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Bifurcation in brain dynamics reveals a signature of
conscious processing independent of report
Claire Sergent 1,2✉, Martina Corazzol1,2,6, Ghislaine Labouret 1,2,3,6, François Stockart 1,2, Mark Wexler1,2,

Jean-Rémi King 4, Florent Meyniel 5 & Daniel Pressnitzer 4

An outstanding challenge for consciousness research is to characterize the neural signature

of conscious access independently of any decisional processes. Here we present a model-

based approach that uses inter-trial variability to identify the brain dynamics associated with

stimulus processing. We demonstrate that, even in the absence of any task or behavior, the

electroencephalographic response to auditory stimuli shows bifurcation dynamics around

250–300 milliseconds post-stimulus. Namely, the same stimulus gives rise to late sustained

activity on some trials, and not on others. This late neural activity is predictive of task-related

reports, and also of reports of conscious contents that are randomly sampled during task-free

listening. Source localization further suggests that task-free conscious access recruits the

same neural networks as those associated with explicit report, except for frontal executive

components. Studying brain dynamics through variability could thus play a key role for

identifying the core signatures of conscious access, independent of report.
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Neural correlates of conscious perception have been
extensively sought by contrasting neural activity for the
same external stimulus when it is reported as perceived or

not perceived1,2. Clear changes in neural activity are associated
with reports of conscious perception: activity in sensory regions
increases3–5, processing involves a wider network of areas3,5,6,
global functional connectivity increases7,8 and it is accompanied
by late sustained activity8–10. An outstanding challenge, however,
is to go beyond correlates of behavioral reports and investigate
whether there can be neural signatures of conscious perception
even when no overt response is required—which is, it should be
pointed out, the general case for our everyday conscious
experience11,12. Identifying such signatures would rule out
potential confounds associated with overt responses, such as
decision-making processes that are not necessarily required for
conscious processing13. A neural signature of conscious access
without report would also be of considerable clinical value for
probing consciousness in individuals who cannot communicate,
such as patients in minimally conscious state or unresponsive
wakefulness14.

In search for such signature, several studies have investigated
the dynamics of brain activity at the boundary between
non-conscious and conscious processing15. These studies have
identified sharp neural changes separating, for a same physical
stimulus, trials with conscious report from missed trials. A first
example was observed in attentional blink experiments, in which
the same visual word, embedded in a rapid stream of other sti-
muli, was sometimes seen and sometimes not9,16–18. Evoked
potentials beyond 250 ms after the target word were triggered in
an all-or-none fashion, directly associated with conscious
reports9. Other experiments, using visual masking paradigms10,19,
have found that the magnitude of late activity shows a non-linear
increase with stimulation strength, around the behavioral detec-
tion threshold. Such effects have also been detected in infants19

and more recently in neural recordings from non-human
primates20,21. Thus, all of these results point to a qualitative
“bifurcation” in neural processes separating conscious versus
non-conscious processing.

However, additional steps are required before accepting that
bifurcation dynamics are a generic signature of the transition
between non-conscious and conscious perception. First, it is
unknown whether they generalize to other sensory modalities, or
rather represent peculiarities of the visual system. As suggested in
several recent reviews, generalizing from vision to e.g., audition
is a key step in validating candidate neural signatures of conscious
processing22,23. Second, the stimulus presentation procedures
used in previous studies were arguably complex: they involved
high-level perceptual objects, such as faces and words, and
included sharp transients in the stimulation itself, two char-
acteristics that might themselves introduce non-linearities in
brain responses24,25. A neural signature of conscious perception
should generalize to simpler cases. Third, and perhaps more
importantly, the reporting itself may contaminate the neural
response, with potential confounds due to decision-making or
even motor preparation. It is, therefore, crucial to probe whether
the current candidates for neural signatures of conscious access
are associated with spontaneous conscious processing, in the
absence of report13. Finally, we also need to address a critical
methodological concern: the characterization of brain dynamics
in previous studies has been mostly descriptive, and, as we explain
below, might have confused bifurcation dynamics with unimodal
non-linear dynamics, without any actual bifurcation separating
conscious from non-conscious processing. We address this issue
by formulating explicit models for different types of brain
dynamics around the threshold for conscious perception, and by
testing their predictions quantitatively.

Here we present a model-based approach to investigate the
dynamics of brain activity in response to simple auditory stimuli
of various intensity around consciousness threshold. We show
that a very specific pattern of variability predicted by the bifur-
cation model is observed in several independent analyses of
behavioral and neural data. Furthermore, fitting the bifurcation
model to individual trial-by-trial data shows that it is a statisti-
cally better explanation of neural activity beyond 250–300 ms
post-stimulus than the non-bifurcation models. It can be used to
predict behavioral report from neural data when task-related
reports are available, but also to predict the conscious contents of
random mind-wandering probes without task-related reports.
Overall, these results support the existence of qualitative changes
in processing around the perceptual threshold, independent of
decisional processes. These changes likely distinguish conscious
from unconscious perception and can be decoded from individual
brain activity recordings.

Results
We recorded brain activity using electroencephalography (EEG)
in healthy human adults who performed a simple auditory
detection task. Vowels (French /a/ or /ə/) were embedded in
continuous noise26, at different signal-to-noise ratios (SNRs)
around behavioral threshold. Twenty participants took part both
in an active session, where they had to report the identity and the
audibility of the vowels, and in a passive session, where they
listened to the same sounds but did not have any task to perform
on these stimuli; instead they performed a set of visual or amodal
tasks unrelated to the auditory stimulation. The order of active
and passive sessions was counterbalanced across participants, to
test whether performing the auditory task had any impact on
subsequent passive listening.

Modeling framework and predictions. Importantly, to guide all
of our analyses, we developed a computational framework con-
trasting three plausible models of brain dynamics (Fig. 1).
According to a first model, neural activity reflects stimulus
strength in a linear fashion, with a gradual transition from non-
conscious to conscious processing (Fig. 1A). A second model
introduces a simple nuance to the first, not considered in previous
studies: neural activity could show a gradual, but non-linear
relationship with stimulation strength. Indeed, there is little rea-
son to assume that the physical unit measuring signal strength
(dB in our case) maps linearly to neural activity strength27. For
this model, each stimulus evokes a unimodal distribution of
activity, as for the linear model, but the means (or “modes”) of
these distributions increase non-linearly with stimulus strength
(Fig. 1B). Note that in these first two models, there is no quali-
tative distinction between conscious and non-conscious proces-
sing. Our third model, in contrast, postulates a qualitative
distinction between conscious and non-conscious processing,
which leads to bifurcation dynamics. Across trials, the same sti-
mulus either evokes a “high activity” mode associated with con-
scious processing, or remains in a “low activity” baseline mode
that lumps together all stimuli that are not consciously processed
(Fig. 1C). While the conscious mode can show an increase of
brain activity with stimulus strength, the non-conscious mode
cannot.

This modeling framework highlights the important point that
mean activity across trials is a poor metric to distinguish between
different types of dynamics (Fig. 1A–C). In particular, both the
non-linear unimodal and bifurcation models can lead to a similar
non-linear increase in mean activity around threshold. Instead, a
unique characteristic of bifurcation dynamics can be found in the
variability across trials: because a stimulus close to threshold
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yields a mixture of high- and low-activity trials, this produces a
burst in inter-trial variability. For stimulation well above or well
below threshold, in contrast, activity is more homogenous across
trials, leading to lower inter-trial variability. This produces a
highly specific non-monotonous profile in the variability response
function for the last model, when variability is plotted as a
function of stimulation strength (Fig. 1C).

Behavior in the active sessions. We first applied this framework
to the analysis of the behavioral results in the active sessions. In
active sessions, participants had to report the identity of a
vowel sound embedded in noise and rate its audibility. Mean
identification performance followed a classic psychometric
function, here with an inflection point between −9 dB SNR and
−7 dB SNR. Mean audibility followed a similar pattern
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(Fig. 1D). Importantly, audibility was assessed using a con-
tinuous scale so we could derive a meaningful variability
measure for behavior. In a 2-alternative forced choice task,
such as the one used for identification, variability is maximal at
50% performance by construction28. In contrast, the con-
tinuous measure of audibility imposed no such constraints, as
variability could vary freely at all levels tested, provided they
were sufficiently remote from floor or ceiling. Thus, any puta-
tive discontinuity in sensation may manifest itself by a burst in
variability in the audibility judgments, following the modeling
described in Fig. 1A–C (see also refs. 16,17).

As predicted by bifurcation dynamics, the standard deviation
of audibility showed a non-monotonic profile with increasing
SNR, with a burst in variability around detection threshold.
Moreover, the underlying distributions of audibility ratings at
threshold SNRs were bimodal, with one mode around 0%
audibility and one mode above 50% audibility (Fig. 1D), again as
predicted. So, signs of a qualitative change between conscious and
non-conscious processing, which had previously been observed in
attentional blink and masking paradigms9,10,16,17,29, generalize to
a simple stimulation paradigm, with no sharp transients in the
stimulation itself. Tellingly, this non-monotonic profile of
variability was present in each and every participant (Supple-
mentary Fig. 1).

Event-related potentials during the active sessions. An event
related analysis of the EEG data showed that the vowels evoked
classic auditory potentials in these active sessions (Fig. 1E, F). A
first negative waveform was visible around 150 ms post-stimulus
(N1), followed by a central positive waveform associated with
posterior negativity (250–500 ms, P2), and then a sustained
centro-posterior positivity (500–900ms, P300). These evoked
potentials were modulated in latency and amplitude by stimulus
strength (Fig. 1E).

To go beyond the grand mean analysis, we examined the
dynamics of the compound activity of 9 electrodes around Pz,
which captured most of the N1 and P300 (Fig. 1F). Mean activity
across trials generally showed a non-linear increase in intensity
with stimulus strength, starting from the earliest latencies
corresponding to the earliest stages of processing. As explained
above, this non-linear increase is compatible with either the non-
linear unimodal or the bifurcation dynamics models. In contrast,
the relationship between variability across trials and stimulus
strength changed drastically from early to late processing. Before
300 ms, variability remained about constant or showed a mono-
tonous increase with stimulation strength. Then, for later latencies,
variability became non-monotonic, exhibiting a clear peak around
threshold (−9 to −7 dB SNR). These first results suggest a switch
from unimodal non-linear dynamics to bifurcation dynamics
occurring around 300ms after stimulation onset.

