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Automated discovery of a robust interatomic
potential for aluminum
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Machine learning, trained on quantum mechanics (QM) calculations, is a powerful tool for

modeling potential energy surfaces. A critical factor is the quality and diversity of the training

dataset. Here we present a highly automated approach to dataset construction and

demonstrate the method by building a potential for elemental aluminum (ANI-Al). In our

active learning scheme, the ML potential under development is used to drive non-equilibrium

molecular dynamics simulations with time-varying applied temperatures. Whenever a con-

figuration is reached for which the ML uncertainty is large, new QM data is collected. The ML

model is periodically retrained on all available QM data. The final ANI-Al potential makes

very accurate predictions of radial distribution function in melt, liquid-solid coexistence curve,

and crystal properties such as defect energies and barriers. We perform a 1.3M atom shock

simulation and show that ANI-Al force predictions shine in their agreement with new

reference DFT calculations.
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G iven sufficient training data, ML models show great pro-
mise to accelerate scientific simulation, e.g., by emulating
expensive computations at a high accuracy but much

reduced computational cost. ML modeling of atomic-scale phy-
sics is a particularly exciting area of development1–4. Provided
sufficient training data, ML models suggest the possibility for the
development of models with unprecedented transferability.
Applications to materials physics, chemistry, and biology are
innumerable. To give some examples, simulations for crystal
structure prediction, drug development, materials aging, and high
strain/strain-rate deformation would all benefit from better
interatomic potentials.

Machine learning (ML) of interatomic potentials is a rapidly
advancing topic, for both materials physics5–18 and chemistry19–26.
Training datasets are calculated from computationally expensive ab
initio quantum mechanics methods, most commonly density
functional theory (DFT). Trained on this data, an ML model can
be very successful in predicting energy and forces for new atomic
configurations. ML potentials typically assume very little beyond
symmetry constraints (e.g., translation and rotation invariance)
and spatial locality (each atomic force only depends on neigh-
boring atoms within a fixed radius, typically of order 5–10Å).
Long-range Coulomb interactions or dispersion corrections may
also be added21,27.

For large-scale molecular dynamics (MD) simulations, so-
called classical potentials are usually the tool of choice. Such
potentials are relatively simple and computationally efficient.
Although effective for many purposes, classical potentials may
struggle to achieve broad transferability. For example, it is not
easy to design a single classical potential that correctly describes
multiple incompatible crystal phases and the transitions between
them. Consequently, assumed functional forms for classical
potentials tend to grow more flexible over time. For example, the
embedded atom method (EAM)28 has lead to generalizations
such as modified EAM (MEAM)29 and multistate MEAM30.

In contrast to classical potentials, the ML philosophy is to begin
with a functional form of the utmost flexibility. For example, a
modern neural network-based ML potential may contain ~105

fitting parameters. If properly trained, recent work suggests that
the accuracy of ML potentials can approach that of the underlying
ab initio theory (e.g., DFT or coupled cluster)4,20,21,25,31–34.
Although slower than classical potentials, ML potentials are vastly
faster than, say, reference DFT calculations. The main limitation
on the accuracy and transferability of an ML potential is the
quality and broadness of the training dataset.

In this paper, we design an active learning approach for
automated dataset construction suitable for materials physics and
demonstrate its power by building a robust potential for alumi-
num that we call ANI-Al. Distinct from previous works, here the
active learning scheme receives very limited expert guidance. In
particular, we do not seed the training dataset with any crystal or
defect structures; the active learning scheme begins only with
fully randomized atomic configurations. By leaving the search
space of possibly relevant atomic configurations unspecified, we
aim to build a model that is maximally general. If successful, the
model should remain accurate when presented with complex
atomic configurations that may arise in a variety of highly
nonequilibrium dynamics.

The basic steps of active learning (AL) for atomic-scale mod-
eling are to sample new atomic configurations, query the ML
model for uncertainty in its predictions, and selectively collect
new training data that would best improve the model24,35–40.
Previous work employed AL to drive nonequilibrium sampling
of large datasets through organic chemical space, yielding the
highly general ANI-1x potential41. Other recent research by
Gubaev et al.42 has explored the use of AL with moment tensor

potentials to construct atomistic potentials for materials. Zhang
et al. also applied AL to materials using the deep potential
model32 for MgAl alloys. AL was used by Deringer, Pickard, and
Csányi to build an accurate and general model for elemental
Boron43.

