on average
over both weekdays and weekends, amelioration of PC, EB, and
WEB bottlenecks, only increased α by approximately 16%, 8%,
and 6%, respectively. See Supplementary Fig. 10B, C for
comparison between the effectiveness of different types of
bottlenecks for Brisbane’s PT network.

The investigation was extended by verifying the impact of
bottleneck amelioration on reducing the delay in passenger travel
times. In order to calculate the delay caused by congestion, we
first generated a congestion-free copy of the network at each time
of a day by synthetically changing the actual travel time on each
link to the minimum travel time observed on that link during the
day. We assumed that each trip took place on the directed path
with the minimum sum of the link travel times, between its origin
and destination nodes. Then, for any particular network, the total
delay was calculated as the absolute difference between the total
travel time on the actual and the congestion-free copy of the
network. Delay indicates the extent of the impeding effect of link
congestions on passenger trips.

Separately for weekdays and weekends, we simulated the
amelioration of the top CS, EB, WEB, and PC bottlenecks (the top
2% most critical links based on each scheme) of Melbourne’s PT
network. The delay per passenger trip of 5.3 min (5.7 min)
decreased to 3.8 min (4.2 min) by ameliorating the CS bottlenecks
of weekdays (weekends). Figure 6d shows the delay per passenger
trip on the actual and ameliorated networks at different times
during the first five weekdays of September 2017; Supplementary
Fig. 11B extends the results to two months of data. The time
saved by amelioration of CS bottlenecks was 25% more than that
of WEB bottlenecks while it was twofold compared to those of EB
and PC bottlenecks. Ameliorating the top CS bottlenecks
saved close to 2,000 hours of passenger travel time during a
single morning peak period (7:00–9:00 A.M.), and approximately
11,000 hours of passenger travel time over a normal weekday.

The generality of the proposed framework. In order to
emphasize the generality of the proposed framework, we used
undirected RGGs as a generic proxy of spatial networks and
showed that the framework is able to reflect the true global flow-
properties of the network. Here, RGG structures were generated
by first distributing n= 2500 nodes uniformly at random on the
plane ½0; ffiffiffi

n
p �2, and then connecting any pair of nodes with

ba sij

CBD area

Shopping center

c

d

Fr
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M
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Fig. 6 Bottleneck identification and amelioration on a real-world network. a Spatial distribution of the link criticality scores sij over Melbourne’s public
transportation (PT) network during weekdays. The central business district (CBD) and the biggest shopping center in Melbourne are pinned on the map.
b Top 100 weekday bottlenecks of Melbourne’s PT network, identified based on link criticality scores. Major university campuses outside Melbourne’s CBD
area are pinned on the map. c, d The impact of ameliorating perturbations on bottlenecks identified by different approaches, i.e., criticality score (CS), edge
betweenness centrality (EB), demand-weighted edge betweenness centrality (WEB), and percolation criticality (PC). The number of identified bottlenecks
by each approach is equal to 2% of the average number of links that appear on the network. c Daily evolution of α calculated for the actual (yellow) and
ameliorated networks associated with different bottleneck identification approaches. Results show the average (solid line) and standard deviation (shaded
area) over the weekdays of September and October 2017. d Delay per trip (in minutes) caused by road congestions, on the actual and improved networks.
Streetmap layers in a and b ©OpenStreetMap contributors44.
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Euclidean distance below r0= 1.6. We chose r0 to be greater than
the threshold rc0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ðnÞ=π

p
� 1:58 for which it is known42 that

the network will be a.a.s. connected. The quality of each link was
drawn uniformly at random from (0,1], making percolation a
random link removal process depending only on the network
topology. RGGs are built of clusters with high intra-connectivity,
glued together by bridging links (Fig. 7a). This structure
demonstrates a clear phase transition during the percolation
process, as removal of a sufficient number of intercluster links
causes an abrupt fragmentation of the GC (Fig. 7b).