Multivariate pattern analysis during the active sessions. To
obtain a measure of stimulus-related neural activity that was both
exhaustive, taking into account the pattern of activity across all 64
electrodes, and also based on each individual’s activity patterns
instead of the grand average, we performed a series of multi-
variate pattern analyses (MVPA). For each individual and at each
time point, an automated classifier (l2-regularized logistic
regression) was trained across all 64 electrodes to discriminate
target absent from target present trials at the highest stimulation
SNR. We then used these classifiers to predict target presence at
the same SNR, via cross-validation, as well as other, less favorable
SNRs, via direct generalization. This procedure is illustrated in
Fig. 2A. Training and testing phases were performed at the same
time points, but also at different time points in a so-called tem-
poral generalization procedure30 in order to identify the classifi-
cation features that were sustained over time.

The MVPA transforms the multivariate EEG activity at each
trial, each time point and for each participant into a representa-
tion best expressing the neural response to stimulus presence
versus stimulus absence (each dot in the illustrative Fig. 2A). Just
as an evoked potential, the MVPA projection can be viewed as a
measure of brain activity over a region of interest, but with the
region of interest derived from the data to optimally distinguish
the presence of a stimulus. This projected activity can be used to
try and predict whether the stimulus was indeed present or absent
on that trial: the distance from the decision criterion—i.e., the
criterion that best separates stimulus present versus absent trials
(the black line in Fig. 2A)—indicates the strength of the
prediction toward stimulus presence (positive distance) or
absence (negative distance). In the following, we term this
distance the projected neural activity and use this continuous
measure to assess variability across trials from the MVPA output.

First, to quantify classification performance, we computed the
area under the receiver operating curve (AUC), which measures
the separation between the distribution of projected neural
activity for target present and for target absent trials: 1 indicates
perfect separation, 0.5 indicates undistinguishable distributions
(illustrated in Fig. 2A). For stimuli with the highest SNR,
significant classification started at around 100 ms (Fig. 2B, black
contours indicate periods where classification was significantly
above chance with p-corrected <0.05). There was an initial period
during which temporal generalization was limited to a short time
window of about 50 ms, suggesting a sequence of short, non-
overlapping processing stages. Beyond 250 ms, however, general-
ization was observed over longer time windows, suggesting a
period of sustained processes with a temporal extent of about 200
ms. Below chance off-diagonal performance indicated that some
early patterns of activity recurred later with reverse polarity, as
has already been observed with the temporal generalization
technique30. Finally, temporal generalization indicated that some
patterns of activity observed between 250 and 500 ms, were

Fig. 1 Models, behavioral results, and evoked potentials in the active sessions. A–C show the predictions of three possible models relating stimulus
strength and neural activity. For each model, simulated trial-by-trial neural activity is represented as a function of the stimulation level (SNR). The
corresponding distributions for each SNR are shown next to each graph with the same color-code. The bottom row shows the profiles of mean neural
activity and variability of neural activity across trials (standard deviation) as predicted by each model. The profiles are averaged across 20 simulated
participants who would have performed 160 trials per condition each (error bars correspond to standard error of the mean). D shows the behavioral
results: identification performance, mean audibility and standard deviation of audibility across trials as a function of SNR, for each participant (faint colored
lines) and averaged across all 20 participants (thick black line). Error bars represent ± standard error of the mean, n= 20 participants. The bottom row
shows the distributions of audibility responses averaged across participants, for each SNR level. E Group averaged potentials evoked by the target vowels at
electrode Cz and at each SNR level (n= 20 participants). F The top row shows the topographies of the event-related potentials at different time windows
following targets at the highest SNR. The middle and bottom rows show the mean and variability of evoked activity as a function of SNR at these different
time windows over a group of centro-parietal electrodes (highlighted on the topographies). Shaded areas correspond to ± SEM around the group average
(n= 20 participants). Source data for this figure are provided as a Source data file.
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reactivated around 1750–2000 ms, probably in anticipation of the
response, since the response screen appeared between 2000 ms
and 3000 ms. All this is consistent with results of previous studies
using the same approach31–34. Also, as expected, classification
performance declined with declining SNR, but it still maintained
a qualitatively similar pattern of generalization over time
(Fig. 2B).

Second, in order to further investigate the underlying brain
dynamics, we analyzed the mean and variability of the trial-by-trial

projected activity derived from MVPA. The mean projected activity
displayed a non-linear increase with SNR for all time windows
beyond 150ms, compatible with either non-linear unimodal or
bifurcation dynamics (Fig. 2C; non-linearity was assessed by
verifying that the derivative of the curve changed significantly as
a function of SNR using one-way repeated measures ANOVAs at
each time window: after 150ms all F(4,76) >4.9; all p-FDR-
corrected <0.005). The trial-to-trial variability, in contrast, displayed
either a flat or slightly increasing profile for latencies up to 200ms
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post-stimulus; then, from 200 to 250ms onwards, these profiles
changed into a non-monotonic profile with a peak in variability
around threshold SNR, and correlated significantly with the
behavioral variability profiles measured for each individual on
the audibility scale (Student t-tests on correlation coefficients
between individual neural and audibility profiles of variability,
see “Methods”: in the first three time windows, before 200ms,
t(19)= 0.12, −0.90, 0.71, respectively, all p-FDR-corrected > 0.5,
effect sizes Cohen’s d < 0.2; on the fourth time window
200–250ms t(19)= 3.06 p-FDR-corrected= 0.010, Cohen’s d=
0.68; for the following time windows beyond 250ms, all t(19) >
4.10, all p-FDR-corrected < 0.01, all Cohen’s d > 0.9). This
variability peak is consistent with bifurcation dynamics for
processing stages beyond 250ms post-stimulus onset.

Link between bifurcation dynamics and behavioral report
during the active sessions. The data are so far consistent with
qualitative predictions of the bifurcation model for latencies
beyond 250–300 ms post-stimulus. Does the link hold for finer
details of the observed neural activity? We assessed the dis-
tributions of trial-to-trial projected activity at various SNRs and
compared them with the predictions from our models. The
bifurcation model predicts markedly different distributions
compared to the unimodal linear or non-linear models, since it is
the only model that predicts bimodal distributions in response to
stimulations around the perceptual threshold (Fig. 3A, left and
middle panels). The distribution of neural activity as assessed
with the MVPA was strikingly consistent with the predictions of
the bifurcation model, at the level of the individual (Fig. 3A right)
or at the level of the group (Supplementary Fig. 2).

Since the neural activity analysis showed bimodal distributions,
we could then ask the central question of whether these two
modes corresponded to conscious versus non-conscious percep-
tion. We split trials according to participants’ audibility reports,
setting a criterion of 30% audibility for “heard” versus “not
heard” trials. This criterion was derived from the trough of the
bimodal audibility distributions observed for SNRs of −9 dB and
−7 dB (see Fig. 1D), corresponding to threshold in identification
performance. Figure 3B shows the evoked potentials for “heard”
and “not heard” trials separately for the SNR of −7 dB. The two
models diverge on their predictions for the “not heard” trials. For
the unimodal model, mean activity increases with stimulus
strength for any trial, heard or not, consistent with a signal
detection theory framework28. By contrast, a bifurcation model
predicts that, for “not heard” trials, mean activity should stay the
same whatever the stimulus strength, and this activity should be
equal to that observed when no stimulus is presented. For “heard”
trials, all models predict that increasing stimulus strength should

increase neural activity. In other words, the bifurcation model
predicts an interaction between consciousness report (heard/not
heard) and SNR, whereas the unimodal model predicts no
interaction. Results are shown in Fig. 3C for the time window
between 300 and 400 ms, and Supplementary Fig. 3 for all
latencies. Neural activity closely followed the prediction of the
bifurcation model. A linear mixed effect model with conditions
SNR × Report (heard/not heard) showed significant effects of
report (likelihood ratio test, F1,24.3= 30.3, p= 1.12 × 10−5), SNR
(F1,20.5= 54.7, p= 3.27×10−7) and their interaction (F1,19.4= 7.86,
p= 0.011); see “Methods” for details.

All our analyses so far focused on time windows of interest. We
next analyzed the neuro-behavioral correlation continuously
along the timeline (see “Methods”). We correlated the neural
mean and variability profiles (as in Fig. 2C) and the correspond-
ing behavioral mean and variability profiles (as in Fig. 1D) at each
time point and for each subject (Fig. 3D). For mean profiles, a
neural/behavioral correlation was observed over a long period of
time, from stimulus onset up to beyond 1.5 s. This correlation
captured the whole period during which the brain responded to
the stimulus. For variability profiles, the neural/behavioral
correlation started around 250ms and only lasted until
700–800 ms post-stimulus. This shorter period signed the
moment when the brain response displayed bifurcation dynamics

Model fitting and Bayesian model comparison during the
active sessions. All the analyses up to here suggest that the
bifurcation model is better able to capture the important features
of the data beyond 250 ms post-stimulus. We formally tested for
this claim by quantitatively fitting the computational models to
the trial-to-trial neural data, using a Bayesian model comparison
approach. We compared three models: the bifurcation model, the
non-linear unimodal model, and a baseline “Null” model in
which the stimulation strength has no effect on neural activity.
The linear unimodal model (Fig. 1A) was not included in the
comparison because it is a special case of the non-linear unimodal
model. We used contiguous time windows of interest of 30 ms
each, so that the trial-to-trial signal was more robust to small
temporal fluctuations. For each participant and at each time
point, the parameters of the models were estimated on a training
set, and the likelihood of each model with these parameters was
then calculated on an independent testing set. This cross-
validation procedure allowed correcting for the different num-
ber of parameters across models (see “Methods”). Then, we
performed a random-effect Bayesian model comparison at the
group level35,36, in order to estimate the probability for each
model to be more frequent in the population of participants than
the other two, i.e., protected exceedance probability. Results are