The AL procedure developed in this work will be discussed
in detail below, but briefly, there is a loop over three main steps:
(1) using the best ANI-Al models available, MD simulations with
time-varying temperatures are performed to sample new atomic
configurations; (2) an ML uncertainty measure determines whe-
ther the sampled configurations would be useful for inclusion
in the training data and if so, new DFT calculations are run; and
(3) new ANI-Al models are trained with all available training
data. The starting point for AL is an initial training dataset
consisting of DFT calculations on randomized (disordered)
atomic configurations. Each MD sampling trajectory is also
initialized to a random disordered configuration, with random
density. Required human inputs to the active learning procedure
include the range of temperatures and densities over which to
sample and various ML hyperparameters that are largely trans-
ferable between materials. Crucially, the AL scheme receives no a
priori guidance about the relevant configuration space it should
sample. Nonetheless, after enough iterations, the AL procedure
eventually encounters configurations that locally capture char-
acteristics of crystals such as FCC, HCP, BCC, and many others.
The AL algorithm is readily parallelizable; we employed hundreds
of nodes on the Sierra supercomputer to collect the final ANI-Al
dataset consisting of about 6000 DFT calculations.

We demonstrate, via a large set of benchmarks, that the resulting
ANI-Al potential is effective in predicting many properties of alu-
minum in liquid and crystal phases. The performance on crystal
benchmarks is notable, given that the automatically generated AL
training dataset consists primarily of disordered and partially ordered
configurations. ANI-Al shines when applied to extreme and highly
nonequilibrium processes. As a test, we perform a 1.3M atom
shock simulation and verify the ANI-Al-predicted forces by per-
forming new DFT calculations on randomly sampled local atomic
environments. Force prediction errors (per component) are of
order 0.03 eV/Å, whereas typical force magnitudes ranged from
1 to 2.5 eV/Å. In terms of absolute force accuracy, ANI-Al per-
forms nearly as well for extreme shock simulations as it does for
equilibrium crystal or liquid simulations. To help understand the
impressive transferability of ANI-Al, we present a two-
dimensional visualization of the space of configurations sam-
pled in the AL training dataset. The liquid phase, a variety of
crystal structures, and the highly defected configurations that
appear in shock all appear to be well-sampled.

Results
Here, we present a variety of benchmarks for ANI-Al, our
machine-learned potential for aluminum. First, we report crystal
property predictions, including energies, elastic constants, energy
barriers, phonon spectrum, point defect energies, and surface
properties. Next, we present results on the liquid phase and on
transitions between liquid and crystal. Our final application is a
large-scale shock simulation, for which we verify ML-predicted
forces using new DFT calculations. Finally, we illustrate the
advantages of the AL approach by characterizing the diversity of
configurations sampled.

Predicting crystal energies. Figure 1 shows ANI-Al-predicted
energies (solid lines) for select crystal structures. ANI-Al correctly
predicts that FCC has the lowest energy of all crystals considered;
more crystal energies are compared in Supplementary Table 5.
Vertical bars show the sample variance over the eight neural
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networks that comprise a single ANI-Al model (i.e., the uncer-
tainty measure used within the active learning procedure). DFT
reference data are shown in circles.

For both ANI-Al and DFT calculations, energies are measured
relative to the FCC ground state. Let ϵx represent the error of the
ANI-Al predicted energy for crystal structure x at its energy
minimizing volume (volume is independently optimized for ANI-
Al and DFT). By definition, the energy shifts are such that ϵfcc=
0. After FCC, the second-lowest energy structure shown in this
plot is HCP, for which the ANI-Al error is ϵhcp= 0.42 meV/atom.
Note that FCC and HCP are competing close-packed structures,
and both can reasonably be expected to emerge in our active
learning dynamics (FCC with a stacking fault looks locally like
HCP). BCC, by contrast, is only physical in aluminum at much
higher densities, far beyond the range of our active learning
sampling. It is not surprising, therefore, that the ANI-Al error for

BCC is an order of magnitude larger, ϵbcc= 5.3 meV/atom.
Simple cubic and diamond crystals are less physical still, and we
observe ϵsc= 37 meV/atom and ϵdiamond=− 44 meV/atom.
Nonetheless, the qualitative agreement between ANI-Al and
DFT observed in Fig. 1, even for very unphysical crystals, seems
remarkable. Similar observations were made in ref. 32. We
emphasize that in the present work, the training data include no
hand-selected crystals. Instead, all atomic configurations in the
training dataset were generated using MD sampling, starting only
from disordered configurations.