Over each RGG instance, we distributed a fixed volume of flow
demand, according to three different scenarios, namely, uniform,
short-range, and long-range. In the uniform demand scenario, the
total flow demand volume was divided equally among all
reachable (o,d) node pairs; i.e., all entries of F, which correspond
to a reachable node pair, are equal to a constant. Let Dod be the
Euclidean distance between nodes o and d, and Dmax the distance
between the most distant node pair in the network. Then, to
generate the short-range (long-range) flow demand scenarios, we
picked a node pair (o,d) uniformly at random and then with
probability 0:2e�0:2Dod (0:2e�0:2ðDmax�DodÞ) added one unit to the
volume of flow demand between that O–D pair fod, and repeated
this until the fixed total flow volume was completely allocated to
the node pairs over the network.

We simulated the percolation on 100 realizations of RGG
structure for each one of the above flow demand distributions.
During the percolation, we monitored the GC and SC, which are
independent of the demand distribution, and also monitored the
UD for different demand distribution scenarios (Fig. 7b, c).
Remarkably, in Fig. 7c for the case of uniform flow, the
percolation diagram as a function of ρ is the same for UD as it
is for the square of ∣GC∣ (normalized by the network size). Thus,
simulation results confirm the previously discussed theoretical
relationship UDρ � ðjGCρj=nÞ2 between evolution of the GC and
UD when demand is uniformly distributed over the network. This
shows that by assuming a uniform flow demand over the
network, our method can provide an analogous analysis to that of
monitoring the GC. Furthermore, UD shows logical sensitivity to
the nonuniformity of flow demand distributions over the
network. Long-range flows are more likely to get caught up in

lower-quality links because each time they have to pass between
clusters their choices become limited to a few bridging links. This
resulted in lower reliability (α= 0.43) compared to when the
flow-demand is uniformly distributed (α=0.50). In contrast,
short-range flows are more likely to stay within the well-
connected clusters of RGG, where there are more alternative
paths available to bypass low-quality links. Hence, the network is
more reliable for a short-range flow demand, which was fairly
characterized by a higher α(= 0.58).

Here, we use RGG networks with different flow demand
scenarios to verify the success of link criticality score in
identifying network bottleneck links. We use the link overlap
η∈ [0,1] to determine whether a link belongs to a community
(high overlap) or acts as an intercommunity bridge (low overlap);
overlap of a link eij is defined as ηij ¼ jΓðiÞ\ΓðjÞj

jΓðiÞ∪ ΓðjÞj�2 where Γ(i) is the
neighborhood set of node i. In Fig. 7a, links are color-coded
according to their overlap index. The criticality score of intra-
community (high overlap) links was found to be higher for the
short-range flow demand scenario compared to the long-range
scenario (Fig. 7d). This is consistent with the fact that short-range
flows are more likely to have their origin and destination within a
community, which makes the flow-carrying role of intra-
community links more critical. Inter-community (low overlap)
links have a stronger role in bridging between the remote points
of the network, thus, the larger the proportion of the demand
flowing between the distant nodes, the more critical these links
become for the network. As expected, the criticality score of inter-
community links was higher in the long-range flow scenario
compared to the short-range flow scenario.

Discussion
Percolation analysis is a powerful tool for understanding the
global flow properties of networks. However, most conventional
percolation-based analyses become less effective in the presence
of a heterogeneous flow demand between different node pairs
over the network. We have developed a method that makes use of
a newly introduced percolation-driven property, namely, UD, in
order to quantify network reliability. Based on the concept of UD,
we presented a bottleneck identification scheme, that proved
more effective than other state-of-the-art methods reported in the

b

c

d ×10-4a

Fig. 7 Capturing true properties of the demand-serving networks. a A sample RGG of size n= 400 with color-coded link overlap index η. b Normalized
∣GC∣ and ∣SC∣ during the percolation process averaged over 100 realizations of RGG structure with n= 2500 nodes and random link qualities. c Unaffected
demand (UD) versus ρ for different flow demand scenarios on the RGG structure, averaged over 100 realizations. As predicted, the evolution of the GC size
during the percolation process is approximately equal to n:

ffiffiffiffiffiffiffiffiffi
UDρ

q
(see Methods) when the flow demand is uniform, which is the reason for the similarity

between the blue and the dashed black curves. d Link criticality score s versus link overlap η, compared for short-range and long-range flow demand
scenarios. See Supplementary Note 7 for extension of this analysis to the square grid and random graph structures.
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literature, in terms of both improving the reliability and reducing
the delay imposed on flows by congested links. Note that the
direct effect of congestion organization on travel time delay
cannot be studied using the existing percolation models, because
the removal of a congested link simply cannot help quantify the
effect of its congestion on flow travel times. But it is an intriguing
problem that suggests an important direction for future research.

Our proposed ideas are generally applicable to demand-serving
networks including most physical infrastructures where there is an
inherent demand for movement of an uneven amount of flow
between different pairs of nodes in the network. With the ever-
increasing availability of detailed data from real-world critical
infrastructure networks, this study can be a helpful starting point
for new research avenues and the development of more sophis-
ticated theoretical tools to analyze flow demand, in order to
achieve a more profound understanding of these complex systems.

Methods
Smart-card data. The data used in the real-world case study, are the smart-card
transaction records, collected by the automated fare collection system for PT in
Melbourne and Brisbane, Australia. Passengers are supposed to perform a scan-on
transaction at the start and a scan-off at the end of their trip. Every smart-card
transaction record contains multiple attributes, namely, anonymized card identi-
fier, PT mode (bus, tram, or train), vehicle identifier (a unique number for each bus
or tram vehicle), stop identifier, time-stamp, and transaction type (scan-on/off).
For Melbourne’s network, we used an average of over 2,120,000 and 912,000 daily
transactions associated with all PT modes on weekdays and weekends, respectively,
collected during 61 days of September and October 2017. Brisbane data was col-
lected during March 2013. After applying a cleaning process, we used the data to
generate the temporal network of on-road PT supply and its corresponding pas-
senger travel flow demand (see Supplementary Note 1 for details).

Network and demand matrix construction. To generate the network repre-
sentation of the on-road PT system on a particular day at time t, the structure and
link attributes were estimated from the smart-card transactions time-stamped
within the window [t− δ/2, t+ δ/2]. The time window length δ, was set to 2 hours
for experiments presented in the main article. First, we clustered the closely located
PT stops and mapped each cluster to a node. Using information of smart-card
transactions we derived the trajectory of every vehicle on the network, and if there
was at least one vehicle traveling from one of the stops associated with node i to a
stop associated with node j without stopping, we added a direct link eij starting at
node i and pointing at node j. For each link eij the average travel time τij over the
time window was also calculated based on the information from the tracked
vehicles. For a network of time t, demand matrix F measures the flow demand
volumes by the number of O–D trips between nodes, within the time window used
for the construction of the network. An O–D trip is a chain of one or more trip legs
with transfers (but no activities) in between them. See Supplementary Note 1 on
how single trip legs are chained to obtain O–D trips.

Unaffected demand. To formulate the UD calculation, we use the so-called
reachability matrix R= [rod] (the transitive closure of the network adjacency
matrix) which is a square matrix of order n. Each entry rod is equal to 1 if there is at
least one directed path from node o to node d on the network, and rod= 0
otherwise. Let Rρ be the reachability matrix of network Gρ. At any threshold ρ, the
amount of flow from o to d (fod) is deemed to be “unaffected” by link qualities q
below the threshold ρ (q ≤ ρ) if there is at least one directed path from o to d
remaining on Gρ, i.e., r

ρ
od ¼ 1. So, UDρ (defined as the unaffected proportion of the

demand at threshold ρ) will be the sum of rρod :f od for all (o,d) pairs of nodes,
normalized by the total flow demand

UDρ ¼
1Tn ðRρ � FÞ1n

1TnF1n
¼ trðRρF

TÞ
1TnF1n

; ð6Þ

where � is the entry-wise product of matrices, tr(.) is the trace of the n × n square
matrix, and 1n is a column vector of all n elements equal to one.