Fig. 2 Dynamics of the different processing stages during the active session (analyzed using multivariate pattern classification). A Illustration of the
multivariate pattern classification analysis in 2D (two electrodes). Each point represents activity at electrodes n1 and n2 for a single trial, in three
conditions: target absent (black), target present with maximal SNR (red), and target present around threshold SNR (green). The decision boundary (black
line) is computed to maximize accuracy in classifying target present with maximal SNR versus target absent in a training subset of the data. The so-called
projected activity for a specific test trial is defined as the distance between that trial’s point in the multivariate space and the decision boundary. The
distributions of these projected activity measures for the different conditions are plotted along the decision axis (dotted line). The classifier performance
was assessed using the AROC of the distribution for target present against the target absent distribution (see “Methods”). B Time-generalization analysis.
The classification accuracy is shown for each combination of training time point and testing time point. Black contours indicate periods where classification
deviated significantly from chance at p corrected <0.05 (two-sided non-parametric sign test76, Benjamini–Hochberg FDR correction). C Dynamics of neural
activity at selected time windows (represented by squares on the top panel in (B)). The left column represents the group average topographies at each
time window for the strongest SNR (−5 dB), the next column shows the group average time courses for the different SNRs, i.e., the sensitivity of the
classifier trained at a given time window (indicated by the shaded area and black arrow) and tested across the whole duration of a trial. The third column
shows mean projected activity as a function of SNR for each time window of interest (arbitrary unit). The last column shows the variability of projected
activity across trials as a function of SNR, i.e., the standard deviation of the projected activity across trials (arbitrary unit). Error bars correspond to ± SEM
around the group average (n= 20 participants). Source data for this figure are provided as a Source data file.
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shown in Fig. 3E. During baseline, the protected exceedance
probability of the Null model was slightly above the other two as
expected. Then, there was a first period between 0 and 250 ms
after stimulus onset where the unimodal model showed the
highest probability. After 250 ms, there was a switch in favor of
the bifurcation model, whose protected exceedance probability
remained above 95% for most of the period between 250 and 700
ms. Then there was a last period between 700 and 900 ms where
the unimodal model seemed most favored again. The Bayesian
model comparison thus formally confirms that, within the broad
period of about 1.5 s where the brain responds to the stimulus,
there is a period between 250 and 700 ms post-stimulus onset
where neural activity shows bifurcation dynamics.

Predicting behavioral reports based on neural activity in the
active sessions. As a final and critical test, we probed the pre-
dictive power of the bifurcation model: if the bifurcation in neural
activity is a signature of the split between non-conscious and
conscious processing, we should be able to predict future con-
sciousness report on each trial based on whether neural activity at
the time of bifurcation belongs to the “high state” or the “low
state” of the bifurcation. As described above, we fitted the bifur-
cation model to individual participants’ projected activity across all
trials. From this fit we could derive the predicted distributions
(mean and standard deviation) for the “low-state” and the “high-
state” at each level of stimulation. For each trial we could therefore
compute the likelihood that activity recorded on that trial belonged

Fig. 3 Correlation with behavior, Bayesian model comparison, and prediction of conscious reports in the active session. A Predicted distributions of
activity across trials as a function of SNR level for unimodal non-linear and bifurcation models (left and middle) compared with distributions of multivariate
neural activity observed within the 400–500ms time window for participant 14. B Grand average evoked potentials at electrodes POz and Pz for stimuli at
threshold (−7 dB), shown separately for “heard” and “not heard” trials. Shaded area shows SEM (n= 20 participants), gray dots represent time points
where the difference is significant at p-corrected <0.05 (two-sided paired t-tests, FDR correction). Below are shown the corresponding topographies at
various time windows. C Mean activity as a function of stimulus strength, shown separately for “heard” versus “not-heard” trials. Model predictions for the
unimodal model (left) and bifurcation model (middle) are compared to the mean projected activity that was actually observed for “heard” and “not heard”
trials during the 300–400ms time window (grand average across participants, arbitrary unit, error bars represent SEM, n= 20). D Correlation coefficient
between the individual mean profile (blue) or variability profile (red) of projected neural activity with the corresponding mean or variability profile in
subjective audibility. The shaded areas correspond to SEM (n= 20 participants). The periods of significant correlation are denoted as thick lines of the
corresponding color (one-sided t-tests, p < 0.05, FDR corrected). E Bayesian model comparison: protected exceedance probability at the group level for the
unimodal non-linear, bifurcation, and null models. F Prediction of behavioral audibility from the neural projected activity under the assumption of bifurcation
dynamics. Group average performance in predicting trial-by-trial audibility responses (heard versus not-heard) is shown for intermediate SNRs (−11, −9,
and −7 dB). Thick dots denote periods were prediction performance was better than chance (two-sided t-tests, p < 0.05, FDR corrected). The shaded areas
correspond to SEM (n= 20 participants). Source data for this figure are provided as a Source data file.
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to the high versus the low state (Bayes Factor, see “Methods”), and
take this measure as a prediction of whether the stimulus would be
reported as heard or not. As shown in Fig. 3F, this approach
predicted consciousness reports with a high accuracy, especially
between 250ms and 700ms post-stimulus (AUC above 0.75). It
should be emphasized that these trial-by-trial predictions were
obtained without using any information about the participants’
behavioral responses at any stage of the procedure, including
during the fitting of the model. The method is instead principled
on the hypothesized structure of neural data, as captured by a
bifurcation model. As far as we know, this contrasts with all
previous approaches to decode conscious reports in which super-
vised classifiers had to be trained using neural data labeled with the
participants’ responses. Such a modeling approach can thus be
generalized to cases where there are no overt responses, or a
limited number of them, as shown now.

Comparing brain activity in the active and passive sessions.
One essential issue remains to interpret bifurcation dynamics as a
general signature of consciousness—one that is common to all
investigations using neural/behavioral correlations: do neural
processing of reported stimuli reflect conscious access per se, or
rather decision-making processes involved in reporting?13 As
reports are themselves discontinuous choices, they could induce
bifurcation dynamics unrelated to perceptual consciousness. And
indeed, most current models of signal detection and decision
making in humans assume that dichotomous dynamics only arise
at the decision stage28,37. To address this issue, we recorded brain
activity during “passive” sessions, in which participants received
the same auditory stimulation as in the active sessions but were
not required to perform any task on the sounds. Instead, various
tasks unrelated to the sounds were randomly introduced in
between trials: a speeded visual reaction task, an amodal task
requiring mental arithmetic or general culture answers, a mind-
wandering probe, or a non-speeded visual reaction task. To
control for potential carry-over effects in listening strategy
between active and passive sessions, the order of sessions was
counterbalanced across participants.

The main hypothesis was that neural responses due to
decision-making should disappear in the absence of a stimulus-
related task, whereas neural responses reflecting core conscious
access should persist. Thus, if late sustained activations only
reflect decision-making, they should disappear during passive
listening. In contrast, if they reflect a signature of conscious
access, they should remain in the passive sessions.

Surprisingly, neither prediction was entirely fulfilled: as
illustrated in Fig. 4A, the P3-like positivity that characterized
late activations during active listening disappeared under passive
listening. This corroborates some previous observations38–40. But,
interestingly, this did not mean that late activity disappeared
altogether: indeed, passively listening to the sounds still evoked
late sustained activations well beyond the initial auditory
components, up until 700 ms post-stimulus. Importantly, these
activations had a different topography from what was observed in
the active session, distinguishing them unequivocally from the
P300. The evoked potentials at Cz further illustrate this point:
the positive deflection observed from 250 ms onwards in the
active sessions, typical of a P300 component, is replaced by a
negative deflection in the passive sessions.

Which processes could be responsible for the late waveforms
still observed in the passive sessions? We hypothesize that these
waveforms actually reflect spontaneous covert conscious access,
independent of a task. If so, similar processes must also be present
during the active sessions, as conscious access is also experienced,
but they should be embedded in other processes related to

decision-making for the report. We tested this hypothesis by
performing a cross-classification analysis, where a decoder
trained on one type of session was tested on the other type of
session, for each subject individually (see “Methods”). Results
showed that the neural activity in the active sessions could be
decoded by training a classifier on the passive sessions, at least
within a 250–600 ms time window (Fig. 4B top row, middle
column). Still, such cross-decoding left sizeable residual late
activity compared to training within the active sessions (Fig. 4B
top row). In contrast, for the complementary analysis of decoding
activity in passive sessions after training on active sessions, the
late activity was fully captured, almost as well as when both
training and testing was performed on the passive sessions
(Fig. 4B bottom row). This pattern of result is consistent with the
hypothesis that late activity in the passive sessions reflects core
conscious access mechanisms that are supplemented with
decision-making mechanisms in the active sessions when a task
is required.

Comparing reconstructed sources in the active and passive
sessions. Source reconstruction of the EEG activity, shown in
Fig. 4C, gave further support to this hypothesis. For both types of
session and beyond 250 ms, activations were observed in a broad
network of areas encompassing auditory cortex and other tem-
poral, parietal or frontal areas. The main difference between the
active and the passive sessions was the presence of strong acti-
vations in the premotor, motor cortex, and supplementary motor
area for the active sessions. This difference in cortical activity
presumably accounts for the markedly different late topographies
observed in Fig. 4A. We then computed the time course of
activations at reconstructed sources in regions around auditory
cortex, inferior-prefrontal cortex, and supplementary motor area
(Fig. 4D). Both temporal and inferior-prefrontal regions
responded with sustained activity beyond 250 ms, with or without
a task. In contrast, the activation of the supplementary motor area
was all-or-none, only observed when a task was required in the
active sessions.

Brain dynamics in the passive sessions. We next performed the
same series of dynamical analyses in the passive sessions in order
to assess whether bifurcation dynamics also characterized sti-
mulus processing in the absence of behavioral report. We first
assessed mean and variability profiles of neural activity in the
passive sessions, both for evoked activity in a region of interest
over the temporal electrodes (Fig. 5A) and for projected activity
derived from MVPA (Supplementary Fig. 4). Beyond 300 ms, we
confirmed the presence of the specific pattern associated with
bifurcation dynamics, with a burst of trial-to-trial variability for
intermediate SNRs. Compared to the active session, this burst was
shifted toward higher SNRs (−7 dB to −5 dB). This is an
expected consequence of a lack of directed attention to the sounds
in the passive sessions.