ANI-Al predictions are most reliable for the range of densities
sampled in the training data (Fig. 1a, yellow region). A further
extrapolation of these cold curves is shown in Supplementary
Fig. 9.

Predicting elastic constants. We can compare ANI-Al-predicted
elastic constants against experimental data. A particularly important
one is the bulk modulus, which corresponds to the curvature of the
FCC cold curve at its minimum (Fig. 1b). Experimentally, the FCC
bulk modulus is measured to be 79GPa 44, whereas the ANI-Al
prediction is 77.3 GPa. The full set of FCC elastic constants is
measured experimentally to be, C11= 114 GPa, C12= 61.9 GPa, and
C44= 31.6 GPa44. For our DFT calculations, C11= 106 GPa, C12=
62.3 GPa, and C44= 31.6 GPa. For ANI-Al, we predict C11= 117
GPa, C12= 57.2 GPa, and C44= 30.4 GPa.

The largest discrepancies between ANI-Al and DFT are
observed for the elastic constants C11 and C12, with relative
errors of 10.38% and −8.19%, respectively. Interestingly, the
effects of these two discrepancies seem to cancel in the bulk
modulus, B= (1/3)(C11+ 2C12), for which the error relative to
DFT is just 0.78%. We suspect the cancellation is not a
coincidence, because a similar phenomenon was observed
in previous ML potentials developed for aluminum32,34

(cf. Supplementary Table 4). Elastic constants measure the
response of stress to a small applied strain. For an ML model
to precisely capture Cij, its training data should ideally contain
many locally perfect FCC configurations for a variety of small
strains. The mechanisms by which our active learning sampler
can generate strained FCC are somewhat limited (e.g., nucleation
of imperfect crystals). Future work might employ time-varying
applied strains to the entire supercell, in addition to the time-
varying temperatures employed in this study.

In predicting elastic constants, ANI-Al accuracy is on par with
many classical potentials and existing ML potentials, as shown in
Supplementary Tables 3 and 4. Whereas classical potentials are
usually designed to reproduce experimental elastic constants, in
ANI-Al this capability is an emergent property. Our active
learning sampling discovers the FCC lattice and its properties in
an automated way.

Predicting crystal energy barriers. The Bain path (Fig. 2a)
represents a volume-preserving homogeneous deformation that
transforms between FCC and BCC crystals. Starting from the
initial FCC cell (c/a= 1), we compress along with one of the
〈100〉 directions (length c) while expanding equally in the two
orthogonal directions (lengths a= b). The special value of c/a=
1/

ffiffiffi
2

p � 0:71 would correspond to BCC symmetry. Figure 2a
shows energies along this Bain path, in which c/a varies con-
tinuously while conserving volume, a2c. The observed maximum
at c/a= 1/

ffiffiffi
2

p
indicates that the BCC structure is unstable to

tetragonal deformation. We compare ANI-Al to DFT reference
calculations, as well as seven EAM-based potentials45–52. Sup-
plementary Fig. 2 quantifies the errors for each potential, aver-
aged over the strain path.

Fig. 1 Crystal energies relative to the ground state. Solid lines represent
ANI-Al predictions and circles represent density functional theory (DFT)
reference calculations. Vertical bars represent sample variance of the eight
neural networks comprising the (ensembled) ANI-Al model. Panel (b) is a
magnification of panel (a) near the energy minima. The highlighted yellow
region (~11–25Å3/atom) indicates the approximate range of densities
sampled in the training data. Crystal structures are diamond, simple cubic
(SC), body-centered cubic (BCC), hexagonal close-packed (HCP), and face-
centered cubic (FCC).
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Figure 2b shows the energies along the trigonal deformation
path, where the ideal FCC phase is compressed along the z=
〈111〉 crystallographic direction, and elongated equally in the two
orthogonal directions x and y, such that the total volume is
conserved. We define a characteristic “stretch ratio” as
ðL0z=L0xÞ=ðLz=LxÞ, where Lz and Lx are the dimensions of the
reference FCC simulation cell along z and x directions,
respectively, and L0z and L0x are the dimensions of the deformed
simulation cell. Stretch ratios of 1.0, 0.5, and 0.25 result in FCC,
SC, and BCC phases, respectively. Good agreement is found
between ANI-Al and DFT reference calculations. It can be seen
from Fig. 2b that SC, but not BCC, is unstable to trigonal
deformation.