The relation between the evolution of UD and GC during the percolation. Let
∣GCρ∣ be the size of the GC as a function of ρ, then ∣GCρ∣/n is called the incipient
order parameter which is sometimes used to describe the connectivity of a frag-
mented network. If we assume a uniform flow demand distribution then on any
undirected network, UDρ equals the proportion of connected node pairs in Gρ,
which approaches ðjGCρj=nÞ2 as n→∞43. So, for large enough networks, mon-
itoring the GC during the percolation is a special case of monitoring UD when flow
demand is uniform. Therefore, we can accurately predict the evolution of ∣GC∣
during the percolation by assuming a uniform flow demand over the network and

using jGCρj � n:
ffiffiffiffiffiffiffiffiffi
UDρ

p
. This is confirmed numerically in Fig. 7 and Supple-

mentary Fig. 12.
Considering the above relation, when the demand is homogeneous (or

unknown but assumed to be homogeneous), instead of the definition in Eq. (2) one
may choose to use the area under the curve of UD1=2

ρ as a reliability indicator that
reflects the rate at which size of the connected components decline over the
percolation process. However, our original definition in Eq. (2) has a simpler
interpretation and it is mathematically tractable, allowing for theoretical analysis of
network links in the simplest possible way.

Link criticality score and its relation to network reliability. Suppose there exists
a non-empty set of different directed paths Ψod that route between an origin node o
and a reachable destination node d. During the percolation process on the network
(whereby ρ is increased from zero to unity), each pathway ψ ∈Ψod breaks up when
the threshold ρ reaches to the minimum link-quality on that path. The “limiting
link” associated with the flow from o to d (e�od), when removed during the per-
colation process at ρ ¼ q�od , breaks the last path(s) connecting o to d and affects the
flow between them (fod). Using the definition of link criticality score in Eq. (4), we
can expand the left-hand-side of Eq. (5) as

X
eij2E

sij:qij ¼
X
eij2E

X
o;d2V;
e�
od

¼eij

f od
1TnF1n

:qij; ð7Þ

and for any pair o, d∈ V with non-zero fod there exist a single limiting link e�od 2 E
with quality q�od , so

¼ 1

1TnF1n

X
o;d2V

f od :q
�
od : ð8Þ

During the percolation process, each entry in the reachability matrix Rρ switches
from 1 to 0 as soon as the last path(s) between its corresponding O-D nodes break.
So, we can write

rρod ¼
1; ρ< q�od
0; ρ≥ q�od

�
; ð9Þ

where rρod is the (o,d) entry of the reachability matrix Rρ associated with the
network Gρ. Note that the integral of r

ρ
od with respect to ρ between the limits ρ= 0

and ρ= 1 is equal to q�od . So, from Eqs. (8) and (9) we can write

X
eij2E

sij:qij ¼
1

1TnF1n

X
o;d2V

f od :
Z 1

0
rρoddρ; ð10Þ

where the right-hand-side can be simplified with matrix operations to obtain Eq.
(2) which is the definition of the reliability index α, so we can conclude that Eq. (5)
holds. In Supplementary Note 3, the definition of the criticality score and the proof
of Eq. (5) are generalized further, requiring no assumption on the link quality
values.

Data availability
Two weeks of Melbourne’s public transportation network data used in this study, are
available at https://gitlab.com/homayoun/demand-serving-networks. Raw passenger
smart-card data from Melbourne’s public transportation network were made available for
research purposes by the associated transportation authority, which retains ownership
over the data.

Code availability
Source codes for the algorithms proposed in this study are available at https://gitlab.com/
homayoun/demand-serving-networks. Specific codes that produce the results presented
in this paper are available upon request.
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