Then, we set to compare the burst of variability in neural data
to behavior on a participant per participant basis. However,
because there were no reports of the sounds in the passive
sessions, we correlated the neural activity recorded during
the passive session with the behavioral profiles collected in the
active sessions, taking the SNR shift into account (Fig. 5B, see
“Methods”). For mean profiles, we observed significant correla-
tions between projected activity in the passive session and
audibility in the active session, for a long period of about 1 s after
stimulus onset. Furthermore, a correlation was also observed for
variability profiles, mostly between 200 and 600ms, signing a
period of bifurcation dynamics.
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Predicting mind-wandering content from neural activity in the
passive sessions. Finally, although no auditory task was required
from participants, we asked whether we could predict their spon-
taneous conscious access to sounds during passive listening, based
on neural activity. For that, we analyzed the “mind wandering”

probes included at random times during the passive sessions. These
probes asked the participants to report what they had on their mind
at that moment, using one of four options: the sound, the visual or
amodal tasks, their own thoughts, or nothing/they were falling
asleep (see “Methods”). For the majority of mind-wandering
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Fig. 4 Comparison of neural activity in the active and passive sessions. A Group averaged topographies at various time windows following stimulus
presentation in the active and passive sessions at −5 dB. Group averaged evoked potentials at Cz for the different SNRs in the active and the passive
sessions. B Classification scores (AUC) for the cross-classification analysis, at an SNR of −5 dB. Regions where classification was significantly different
from chance are outlined in black (two-sided non-parametric sign test76, p < 0.05, FDR-corrected). C Source reconstruction at 330ms post-stimulus. The
activation maps show the t-values of a paired t-test across subjects between mean activations for stimulus present at −5 dB versus stimulus absent, in the
active or passive sessions (left and middle) and between mean activations for the active versus passive session for stimulus present at −5 dB (right). Only
significant activations are shown (p < 0.05, FDR corrected). D Group averaged time course of source reconstruction in three regions of interest, shown for
the active or passive sessions (SNR=−5 dB as above). Thick gray dots indicate periods of significant difference (two-sided paired t-tests, p < 0.05, FDR
corrected). Source data for this figure are provided as a Source data file.
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Fig. 5 Neural dynamics for passive sessions. A The top row shows the group averaged topographies at different time windows following targets played at
−5 dB SNR. The middle and bottom rows show the mean and variability of evoked potentials as a function of SNR, for different time windows and over a
group of temporal electrodes highlighted on the topographies. Shaded areas are SEMs (n= 20 participants, from which 10 at −3 dB). B Correlation
coefficient between the individual mean profiles (blue) or variability profiles (red) of projected activity in the passive session with the individual mean
profiles or variability profiles of behavioral audibility during the active session (shifted by 1 or 2 SNR levels). The shaded areas are SEMs (n= 20
participants). Periods of significant correlation are denoted in thick lines of the corresponding color (one-sided t-tests, p < 0.05, FDR corrected).
C Prediction of mind-wandering content from the neural projected activity under the assumption of bifurcation dynamics. The graph shows the group
average performance in predicting, trial by trial, whether the participant responded that the sound was on their mind at the moment of the probe or not. All
SNRs are included in this analysis. The shaded areas are SEMs (n= 20 participants). Thick dots denote periods were prediction performance was better
than chance (two-sided t-tests, p < 0.05, FDR corrected). Source data for this figure are provided as a Source data file.
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probes, participants reported either focusing on the visual and
amodal tasks or on their own thoughts; they very rarely reported an
absence of content or sleepiness (Supplementary Fig. 5). Overall, the
sound constituted 19% of the reported mind-wandering contents,
and this proportion increased with the intensity of the sound that
preceded a mind-wandering probe (Supplementary Fig. 5). We thus
assessed if we could predict whether or not a participant’s mind-
wandering was directed toward the sounds or something else on a
particular trial, based on the preceding neural activity. We used the
same method as for the active sessions: we fitted the bifurcation
model to the neural data, independently of any behavioral response,
and used this fit to compute the probability that neural activity
evoked by passive listening to a sound on each trial belonged to the
“high” versus “low” state of the model. As shown in Fig. 5C, activity
recorded between 250ms and 700ms after the sound predicted
accurately whether the random mind-wandering probes included
consciousness of sound or not, given the same external audio sti-
mulation. In other words, with the bifurcation model of conscious
access, we could use neural activity to predict whether participants
were spontaneously aware of sounds in a passive listening
condition.

Controlling for covert task-related strategies in the passive
sessions. In order to further insure that this late activity genuinely
reflected spontaneous conscious access and not some form of
covert decision-making, we tested the effect of the order of the
active and passive sessions. The activation patterns observed in
the passive sessions were very similar in the groups of subjects
who performed the passive session either first or second: there
were no significant differences in topographies, time course, or
the ability to predict mind-wandering responses based on the
bifurcation model (Supplementary Fig. 6A–C). This suggests that
there were no carry-over effect of the task performed in the active
session on activity observed in the passive session. We also
tested seven additional naïve subjects who only performed the
passive session (see “Methods”). In these subjects, we observed
the same activation patterns, with late sustained activity starting
around 250–300ms, similarly predicting mind-wandering
responses (Supplementary Fig. 6D–F).

Generalization to non-speech auditory stimuli. Our auditory
paradigm was intended to be simple and ecologically relevant.
However, it used vowels as sounds to be identified. Vowels per-
ception is often thought to be categorical, although this is debated41.
In any case, some language specific processes related or not to
categorical perception cannot be ruled out as a cause for the late
bifurcation dynamics we observed. We, therefore, performed an
additional control experiment, in which the vowels were replaced by
pure tones (high pitch versus low pitch, with a large pitch difference
so that the task was easy, see “Methods”). All other details of the
procedure remained the same. Five additional participants were
recruited and performed both an active and a passive session with
the pure tone stimuli. These simpler stimuli evoked very similar late
activity, with bifurcation dynamics, as the ones observed for vowels,
both in the active and in the passive session (Supplementary Fig. 7).
This brings further evidence that these late activity and dynamics
might relate to general conscious access mechanisms that are
common across stimulus types and task requirements.

Discussion
In the present study, we characterized the dynamics of the brain’s
response to auditory stimuli of various intensities around per-
ceptual threshold. Guided by a conceptual model, and unlike
previous studies10,19, we focused on inter-trial variability in order
to reveal unique dynamical characteristics that are lost

when averaging activity across trials. Our main finding is that
between 250–300 ms and 600–700 ms post-stimulus onset, the
brain responses showed a distinctive burst of inter-trial variability
at stimulation strengths around threshold. This was a signature of
bifurcation dynamics: for the same physical stimulation, some
trials led to high activity and others to low activity. This obser-
vation was repeated with and without behavioral reports, using
simple event-related analysis but also more complex decoding
techniques, and formally validated using a Bayesian approach.
The bifurcation dynamics were closely related to perceptual
reports when available: trials with high versus low activity led
respectively to reporting conscious perception or the absence of
conscious perception for the same external stimulus. Using the
bifurcation model, we could thus effectively predict behavioral
responses from brain activity, on a trial per trial basis. As the
technique used was principled on the bifurcation model and did
not require access to behavioral responses, we could extend the
prediction to passive listening cases, for which we predicted the
content of mind-wandering probes.

Based on those results, we propose that bifurcation dynamics
are a general signature of the transition between conscious and
non-conscious processing, which in turn allows identifying the
neural signature of conscious access proper: a global brain activity
arising between 250 and 700 ms post-stimulus, supplemented by
additional decisional processes when a task is required.

In the following discussion, we show that these results validate
and generalize dynamical predictions of the global neuronal
workspace theory, while introducing an important nuance
between non-linear and bifurcation dynamics. We also show that
other predictions of the global neuronal workspace model,
relating to the role of the P300 waveform, are invalidated by our
results, and we propose an update of the model that accounts for
these findings. More generally, we show that the present results
can help advance several prominent debates about the neural
basis of consciousness. Finally, we discuss the perspectives of this
approach, notably in terms of diagnosing consciousness in non-
communicating patients.

Variability analysis supports dynamical predictions of the
global neuronal workspace model. The hypothesis that con-
scious access is associated with qualitative changes in the con-
figuration of activity throughout the brain is a key prediction of
the global neuronal workspace theory17,42,43. In this theory,
conscious access arises through the broadcasting of local sensory
information to a global network of areas. It is the reciprocal
coupling within the global network that naturally yields bifurca-
tion dynamics, as “ignition” either succeeds, leading to conscious
access, or fails, leading to non-conscious processing9,17,20. The
present results validate these dynamical predictions.

Furthermore, we extend the available evidence favoring this
theory in a number of ways. An increasing number of studies now
emphasize the importance of comparing neural correlates of
conscious access across different sensory modalities in order to
establish the generality of candidate neural signatures of
consciousness22,23,44–46. However, so far bifurcation dynamics
have only been formally tested for vision, and mostly using visual
stimuli that contained themselves sharp transients9,10,16,19,20,
which also raises the concern that sharp transients may be
responsible for some of the non-linear effects observed in brain
responses. Here we show that these peculiar dynamics generalize
to conscious perception in audition, in a very simple stimulation
protocol (no masking, no manipulation of attention) where the
stimulus itself is devoid of any sharp transients.

Further to this generalization, our modeling approach adds an
important precision to the predictions of the global workspace
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model by highlighting the distinction between bifurcation and
non-linear dynamics.

Distinguishing bifurcation and non-linear dynamics can help
clarify the timing of conscious access per se. Importantly,
developing formal dynamical models was instrumental for dis-
tinguishing different periods in the neural correlates of conscious
perception that were previously confused. Our modeling shows
that, contrary to what has been suggested in previous works10,19,
non-linear dynamics in averaged activity cannot be used as a
definitive signature of bifurcation dynamics, and hence of con-
scious access, since it can also be observed in the absence of
bifurcation. This important distinction can help clarify seemingly
contradictory findings on the timing of conscious access11,12.
Non-linear increases in activity have been hypothesized to signal
conscious access as early as 100 ms47, but other reports claimed
that such transition occurred only after 200 ms9,10,19. Here, we
observed that early sensory processing, before 200 ms, followed a
non-linear increase in magnitude, probably related to local
recurrent loops within sensory areas48, but that the underlying
dynamics were unimodal. This indicates that these early activa-
tions are probably “preconscious”42,49: they precede the moment
when global brain activity actually splits between conscious and
unconscious processing, yielding bifurcation dynamics.