A stacking fault in FCC represents a planar defect in which the
crystal locally is in HCP configuration within the nearest-
neighbor shell (note that FCC and HCP are competing close-
packed structures). The generalized stacking fault energy (GSFE)
slip path provides an estimate of the resistance for dislocation slip

and the energy per unit area required to form a single stacking
fault. The GSFE twinning path (also known as the generalized
planar fault energy) is an extension of the slip path and provides
an estimate of the energy per unit area required to form n-layer
faults (twins) by shearing n successive {111} layers along 〈112〉.
We calculated the GSFE slip path and the twinning paths using
standard methods53–56.

Figure 2c, d shows energies along with the GSFE slip and twin
paths, respectively. As before, we compare with seven EAM-based
potentials. The ANI-Al potential agrees quite well with the
reference DFT data for all measurements in Fig. 2. To quantify
this agreement, we calculate the root-mean-squared error
(RMSE), formed as an average over the Bain, Trigonal, GFSE
slip, and GFSE twinning paths. ANI-Al achieves RMSE values of
4.5 meV/atom, 6.0 meV/atom, 16.6 mJ/m2, and 11.4 mJ/m2,
respectively. For predicting these paths, the best classical potential
is by Mishin et al.48, which achieves errors of 4.3 meV/atom, 37.6
meV/atom, 52.5 mJ/m2, and 15.9 mJ/m2. Supplementary Fig. 2
quantifies the errors for each potential, averaged over the strain
path. It is interesting to note that the Winey et al. potential50,
which does exceptionally well in predicting many FCC properties
(see Supplementary Table 3), struggles to accurately predict the
Bain and GSFE slip paths.

Predicting FCC phonon spectrum. Figure 3 compares the ANI-
Al predicted phonon spectrum to that of DFT. In both cases, the
frequencies were calculated using the PHON program57 via the
small-displacement method58,59. A supercell of size 4 × 4 × 4 FCC
unit cells was used for the calculations. The ion at the origin of
this supercell was displaced in [100], with a magnitude of 1% the
equilibrium FCC lattice spacing, and the forces were calculated on
all the ions. These forces were used to calculate the phonon fre-
quencies in the quasi-harmonic approximation. Figure 3 shows
good agreement between ANI and DFT predictions of the FCC Al
phonon spectrum.

Predicting FCC point defects. ANI-Al predicts the formation
energies for vacancy and (〈100〉 dumbbell) interstitial defects to
be 663 meV and 2.49 eV, respectively. The corresponding DFT
predictions are 618 meV and 2.85 eV. The vacancy formation
energy is experimentally estimated to be ~680 meV60.

Fig. 3 Comparison of predicted vs. reference phonon spectrum. Phonon
spectrum of FCC Al predicted by the ANI-Al model (crosses) and
compared to the DFT reference (circles).

Fig. 2 Transformational energy barriers. We compare ANI-Al and various
classical potentials to reference DFT data. a Volume-conserving Bain path
energies. b Trigonal path energies. c Generalized stacking fault energy
(GSFE) slip path. d GSFE twinning path.
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Supplementary Tables 3 and 4 also list predictions for existing
classical and ML potentials. The relatively large deviation between
ANI-Al and DFT predictions is perhaps an indication that
vacancies and interstitials did not play a large role in the con-
figurations sampled during the active learning procedure.

Predicting FCC surface properties. The properties of surfaces
predicted by our ANI-Al model is compared to values from DFT,
experiments, and seven EAM-based potentials in Supplementary
Table 3. Supplementary Table 4 compares with previous ML
results, where available. ANI slightly overpredicts the surface
energy for {100}, {010}, and {111}, with a maximum error of 6.6%
(for {100}) compared to DFT predictions. ANI predicts the cor-
rect sign for surface relaxation (inward or outward) in all but one
case (df100g12 ). The outward relaxation of {100} and {111} surfaces
in Al are considered “anomalous” and ANI predicts this correctly
only for {111}, despite correct predictions by DFT for both sur-
faces. Also note that ANI-Al correctly predicts the ordering of the
magnitudes of surface relaxation, jdf110g12 j>jdf100g12 j � jdf111g12 j, but
the quantitative agreement with DFT reference calculations is
poor. The ANI-Al training dataset includes only bulk systems
with periodic boundary conditions, but some surface configura-
tions may have been incidentally sampled due to void formation
at low densities.