Do bifurcation dynamics relate to conscious access or decision-
making? Another long-lasting controversy, and perhaps the most
acute criticism of the global workspace hypothesis, is that bifur-
cation dynamics might relate to the task of reporting the stimulus
and not conscious access proper13. This is a major issue, for the
foundations of the theory, but also as covert conscious access
without explicit reports surely represents the vast majority of our
everyday conscious experience. Our results suggest a unifying
view of overt and covert conscious access. Late neural bifurcation
dynamics were still observed in the absence of any explicit report.
However, source localization combined with cross-classification
analyses showed that the network supporting late activity in the
covert case was a sub-part of the one supporting late activity in
the overt case.

More generally, the present results can also interrogate current
models of signal detection and decision-making in humans.
Standard and successful models of behavioral performance such
as signal detection theory or evidence accumulation assume that
the dichotomy between reported versus not reported stimuli arise
at the decisional stage, while the perceptual stages exhibit no
qualitative change in operation around threshold28,37. Our study
reveals that bifurcation dynamics in neural activity occur even in
passive listening conditions, without any request to take decisions
or provide overt responses.

The P300 component, the global workspace, and the global
playground. Our study also provides important elements for the
current controversy about the P300 EEG component, which is
debated as a potential signature of conscious access13,38–40. The
present results show that conscious access in the absence of
decision-making does not produce a P300 waveform, contrary to
what has been proposed so far by the global neuronal workspace
model43. This observation is consistent with several other recent
experimental results38–40. But the present study also goes beyond
these previous works by clarifying the relationship between the
P300 and the signature of conscious access per se. Indeed, using a
cross-classification analysis (Fig. 4B) we could demonstrate that
the late sustained waveform that signs conscious access in the
absence of a task (as characterized by bifurcation dynamics) is
included in the P3-like waveform observed in the active

condition. In other words, the P3-like waveform observed when
making this very general contrast of stimulus presence versus
absence during active sessions, is actually a composite waveform
that includes two overlapping components: the signature of
conscious access per se, with its bilateral positivity, and an
additional central positivity that corresponds to the P300 in a
strict sense, which specifically reflects decision processes50.

These results thus bring clarifications to previous debates. They
show that, when no decision is required, the processes associated
with conscious access per se can unfold in the absence of a P300.
However, these “core” conscious access mechanisms still
correspond to late and sustained activity, within the same time
range as the P300. Finally, when a task is required, the additional
P300 mechanisms that result from the task are concomitant and
probably closely articulated with these conscious access mechan-
isms. Therefore, our results suggest that, while the P300 is not a
signature of conscious access per se, it reflects decision processes
that are closely associated with conscious access mechanisms.

With this in hand, we would like to propose the following update
to previous formulations of the global neuronal workspace model.
The present results indicate that covert conscious access might be
subtended not by a global workspace, but rather by a subset of it,
which we may term a “global playground”. This “global play-
ground” would be a broad network of areas among which sensory
representations are shared and maintained for several hundreds of
milliseconds, thus offering wider cognitive possibilities than
automatic unconscious processing, but with no specific agenda.
When a task is required, this global playground is augmented by
decision-making processes and turns into a global workspace.

The role of the frontal lobes in overt and covert conscious
access. In the same vein, our results provide interesting elements
about the role of the frontal lobes in conscious perception, which
is currently hotly debated51,52. According to our source recon-
struction analysis, some frontal areas might be an integral part of
the core network for spontaneous conscious access even in the
absence of an overt task, as attested by late and sustained acti-
vations in inferior frontal sources during passive listening
(Fig. 4C, D). Other frontal areas, such as the Supplementary
Motor Area, in contrast, completely disengaged during passive
listening.

At this stage, we cannot exclude the possibility that the frontal
activations observed here under passive listening are artifacts of
EEG-source reconstruction, merely reflecting a spillover of
temporal sources. Indeed, and especially with EEG, source
reconstruction is known to be susceptible to misattribution.
Therefore, a possible interpretation of our results is that passive
listening evokes late and sustained local activations within the
temporal lobes, not necessarily connected to a wider network.
And indeed, the topography of this late activity is evocative of
focal temporal sources (Fig. 4A), consistent with this
interpretation.

At face value, however, the reconstruction analysis suggests
that the frontal cortex plays a role even in spontaneous task-free
conscious processing, and that performing a task further
emphasizes frontal activity by recruiting additional frontal
territories, notably related to motor planning. Additional
observations are consistent with this interpretation: first the
difference between the active and passive conditions is only
visible in highly focal regions within the dorsal frontal areas
(Fig. 4C). So if, as commonly admitted, active listening evokes a
wide network of areas, then removing focal executive sources
should still leave a wide network at play during passive listening.
A second argument is independent from source reconstruction
and its potential flaws, but rather relates to the dynamics of this
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late waveform associated with covert conscious access: late and
sustained activity is typically associated with brain-wide activa-
tions and functional coupling, as suggested both by experimental
work53 and simulations of large scale network models of the
primate brain54.

In conclusion, the present results open an interesting
alternative on the type of network subtending late sustained
activations in the absence of report; this issue now needs to be
addressed using spatially-resolved techniques such as fMRI.

Potential clinical applications. Our choices for a widespread and
affordable recording technique, EEG, and for a simple auditory
stimulation protocol, are beneficial for future work examining the
transferability of our paradigm to clinical situations. Because
bifurcation dynamics can be read-out from brain activity alone in
individual participants, it might potentially be applicable for
diagnosing conscious processing of external stimuli in non-
communicating patients55,56. In current practice, in order to
diagnose whether a non-communicating patient consciously
perceives external stimuli, we mostly rely on detecting whether
the patient can overtly or covertly preform a task on the
stimulus14,57–60, or can otherwise engage in executive proces-
sing61, presumably limiting the diagnosis to high-functioning
patients. Another current approach is to distinguish different
types of patients based on spontaneous brain activity or con-
nectivity during resting state56,62,63, but this limits interpretation
in terms of the awareness of the external world. Our paradigm
allows detecting the emergence of spontaneous conscious access
to external stimuli, without an overt or covert task. An interesting
avenue for future research is to assess whether the paradigm can
be used to examine conscious processing even in patients with
deteriorated cognitive functions or at earlier stages of recovery.

Specifically, a possible method to transfer the paradigm to
patients could be to: (1) characterize the EEG response to external
stimuli at various stimulation strengths, in individual patients, to
detect the range of stimulation values producing a sharp change in
the response function; (2) detect patients with bifurcation
dynamics around those stimulation values, using variability
analysis, to assess the presence of conscious access; (3) fit
bifurcation models to trial-by-trial brain activity, so as to be able
to infer fluctuations in conscious access over time in these patients.

In conclusion we propose that this framework for analyzing
brain dynamics might provide the missing tool for isolating core
signatures of conscious access from other neural correlates of
conscious access that either precede conscious access, such as early
sensory processing, or are a consequence of it, such as task-related
processes11,13,55. These analyses and models might potentially be
transposable to any type of stimulus, task or population. This
opens important avenues for future work for probing conscious
perception in a variety of situations where the question of
consciousness remains elusive, including clinical settings with
non-communicating patients55.

Methods
Main experiment. We measured the EEG activity of adult participants, while they
heard sounds presented in threshold equalizing noise at different sound levels
around the audibility threshold64. Participants performed both an active session, in
which they had to report their perception of the stimuli, and a passive session, in
which they had no task to perform on the auditory stimuli, but did receive visual,
amodal, or mind-wandering probes (detailed below). The order of the sessions was
counterbalanced across participants.

Participants. Following recommendations for EEG studies65 and previous studies
(e.g., ref. 10), the total number of participants required was estimated at 20.
Twenty-five native French speakers aged 18–30 years took part in the experiment.
Two chose to discontinue participation before the end, and three were excluded,
following pre-established criteria, on the basis of too many artifacts in the EEG

recordings (more than 25% of trials containing an artifact). The remaining 20
participants, all right-handed, included 10 women, and had a mean age of 23.4
years (range 21–29).

The study was validated by the ethics committee of Paris Descartes (CERES).
Participants all gave informed consent and received a compensation of 20 € per
hour of attendance.

Stimuli. The stimuli were two vowels, French “a” and “e”, of the same duration
(200 ms). They were synthesized using the MBROLA software (v3.02b)66 with the
following parameters: allophones ‘a’ and ‘e’ from the FR4 database (French female
voice), 200 ms duration, 200 Hz pitch at 50% of the duration. These two vowels
were chosen because of their close identification performance profiles, as revealed
by behavioral pilots. Vowels were superimposed on a special background noise that
equalizes the masking of all frequencies for human ears: Threshold Equalizing
Noise or TEN26. The noise was played continuously without repetition for the
duration of each block. A different noise file was played for each block. The stimuli
were presented at five levels of signal-to-noise ratio (−13 dB, −11 dB, −9 dB,
−7 dB, −5 dB). We previously determined, in a behavioral pilot, that the central
level (−9 dB) corresponded to threshold audibility level in most participants. Some
trials were composed of noise alone, without superimposed stimuli. We ran the
same number of trials (160) for each of the stimulation levels (including “noise alone”).

Stimulus presentation and task. For each participant, the experiment included two
sessions on two different days, with the same stimuli but a different task: the
“active” session required attentive listening, and a behavioral report on the stimuli;
the “passive” session involved passive listening, where the task on the stimuli was
replaced by distracting tasks as well as tasks allowing to estimate mind
wandering67,68.

Each trial started with the presentation of a fixation point, which remained on
screen until the appearance of a response screen. The target vowel could be
played any time between 1 and 3 s after the beginning of the trial. It lasted
200 ms, and was followed by a random delay between 2 and 3 s before a response
screen was presented. Participants were asked to keep their eyes on the fixation
point and to avoid moving or blinking, except during the response periods. The
TEN noise was present continuously throughout each block; it stopped only
during the pauses between the blocks. Participants used the computer mouse to
give their response. Written instructions were provided to the participants, and
we checked with them for their understanding. Each experimental session started
with a training block.

During the active session, participants were asked to perform two tasks on each trial:

1. Identify the vowel: the two response options, “A” and “E”, were shown to
the left and right of the fixation point (initial position of the mouse at
fixation), with the side assigned to each vowel changing between blocks, as
announced at the beginning of each block. Positioning the cursor with the
mouse over one of the letters highlighted a square around this choice. The
choice was validated by a left click. Participants were asked to make a guess
when they were not able to identify the target.

2. Report the subjective audibility level of the vowel: once they had responded
to the first question, participants were asked to report how well they heard
the target by placing a cursor on an analogous scale represented by a
horizontal bar, labeled “0” on the left and “max” on the right. The initial
position of the cursor was random. Participants could slide the cursor on the
scale with the mouse, and validated their choice with a left click. They were
instructed to use the entire scale, as follows: answer zero when they did not
hear anything, use the left half of the scale for cases where they doubted a
vowel was present, and the right side when they were certain a vowel was
present; move the cursor to the right when the sound was more audible,
independently of their ability to identify it. The highest answer was to be
used when the vowel was perceived as the most audible stimulus in this
experiment. The scale had 11 levels (0–10), “0” and “max” at both ends of
the scale were the only landmarks presented to the participants.

Prior to the experiment, the participants were trained on both tasks during a
training block where they received feedback on identification responses and where
vowel at maximum volume were signaled, to allow participants to adjust their
audibility judgment. During the experimental blocks, feedback on identification
performance was only given at the end of each block.

During the passive sessions, the stimulation periods were identical to those in
the active session, but at the end of each stimulation period, the task on the
stimulus was replaced by one of the following four tasks, randomly intermixed
across trials:

1. A speeded response task: participants were required to click on the mouse
whenever a large green circle was displayed at fixation.

2. Mind wandering probe: participants were asked to answer the question
“What is on your mind just now?”, by choosing one of the four options: “the
sound “, “the task”, “my thoughts”, “nothing/I feel sleepy”.

3. Quiz: participants were asked to answer simple questions (arithmetic
operations, questions of general culture…) with four answer choices.

4. Just a “Click to continue” message.
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At the end of each block, participants answered a questionnaire on their
experience (attention, mind-wandering…) during the previous block. The
questionnaire is reproduced below:

In how many trials did you hear and recognize a vowel?
In how many trials did you hear something without recognizing it?
How often were you thinking of the sound? (0) never (1) once (2) sometimes

(3) often (4) very often.
How often were you thinking of the various tasks you had to do? (0) never (1)

once (2) sometimes (3) often (4) very often.
How often were you thinking about visual fixation, eye blinks, and how

comfortable or uncomfortable you were? (0) never (1) once (2) sometimes (3) often
(4) very often.

How often were you thinking about something else? (0) never (1) once (2)
sometimes (3) often (4) very often.

How often was your attention captured by something in the environment that
was not the experiment? (0) never (1) once (2) sometimes (3) often (4) very often.

How often were you falling asleep? (0) never (1) once (2) sometimes (3) often
(4) very often.

Each session contained 960 trials (2 vowels × 6 sound levels × 80 repetitions),
grouped into 20 blocks of 48 trials (about 7 min per block), for a total duration of
2.5–3 h with pauses. An optional additional block was provided in the event of a
technical problem leading to the loss of part of the data. By combining the two
vowels, we obtained 160 trials per sound level (before removing the artifacts). For
the last ten subjects, we included an additional SNR level of −3dB in the passive
session, in prediction of a shift in auditory threshold during this session relative to
the active one.

Material. The experiment was carried out using an EEG system from Brain Pro-
ducts with 64 active electrodes, placed according to the standard 10–20 arrange-
ment. Recordings were performed using the software provided by Brain Products
(BrainVision Recorder 2016 release). The reference electrode was FT10 (right pre-
auricular). Recording was continuous throughout the experiment, with a sampling
rate of 500 Hz. Following the manufacturer’s recommendations, a high pass filter at
.003 Hz (time constant of 60 s) was applied during recording.

The experiment was coded using Matlab and the Psychtoolbox (http://
psychtoolbox.org/)69–71, and ran on a PC with an ASIO certified sound card for
precise timing of auditory stimuli. The timing and synchronization of the auditory
and visual stimuli was verified to be millisecond correct using an oscilloscope. The
audio stimuli were presented via a supra-auricular headset (Beyerdynamic DT 770
PRO 80 ohm for all experiments except for the first control experiment where we
used a Sennheiser HD 429). A pilot study allowed verifying that the headset did not
cause any interference to the EEG recordings. The visual stimuli were displayed in
gray over a black background, on a 50 cm diagonal screen (format 4/3), with a
refresh rate of 66 Hz. Participants were seated 60 cm from the screen.

Data preprocessing. The following processing steps were applied to the EEG data
using the Matlab based FieldTrip toolbox (http://www.fieldtriptoolbox.org/)72:

● High-pass filtering at 0.4 Hz and stop-band at 50 Hz with deletion of the linear
component, performed on the continuous signal.

● Visual detection of electrodes with poor signal and reconstruction by
interpolation of neighboring electrodes (separately for each experimental
block).

● Removal of eye movement artifacts (blinks and saccades) was performed by
identifying and removing the eye movement components using an
independent component analysis (ICA) (separately for each block).

● Epoching around the onsets of the vowel, from −500 ms to +2000 ms. For
trials with no vowel, a fictitious sound start was randomly chosen, matching
the statistics of vowel presentation in the other trials.

● Manual rejection of remaining artifacts: visual inspection of the trial-by-trial
data, and exclusion of trials containing artifacts (jumps, drifts, blink residues).
On average across participants 94% (±4%) of trials were retained, giving an
average of 150 trials per sound level condition (including “noise alone”; range
[127–160]).

● Re-referencing to the average of the electrodes
● Baseline correction over the 500 ms preceding the onset of the stimulus.

As indicated below, two types of low-pass filtering were used during the course
of the analysis:

● for visualization purpose, low-pass filters at 30 Hz were applied to time-course
data: ERPs in Fig. 1E. and time course of classification sensitivity Fig. 2C
second column.

● to reduce high-frequency noise in individual data for analyses carried out
time-sample by time-sample (instead of large time windows of interest), a low-
pass filter at 10 Hz was applied prior to the analyses.

Event-related analysis, mean and variability profiles. For each participant, the signal
at each electrode was averaged across trials within each experimental condition to
obtain event-related potentials. Grand average were then obtained by

averaging these evoked potential across participants. For display purpose, the time
courses of these grand averages were low-pass filtered at 30 Hz (Fig. 1E). The grand
average topographies were obtained with the same data (no filtering), averaged over
the different time windows of interest (Figs. 1F, 2C, 4A).

For establishing the mean and variability profiles of the signal over a group of
electrodes, the trial-by-trial signal at each time point was first averaged across
these electrodes. Then the temporal average of this signal for selected time
windows was computed for each trial. This constituted a summary of the trial-by-
trial signal over a specific group of electrodes and a specific time window. For each
subject we then computed the mean and the standard deviation of this summary
signal across trials, separately for each stimulation level. In order to adjust for
variations across subjects in the overall mean and variability levels, the mean and
standard deviation recorded in the absence of stimuli (“noise”) was subtracted
respectively to the means or standard deviations observed at the other stimulation
levels. These mean and variability response profiles were then averaged across
participants (Fig. 1F).

Multivariate pattern analysis (MVPA). Multivariate pattern analysis was performed
using the MNE-Python toolbox (https://martinos.org/mne/stable/index.html)73,74,
with a suit of tools for temporal decoding and generalization of decoding developed
by Jean-Rémi King75, who also developed custom-made scripts to fit the particular
purpose of the present analysis.

The aim of the analysis was to assess how well the multivariate pattern of
activity across electrodes on each trial predicted whether a sound stimulus had
been presented or not on that trial. The procedure was as follows: in a 10-fold
cross-validation procedure, a linear classifier was first trained to classify the
presence versus absence of a vowel in a training subset of data including stimulus
absent trials and stimulus present trials with maximal SNR (9/10th of the trials in
each of these conditions), using a 12-regularized (C= 1) logistic regression. The
classifier was then tested on the remaining trials: the remaining target absent
trials, the remaining target present trials with maximal SNR, but also 1/10th of
the trials with the other SNRs (generalization of the classification across
conditions; see Fig. 2A). It is important to highlight that there was always a
similar number of trials (150 ± 6) in each of the two conditions that were
compared (vowel absent versus vowel present at a specific SNR). Trials for
training and trials for testing were taken from distinct blocks of trials separated
by rest periods. For each test trial we extracted a prediction value (i.e., the signed
distance to the decision plane), which was all the more positive that the
prediction was in favor of the presence of a vowel, and all the more negative that
the prediction was in favor of its absence. Classification sensitivity at each cross-
validation step was evaluated by comparing the distribution of these predictions
for target present trials at each SNR against target absent trials using a signed-
rank test, to derive an area under the receiver operating curve (AUC) (Fig. 2). At
the end of the cross-validation procedure, the intermediate classification
sensitivities were averaged to derive global classification sensitivity for each
experimental condition. Beyond this classical measure of classification
performance, we also kept trial-by-trial prediction values, as required for testing
our different dynamical models and predictions. This procedure was applied at
each time step independently.

Temporal generalization patterns. Temporal generalization was assessed by training
at a specific time step and testing at other time steps. Notice that, even for temporal
generalization, training was always performed on the reference contrast: maximal
SNR versus stimulus absent. To reduce computation time and data size for the
temporal generalization analysis we applied a decimation factor of 5 (from a
sampling rate of 500 Hz rate to 100 Hz). Other than that the procedure was
identical to the one described above.

As with evoked potentials, classification sensitivities at different SNRs were
filtered along the testing time with a low-pass filter at 30 Hz for visualization
purpose (Fig. 2B, C). For each SNR level, classification sensitivity at each training
and testing time was tested against 0.5 (chance) using a two-sided non-parametric
sign test across subjects76, and these statistics were then corrected for multiple
comparison using the False Discovery Rate Benjamini–Hochberg procedure77,78. In
Fig. 2B black contours indicate periods where classification was significantly above
chance with p-corrected < 0.05.