Predicting radial distribution functions. To validate our ANI-
Al model in the liquid phase, we carry out MD simulations to
measure radial distribution functions (RDF) and densities at
various temperatures. Figure 4a compares simulated RDFs with
experimental measurements at 1123, 1183, and 1273 K61. Inde-
pendent simulations were performed in the isobaric–isothermal
(NPT) ensemble to determine equilibrium densities of liquid Al
at the relevant (P,T) conditions. MD simulations of 2048 atoms
were initialized at these densities and equilibrated for 50 ps
in the NVT ensemble using the Nosé–Hoover-style equations
of motion62 derived by Shinoda et al.63 Reported RDFs
were calculated (bin size of 0.05Å) by averaging 100 instanta-
neous RDFs, which were 0.1 ps apart, in the final 10 ps of the
NVT equilibration. A timestep of 1 fs was used for these simu-
lations. Figure 4b compares ANI-Al predicted densities at var-
ious temperatures (still at atmospheric pressure) to multiple
experimental values64–69. For reference, the melting temperature
is Tmelt ≈ 933 K. The agreement between ANI-Al predictions and
experiment is comparable to the variation between different
experiments.

Predicting liquid–solid phase boundaries. Figure 5 shows the
liquid–solid coexistence line in the pressure–temperature plane.
At each pressure, we calculated the coexistence temperature by
performing simulations with an explicit solid–liquid inter-
face70–72. The details of these simulations are provided in
Supplementary Note 7. Experimental data are available up to
about 100 GPa73. We also compare with prior DFT calcula-
tions46 and a classical MD potential. For the latter, we used the
Mendelev et al. potential45, which was explicitly parameterized
to model the melting point of aluminum, Tmelt ≈ 933 K at
atmospheric pressure. At this pressure, both Mendelev and
ANI-Al potentials predict an FCC melting point of ~925 K, in
good agreement with the experiment.

The Mendeleev model begins to underestimate the melting
temperature at around 5 GPa, whereas the ANI-Al model remains
quite accurate up to ~50 GPa. Note that the ANI-Al training data
were restricted to a limited range of densities (yellow region of
Fig. 1a) which correspond to pressures up to ~50 GPa (See
Supplementary Fig. 1). We were surprised to observe qualitative
agreement between the ANI-Al and DFT predicted coexistence
curves up to 250 GPa, even though this is a significant
extrapolation for ANI-Al.

For the Mendelev simulations, the liquid–FCC coexistence
curve only extends to ~20 GPa; beyond that point, we observed
nucleation into BCC. According to prior DFT-based studies46,74

and experiment75, the solid-to-solid transition out of FCC should
require hundreds of GPa. Figure 5 includes the theoretically
predicted liquid–BCC coexistence curve at pressures between 225
to 275 GPa.

Phase-transition dynamics. Next, we carry out a nonequilibrium
MD simulation to observe both freezing and melting dynamics.
Our intent is to verify the ANI-Al-predicted energies and forces
at snapshots along the dynamical trajectory. Along the trajectory
the temperature is slowly increased from 300 to 1500 K, then
cooled back to 300 K. The details of these simulations are pro-
vided in Supplementary Note 7.

Figure 6 shows the potential energy, mean force magnitude,
and pressure for both ANI-Al and DFT along this trajectory.
Melting from FCC to liquid occurs at around 300 ps, and freezing
occurs at around 700 ps. The pressure was calculated using the
method of ref. 76. The inset images in Fig. 6b show the
composition of the system before and after melting, and after
refreezing. Compositional information was obtained using the
common neighbor analysis as implemented in the OVITO
visualization software77.

Fig. 4 Molecular dynamics simulation in melt using the ANI-Al potential. a Radial distribution function at temperatures 1123, 1183, and 1273 K compared
to experiment61 (black line). b Density predictions as a function of temperature. The dashed black line is a linear fit to all five sources of experimental data.
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Every 2.5 ps along the trajectory we sampled a frame to
perform reference DFT calculations. The error between ANI-Al
and DFT is generally small. Averaged over the full trajectory, the
MAE for energy is 0.84 meV/atom. The MAE for each force
component individually is 0.023 eV/Å. The MAE for ANI-Al
predicted pressure is 0.36 GPa. Interestingly, there is a tendency
for ANI-Al to overestimate pressure, especially at negative
pressures. Perhaps this systematic error reflects the fact that a
large fraction of the ANI-Al training data was sampled at very
large positive pressures (cf. Supplementary Fig. 1). Model
performance in predicting pressure could likely be significantly
improved by including pressure data in the training procedure.