Generalization across active and passive sessions. For each subject we performed
generalization of classification across the active and passive sessions for the con-
trast “stimulus present with SNR −5 dB” versus “stimulus absent”. At each time
point, a classifier was trained on the data of the active session and tested on the
data of the passive session (or conversely) using a ten fold cross-validation pro-
cedure, as described for generalization across different SNR levels (see above).
Temporal generalization patterns and group-level statistics on these temporal
generalization patterns were carried out with the same procedure described above
for generalization across SNRs (Fig. 4B).

Analysis of trial-by-trial projected activity following MVPA, over time windows of
interest. Trial-by-trial predictions evaluated by MVPA constituted an estimate of
stimulus-related activity across electrodes; we also call these measures projected
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activity. Temporal windows of interest were determined based on the general
decoding and temporal generalization profile observed for the maximal contrast
(maximal SNR versus noise only, corresponding to squares in Fig. 2B top panel).
We averaged prediction values over these temporal windows of interest along both
the training and the testing time (without filtering), and then calculated the mean
and variability (SD) of this activity across trials as a function of SNR (Fig. 2C).
Since the baseline variability level, observed for trials with noise only, was quite
different across subjects, for each individual and each time window this baseline
was subtracted to the SD observed for the other stimulation conditions, before
averaging the variability profiles across subjects (Fig. 2C rightmost column).

We also computed the correlation between the neural variability profiles and
the behavioral variability profiles at each time window. At the level of individual
subjects, we computed the correlation coefficient between the neural variability
profile at each time window and the behavioral variability profile of this individual;
these individual correlations were thus carried out on as many points as SNR levels
in the experiment (6 in the active sessions). We then used Student t-tests on these
individual correlation coefficients to assess whether they were significantly different
from 0 at the group level.

We next looked at the distributions of trial-to-trial MVPA projected
activities and compared them with the distributions predicted by the different
dynamical models (Supplementary Fig. 2). For each individual the trial-by-
trial projected activities within each time window of interest were first z-scored,
with all conditions together, in order to homogenize the range of prediction values
across participants. Then for each subject the distribution of activity within a
particular experimental condition was assessed using kernel density estimation
(ksdensity function in matlab, default bandwidth, i.e., optimal for normal densities)
over 91 points between −9 and +9. These individual distributions were averaged
across subjects to obtain the group distributions shown in Supplementary Fig. 2B.
“Heard” and “not heard” trials were sorted based on audibility ratings, ratings at
30% or above being considered as “heard” (30% is the median audibility observed
at threshold stimulation −9 dB, see Fig. 1D).

We conducted a linear mixed-effect model on mean activity across trials within
a time window of interest (300–400 ms), with conditions SNR × report (heard/not
heard) (Fig. 3C). Our mixed-effects model included both random intercepts for
each participant, as well as random slopes for report (heard/not heard) and SNR
and their interaction: this model had significantly lower deviance (83.8) than a
model that only included intercepts as random effects (deviance 212.0,
χ29 ¼ 128:2; p < 10�15) or one that included only intercepts and main-effect slopes
(deviance 154.9, χ24 ¼ 71:1; p < 10�13). We verified that the residuals are
approximately normally distributed using a normal Q–Q plot. Our model showed
significant effects of report (likelihood ratio test, F1;24:3 ¼ 30:3; p ¼ 1:12 ´ 10�5),
SNR (F1;20:5 ¼ 54:7; p ¼ 3:27 ´ 10�7) and their interaction
(F1;19:4 ¼ 7:86; p ¼ 0:011).

Analysis of trial-by-trial projected activity following MVPA, time-sample by time-
sample. We then analyzed the dynamics of projected activity time-sample by time-
sample over the course of the whole time window. Only the projected activ-
ity derived from training and testing at the same time were retained (corresponding
to the diagonal of the temporal generalization patterns shown in Fig. 2B. with no
decimation factor). In order to reduce high-frequency noise in individual data, a
low-pass filter at 10 Hz was applied prior to the analyses. For each subject and at
each time point we derived the correlation coefficient of the mean and variability
profiles observed on projected activity, with the subject’s profile of mean audibility
and variability in audibility collected during the active session (Fig. 3D). These
individual correlations were thus carried out on as many points as SNR levels in the
experiment (6 in the active sessions). Since subjective audibility was not collected
during the passive session, we used each subject’s behavioral profile during the
active session to perform the correlation with the neural activity recorded during
the passive session. A shift in the auditory threshold between active and passive
sessions was to be expected, therefore, we determined for each subject the value of
the shift for which behavioral and neural profiles in the passive session correlated
best: the behavioral profiles in variability were either shifted by 1 dB (the audibility
mean or SD at −13dB was replaced by the audibility for noise, the audibility mean
or SD at −11 dB was replaced by the audibility mean or SD at −13 dB and so on)
or by 2 dB. For each subject we retained the shift for which correlation with neural
activity in the passive session was the strongest, i.e., the sum of correlation coef-
ficients above 3 sd of the baseline was maximal. The best shift was of 1 dB for 9 of
the subjects, and 2 dB for 11 of the subjects. We then used Student t-tests on these
individual correlation coefficients to assess whether they were significantly different
from 0 at the group level (Figs. 3D and 5B).

The next analyses (model fitting and model comparison) are based on the same
neural data (projected activity along the diagonal low-pass filtered at 10 Hz) but
considered trial by trial. The data of each individual trial was averaged over 30 ms
time windows in order to reduce computation time and further stabilize the signal.
We considered 3 different dynamical models, plus a “null” model that served as a
baseline (Model 0).

Model 1: unimodal linear. In this model the activity evoked at each SNR level
follows a Gaussian distribution with standard deviation σ centered on a mean μ
that increases linearly with SNR. In other words, the probability to reach activity

level x for an input SNR of snr is given by:

p activity ¼ xjSNR ¼ snrð Þ ¼ 1

σ snrð Þ ffiffiffiffiffi

2π
p e

�ðx�μðsnrÞÞ2
2σðsnrÞ2 ð1Þ

with

μðsnrÞ ¼ slope ´ snr �maxsnrð Þ þ μmaxsnr if μðsnrÞ> μnoise
and

μðsnrÞ ¼ μnoise if μðsnrÞ ≤ μnoise

8

>

<

>

:

ð2Þ

and

σ snrð Þ ¼ slopeσ ´ μ snrð Þ þ interceptσ ð3Þ
where maxsnr is the maximal input value in the experiment (either −5 dB or −3 dB,
for 10 subjects in the passive session), μmaxsnr is the average activity for this input
value (Note that the intercept can be expressed as μ(0)= μ(maxsnr)− slope ×maxsnr.
The current formulation was preferred to the classical y= slope × x+ intercept so that
fitting directly provided an estimate of mean activity for one of the SNRs that were
actually presented during the experiment.), and μnoise is the average activity in the
absence of stimulus. Note that the mean activity evoked by an input cannot be below
the mean activity in the absence of input. This model was used for illustration
purposes (Fig. 1A) but it was not included in the model fitting and comparison since
it can be considered as a special case of Model 2.

The free parameters in this model are:, slope, μmaxsnr, μnoise, slopeσ, interceptσ

Model 2: unimodal non-linear. In this model the activity evoked at each SNR
follows a Gaussian distribution with standard deviation σ centered on a mean μ
that increases non-linearly with SNR following a logistic function, modified so that
baseline activity level can be different from zero. For this model, the probability to
reach activity level x for an input SNR of snr is given by:

p activity ¼ xjSNR ¼ snrð Þ ¼ 1

σ snrð Þ ffiffiffiffiffi

2π
p e

� x�μ snrð Þð Þ2
2σðsnrÞ2 ð4Þ

with

μ snrð Þ ¼ L

1þ e�kðsnr�threshsnrÞ �
L

1þ e�k maxsnr�threshsnrð Þ þ μmaxsnr ð5Þ

and

σ snrð Þ ¼ slopeσ ´ μ snrð Þ þ interceptσ ð6Þ
where L determines the curve’s amplitude between the two asymptotes, k is the
steepness of the curve, threshsnr is the sigmoid midpoint, and hence the threshold
SNR, maxsnr is the maximal input value in the experiment (either −5 dB or −3 dB)
and μmaxsnr is the average activity for this input value. The constant term is
expressed in relation to the point (maxsnr, μmaxsnr) because the estimated μmaxsnr

can easily be compared with the measured activation at maximal SNR.
The free parameters of this model are: k, threshsnr, μmaxsnr, L, slopeσ, interceptσ

Model 3: bifurcation. In this model the activity evoked at each SNR has a prob-
ability β(snr) to belong to a high state (Gaussian distribution centered on μ(snr))
with μ(snr) increasing linearly with SRN level), and a probability (1− β(snr)) to
belong to a low state (Gaussian distribution centered on μnoise, the baseline activity
observed in the absence of stimulation). For this model, the probability to reach
activity level x for an input SNR of snr is thus given by:

p activity ¼ xjSNR ¼ snrð Þ ¼ β snrð Þ ´ 1
σ
ffiffiffiffi

2π
p e�

ðx�μðsnrÞÞ2
2σ2

� �

þ 1� βðsnrÞð Þ

´ 1
σ
ffiffiffiffi

2π
p e�

x�μnoiseð Þ2
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with

β snrð Þ ¼ 1

1þ e�kðsnr�threshsnrÞ ð8Þ

and

μ snrð Þ ¼ Lhigh

1þ e�khighðsnr�threshsnrÞ þ step ð9Þ

Where β(snr) reflects the proportion of “high state” trials (conscious) as a function
of SNR, and follows a logistic curve between 0 and 1 with slope k and inflexion
point threshsnr. Conversely, the proportion of “low state” trials (non conscious) is
1− β(snr) Within the low state, activity across trials follows a Gaussian distribu-
tion with standard deviation σ centered on μnoise, which is the mean activity level in
the absence of signal. Within the high state, activity across trials follows a Gaussian
distribution centered on μ(snr) which follows a logistic function of SNR with
baseline step, amplitude Lhigh, slope khigh and inflection point threshsnr.