Supplementary Figs. 3 and 4 further verify the ANI-Al force
predictions for MD simulations over large a range of tempera-
tures and densities.

Simulation of shock physics. Finally, to verify our potential at
predicting material response under extreme conditions, we carried
out a large-scale shock simulation using NeuroChem interfaced to
the LAMMPS molecular dynamics software package78. The simula-
tion cell, containing about 1.3M atoms, has approximate dimensions
10 × 211 × 10 nm in the x= [112], y ¼ ½110�, and z ¼ ½111� crys-
tallographic directions. Prior to shock, the volume was equilibrated at
300 K for 15 ps in the NVT ensemble. Periodic boundary conditions
were applied in x and z, with free surfaces in y. After equilibration, a
up= 1.5 km/s shock was applied in y using the reverse-ballistic
configuration79, and the system was evolved in the NVE ensemble. In
this method, a rigid piston is defined by freezing a rectangular block
of atoms and the velocities of the remaining atoms are modified by
adding−up to the y component. This sets up a supported shock wave
in the flexible region of the simulation cell. Using spatial domain
decomposition as implemented in LAMMPS, the 1.3M atoms were
distributed across 80 Nvidia Titan V GPUs, and the required wall-
clock time for the entire 31 ps simulation (62 k MD timesteps) was
about 15 h.

Figure 7a shows the dislocation structure in the simulation cell,
as predicted by the Dislocation Extraction Algorithm (DXA)77,80

at 24.5 ps.
We randomly selected five atoms in the simulation volume for

further analysis. The atomic environments for these five atoms
are shown as clusters and highlighted with colored boxes in
Fig. 7a. The five zoomed insets illustrate that dislocations can pass
near each of the five central atoms at specific times, which are
marked with colored boxes in Fig. 7b–f.

Figure 7b–f compares the ANI-Al predicted forces with new
reference DFT calculations at every 0.5 ps of simulation time. For
each sample point, a local environment (a cluster of radius 7Å) was
extracted from the large-scale shock simulation and placed in a
vacuum. A new DFT calculation was performed on this cluster, and
the resulting force on the central atom was compared to the
corresponding ANI-Al prediction. As shown in Fig. 7b–f, the
magnitudes of the forces have a characteristic scale of order 1 eV/Å.
The mean absolute error, for the ANI-Al predictions of each force
component individually, is ~0.06 eV/Å. However, as we will discuss
below, artificial surface effects due to finite cluster radius r= 7Å
cannot be neglected, and larger clusters are required to measure the
true ANI-Al error for these shock simulations.

To systematically study the effect of cluster cutoff radius r, we
further down-sampled to ten local atomic environments. Figure 7g
quantifies the r-dependence on the DFT-calculated force fr.
Specifically, it shows the mean of jf r;a � f r0;aj, where the reference
radius is taken to be r0= 10Å. Averages were taken over all force
components a= x, y, z and over all ten local atomic environments.
Surface effects for r= 7Å are seen to modify the central atom force
by about 0.06 eV/Å, which is of the same order as the ANI-Al
disagreement with DFT, when measured using this r. The average
force magnitude for these ten configuration samples is 1.12 eV/Å,
so the observed deviations at r= 7Å represent about a 5% effect.

Figure 7h illustrates that ANI-Al and DFT agreement becomes
better for calculations on larger clusters, i.e., where artificial surface
effects are reduced. With cluster radius r= 7Å, the ANI-Al mean
absolute error (MAE) for force components is about 0.06 eV/Å. At
the largest cluster size, we could reach (r= 10Å) the ANI-Al MAE
reduces to ~0.03 eV/Å, i.e., about a 3% relative error. For reference,
recall that the ANI-Al force errors in the section “Phase transition
dynamics” were slightly lower, at 0.023 eV/Å; in that context,
however, the reference DFT calculations did not suffer from artificial
surface effects.

It makes sense that ANI-Al and DFT forces are most consistent
for the largest cluster sizes, given that the training data produced
by active learning consists entirely of bulk systems. Note that

Fig. 5 Predicting melt temperatures. aMelt curve as a function of pressure
for DFT46, ANI-Al, and the Mendelev et al. EAM potential45, compared
with experimental data73. Below 210 GPa, we show FCC–liquid coexistence.
Above 210 GPa, we show BCC-liquid coexistence. The inset zooms to
pressures from 0 to 20 GPa. b Errors in predicting the melt temperature at
atmospheric pressure.
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although the nominal ANI-Al cutoff radius is just 7Å, the model
can still generate strong effective couplings at distances of up to
10Å through intermediary atoms that process angular features, as
described in Supplementary Note 4.

Limited vs. diverse sampling. The success of ANI-Al hinges on
the diversity of the active learned dataset. To demonstrate this, we
compare ANI-Al against an ML model trained on a much more
limited dataset. We will call this baseline dataset FCC/Melt, as it

Fig. 7 A 1.3 million atom shock simulation using the ANI-Al potential. A shock of 1.5 km/s was initiated from the right along the 〈110〉 crystallographic
direction. a Dislocation structure calculated using OVITO after 24.5 ps of simulation as well as zooms for five randomly selected atoms at hand-picked
times. b–f Verification of the ANI-Al force predictions for these five atoms every 0.5 ps. Reference forces were obtained by performing new DFT
calculations for small clusters centered the five atoms. g Comparison of DFT-calculated forces on the central atom for varying cluster radius (reference
force calculated at radius 10Å). h Mean absolute error of ANI-Al predicted forces, relative to DFT, as a function of cluster radius.

Fig. 6 ML-driven molecular dynamics, showing melting and freezing processes. The system is heated from 300 to 1500 K, and cooled back to 300 K.
Reference DFT calculations (black) are used to verify the ANI-Al predictions (red) for (a) the energy, (b) mean (avg.) force, and (c) pressure. The
instantaneous temperature is shown in gray on panel (c). Panel (b) insets show the local atomic structure (green—FCC; gray—disordered; red—HCP) at
snapshots before melting, after melting, and after refreezing.
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consists only of samples from the FCC and liquid phases. Spe-
cifically, the FCC/Melt dataset is constructed by taking regular
snapshots from near-equilibrium MD trajectories. For each
snapshot, we perform a DFT calculation to determine the refer-
ence energy and forces.

The first such MD trajectory is shown in Fig. 6. There, 108
atoms were initialized to FCC, heated from 300 to 1500 K, and
cooled back to 300 K. We take 300 snapshots from this trajectory,
equally spaced in time, to add to the FCC/Melt dataset. For
increased variety, the FCC/Melt dataset contains an additional
250 DFT calculations taken from the liquid phase over a range of
temperatures and pressures (Supplementary Note 7 contains
details). In sum, the FCC/Melt dataset contains 550 DFT
calculations for near-equilibrium FCC and liquid configurations.

Table 1 compares our ANI-Al model, trained on the full active
learned (AL) dataset, to an ANI model trained on the much more
restricted FCC/Melt (FM) dataset. The two model types are
compared by testing on held out portions of both datasets.
Supplementary Figs. 5 and 6 show the associated correlation
plots.

A conclusion of Table 1 is that both the AL trained and FCC/Melt-
trained models to have comparable errors when predicting on the
held out FCC/Melt test data. However, when testing on the held out
AL data, the FCC/Melt-trained model does quite poorly. This failure
casts doubt on the ability of the FCC/Melt-trained model to study
new dynamical physical processes: will a rare event occur that pushes
the FCC/Melt-trained model outside its range of validity? To mitigate
this danger, it is essential to make the training dataset as broad as
possible, which is our aim with active learning.

Coverage of configuration space. Here, we characterize the
sampling space covered by our active learning methodology using
the t-distributed stochastic neighbor embedding81 (t-SNE)
method as implemented in the OpenTSNE82 Python package. In
Fig. 8a–d, every local atomic environment in the active learned
training dataset is mapped onto a reduced, two-dimensional
space. Hyperparameters of the t-SNE-embedding process is
shown in Supplementary Note 6. In brief, we use the activations
after the first layer of the ANI-Al neural network as an abstract
representation (“latent space vector”) of the 7Å-radius local
atomic environments around each atom. The cosine distances
between all pairs of these latent space vectors (for all points of the
dataset) are the inputs to t-SNE. The output of t-SNE is, ideally, a
mapping of all latent space vectors onto the two-dimensional
embedding space that, in some sense, is maximally faithful to
pairwise distances. t-SNE thus provides a two-dimensional
visualization of all atoms in all configurations of the dataset.