The free parameters of this model are: σ, k, threshsnr, μnoise, step, Lhigh and khigh

Model 0: null model. This model assumes that the external input has no effect on
the activity. Irrespective of whether a stimulus was presented or not, and
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irrespective of the SNR, activity follows a Gaussian distribution centered on μ with
a standard deviation of σ. These are the two free parameters of this model.

Bayesian models comparison. We compared the performance of the different
models in explaining the trial-to-trial data observed for each subject. The data
that were fitted were the trial-by-trial projected activities (as for “analysis time
sample by time sample” above) temporally averaged over 30 ms time windows in
order to further stabilize these individual trial data. For each subject, each 30 ms
time window, the best parameters for each model were estimated by maximum
likelihood, i.e., by finding the parameters maximizing the product of the like-
lihoods p activity ¼ xitrial jSNRð ¼ snritrial&ModelX is trueÞ across the different
trials (or, equivalently, maximizing the sum of the log likelihoods). The para-
meter search was achieved using the Nelder-Mead optimization method79,80 as
implemented in the Matlab function “fminsearch.m”. In order to compare our
different models, which differ in their complexity (in particular, they have dif-
ferent numbers of free parameters), we used the models’ predictive accuracy,
which we approximated using the cross-validated log likelihood of each model81:
the best parameters were estimated on a training set of trials (4/5th of the data),
and the (cross-validated) log likelihood of the model with these parameters was
tested on the remaining trials (1/5th of the data, coming from other blocks of
trials). The log likelihoods estimated on the test-sets were then averaged across
the 5 cross-validations. At the level of individual subjects, we compared the
different models by computing the difference in log likelihoods between pairs of
models.

The parameter searches were initialized as follows:
Initialization for Model 0: μ is initialized to 0 and σ to 1.
Initialization for Model 1:

● slopeσ: slope between the SD of activity at the minimal (−13 dB) and the
maximal SNR (either −5 dB or −3 dB); interceptσ: intercept of the
corresponding line.

● slope: slope between mean activity for the minimal SNR (−13 dB) and the
maximal SNR (either −5 dB or −3 dB).

● μmaxsnr : mean of trials with maximal SNR.
● μnoise: mean of trials with noise only.

Initialization for Model 2:

● slopeσ: slope between the SD of activity at the minimal (−13 dB) and the
maximal SNR (either −5 dB or −3 dB); interceptσ: intercept of the
corresponding line.

● k: slope between mean activity at the minimal SNR (−13 dB) and the maximal
SNR (either −5 dB or −3 dB)

● threshsnr: middle point between minimal SNR and maximal SNR (either
−9 dB or −8 dB).

● μmaxsnr : mean activity of trials with maximal SNR.
● L: double the value of μmaxsnr .

Initialization for Model 3: σ, μnoise , Lhigh , step, k, khigh and threshsnr.

● σ: the standard deviation for trials with noise only.
● μnoise: mean activity of trials with noise only.
● Lhigh : difference between mean activities at the maximal versus minimal SNR

(−13 dB).
● k and khigh: slope between mean activity at the minimal SNR (−13 dB) and the

maximal SNR (either −5 dB or −3 dB).
● step: difference between mean activities at the minimal SNR (−13 dB) and

noise only trials.
● threshsnr: middle point between minimal SNR and maximal SNR.

At the level of the group, we performed a Bayesian model comparison by
computing the protected exceedance probability, i.e. the probability of each model
to be more frequent than any other model in the general population35,36. Since
Model 1 can be considered as a special case of Model 2, the comparison involved
Models 0, 2 and 3. Correction for multiple comparisons across different time points
was performed using the Simes method82.

Predicting conscious report based on trial-by-trial neural activity and the bifurcation
model (active sessions, Fig. 3F). As described above, we fitted the bifurcation model
to individual subject’s data recorded at each time point. This provides the expected
distributions of activity for the two distinct “high state” and “low state” of the
model, separately for the different SNRs. We used these model distributions to
compute, for each trial, the likelihood that the activity recorded at this trial and
time point belonged to the “high state” versus the “low state”. Of note, these trial-
by-trial Bayes Factors (BF: likelihood for high over likelihood for low) were
computed without injecting any information about the subjects’ response at any
stage. We then measured how well these BFs discriminated trials where subjects
reported having heard the sound versus not using an AUC (audibility criterion at
30%, as in all other analysis distinguishing “heard” and “not heard”).

Predicting mind-wandering content based on trial-by-trial neural activity and the
bifurcation model (passive sessions, Fig. 5C). We conducted the similar analysis as
the one described above in the passive sessions, on trials with mind-wandering

probes. We measured how well the resulting BFs discriminated trials where sub-
jects reported that what they had on their mind was the sound, versus
something else.

Source reconstruction. For each individual we reconstructed the sources of evoked
potentials at each time point for different stimulation levels and task conditions.
Then, at the group level we performed statistical across-subjects t-tests on these
reconstructed sources comparing −5 dB versus absent stimulation levels (in the
active and the passive session) and comparing −5 dB in the active versus the
passive sessions. Source reconstructions over the cortical surface were performed
with Brainstorm83, (http://neuroimage.usc.edu/brainstorm). We used a default
anatomy from the Montreal Neurological Institute (ICBM152), at a resolution of
15002 vertices over the cortical surface. The forward model was performed using
the OpenMEEG BEM method84. The inverse solution was calculated using a
minimum norm method85 using the sLORETA measure and no constrain on the
dipoles’ orientations. Statistical comparisons between different experimental con-
ditions were performed using paired t-tests across the different subjects at each
vertex. These statistics were corrected for multiple comparisons using a FDR
method.

Control experiment 1: passive condition only. In order to further control for the
influence of the active session on stimulus processing in the passive session, we
included 10 new naïve participants who only performed the passive version of the
experiment.

Participants. We tested 10 participants aged from 21 to 25 year-old (mean= 23.6
years). They all gave informed consent and received a compensation of 20 € per
hour of attendance. The study was validated by the ethics committee of Paris
Descartes (CERES). Three participants were excluded from the analysis due to poor
quality of the EEG recordings, resulting in an absence of auditory evoked potential
even for stimulation with highest SNR.

Stimuli and material. Stimuli and material were identical to the passive sessions in
the main experiment, except for the range of auditory stimulation, which was
shifted by 3 dB: −11 dB, −9, −7, −5, −3, and −1 dB, plus noise only trials.

Preprocessing. For this control experiment, preprocessing was equivalent to the
preprocessing applied in the main experiment, but using the EEGlab toolbox:

● High-pass filtering at 0.4Hz using a Chebyshev Type I filter (pass-band= 0.3 Hz,
stop-band= 0.4Hz, stop-band attenuation= 80 dB), and a low-pass Chebyshev
Type II filter at 45 Hz (pass-band= 44Hz, stop-band= 46 Hz, stop-band
attenuation= 80 dB) performed on the continuous signal.

● Data were epoched around the onsets of the sound, from−500ms to+2000ms.
For trials with no sound, a fictitious sound-start was randomly chosen, matching
the statistics of sound presentation in other trials.

● A baseline correction of 500ms preceding sound onset was applied.
● Automatic epochs rejection was performed using FASTER toolbox86. Three

metrics were used to exclude epochs contaminated by noise: the amplitude range,
the deviation from the channel average and the variance. Epochs
were excluded if one of the previous metrics exceeded 3.5 times the Z-score
computed over all data. This procedure was iterated until all epochs metrics were
smaller than 3.5 Z-score.

● Average re-referencing.
● Finally, non-brain artefacts (eye movements, ballistocardiac noise, sensors

movements and other electrical noises) were detected and rejected using
independent component analysis (ICA)/blind source separation (BSS) with UW-
SOBI (1001 times delays). The UW-SOBI algorithm87 is an adaptation of the
well-known SOBI algorithm88,89.

Data analysis. Data analysis was the same as for the main experiment.

Control experiment 2: replacing vowels with simple tones. In order to further
test the generality of the late waveforms as a signature of conscious processing we
performed the same experiment as the main one, but with simple tones.

Participants. We tested 5 participants aged from 23 to 39 year-old (mean= 27
years). They all gave informed consent and received a compensation of 20 € per
hour of attendance. The study was validated by the ethics committee of Paris
Descartes (CERES). All participants were included in the analysis.

Stimuli. The stimuli were 2 tones, matched in duration to the vowels used in the
main experiment (200ms). Tone 1 and tone 2 were pure tones with respective
frequencies f1= 1000 Hz and f2= 2236.1 Hz, and 30ms fade-in and fade-out. They
were synthetized using a MATLAB code. The tones were presented within the same
background noise as in the main experiment, at 6 possible levels of signal-to-noise
ratio (SNR) in the active condition (−22 dB, −19 dB, −16 dB, −13 dB, −10 dB or
no tone) and at 7 levels of SNR in the passive condition (−22 dB, −19 dB, −16 dB,
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−13 dB, −10 dB, −7 dB or no tone). These intensity levels were determined based
on behavioral pilots over 5 independent participants showing that −16 dB corre-
sponded to threshold audibility level. Some trials were composed of noise alone,
without superimposed stimuli. The audio stimuli were presented via a supra-
auricular headset (Beyerdynamic DT 770 PRO 80 ohm).

Task. The protocol was the same as in the main experiment, except that in the
active sessions, instead of vowel recognition, participants were required to distin-
guish tone 1 and tone 2 (designated as “low-pitch” and “high-pitch” respectively).
Four participants performed the passive session first, and one performed the active
session first.

Preprocessing. Preprocessing was the same as for Control Experiment 1.

Data analysis. Data analysis was the same as for the other experiments.

Statistics and reproducibility. The present study includes one replication of the
passive session of the main experiment (10 new participants, see above). The results
were successfully replicated (Supplementary Fig. 6). The study also includes a
replication using different stimuli (tones instead of vowels) for both passive and
active sessions (5 new participants that took both sessions, see above). The results
were successfully replicated (Supplementary Fig. 7).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The EEG data that support the findings of this study are available in OSF [https://osf.io/
aw3t5/] with the identifier https://doi.org/10.17605/OSF.IO/AW3T5. Other data
underlying the conclusions are available from the authors upon request. Source data are
provided with this paper.

Code availability
The custom codes that have been used to analyze these data are available in OSF [https://
osf.io/aw3t5/] with the identifier https://doi.org/10.17605/OSF.IO/AW3T5.
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