Figure 8a–d uses radial neighbor regression (RNR) to associate
atomic environments (averaged within the embedding space)
with four different properties. Figure 8a shows the average active

learning iteration count, Fig. 8b shows the average force error
(saturated at 0.5 eV/Å), Fig. 8c shows the ANI predicted atomic
energy (saturated at 1.5 eV), and Fig. 8d shows the trace of the
ANI-Al predicted atomic stress tensor (saturated at 0.025 eV/Å).

Observe that the sampled points are well connected in
the reduced dimensional space, and not clustered. In contrast,
a poorly sampled dataset would typically lead to obvious
clusters, clearly separated by gaps. In Fig. 8a, one sees that the
active learning procedure progresses from sampling random
disordered configurations (blue region at the top) to sampling
much more structured data. The left, bottom, and right edges of
the embedding space were not sampled until late in the active
learning process (red). Up until about ten iterations into the
active learning procedure, all MD sampling trajectories never ran
long enough to make it to an ordered atomic configuration (recall
that the trajectories end once they reach a configuration with very
high ML uncertainty). Despite being very well-sampled, a
comparison with Fig. 8b shows that the ML model still has the
greatest difficulty in fitting this disordered (high entropy) region
of configuration space. Figure 8c, d shows that these disordered
atomic environments typically have high energies and stresses.

Markers in Fig. 8b show the local atomic environments for
perfect crystals; we selected eight crystal structures that could
potentially compete with FCC as the ground state. Observe that
all eight markers lie within the sampled space (interestingly, only
FCC and A15 crystals are placed at the edge), and are
continuously connected. The average force error in the region
of all crystal structures is generally very low (less than 0.1 eV/Å),
except for the simple cubic and diamond cubic regions, which are
very high-energy structures, and thus less physical. Figure 8c
shows that the position of FCC is almost perfectly overlapping the
lowest energy configuration sampled during active learning. As
mentioned above, the FCC structure was not found until at least
10 active learning iterations. Later in the active learning process,
however, local FCC configurations became quite well-sampled (cf.
Fig. 8a).

Red crosses in Fig. 8d represent local atomic environments that
were randomly sampled from our previous shock simulation.
Interestingly, these samples are largely confined to the bottom-
right portion of embedding space and span a fairly significant
range of local atomic stresses. Early in the shock simulation, the
atomic environments live primarily near the FCC region of the
embedding space, with small local stress. As the shock wave
passes through each local environment, one can sample much
higher pressure and temperature conditions. Afterward, there
remains a complicated pattern of defects. Importantly, through-
out the entire shock process, all visited atomic environments
appear to be well represented by the training dataset. This is
consistent with the fact that the force errors of Fig. 8b appear to
remain small for all regions (e.g., bottom-edge of embedding
space) where the shocked environments appear. The region
circled and labeled “Liquid phase sampling” was obtained from
the atomic environments in the liquid phase simulations shown
in Supplementary Fig. 4 and described in Supplementary Note 7.
The configurations appearing in a shock are largely distinct from
those appearing in simulations of the liquid phase.

Discussion
ML is emerging as a powerful tool for producing interatomic
potentials with unprecedented accuracy; recent models routinely
achieve errors of just a couple meV per atom, as benchmarked
over a wide variety of ordered and disordered atomic config-
urations. Here, we presented a technique to automatically con-
struct general-purpose ML potentials that requires almost no
expert knowledge.

Table 1 Mean absolute and root-mean squared errors
(MAE/RMSE) of ANI-Al models trained/tested on
combinations of FCC/Melt (FM) and active learning (AL)
datasets.

FM tested AL tested

Energy error (meV/atom)
FM trained 2.0/4.0 40/110
AL trained 1.4/1.9 1.3/1.9

Force component error (eV/Å)
FM trained 0.04/0.07 0.49/1.53
AL trained 0.03/0.04 0.04/0.06
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Modern ML potentials can be used for large-scale MD simu-
lations. To quantify performance, consider for example the opti-
mized Neurochem code applied to ANI-Al with an 8× ensemble of
neural networks, and a simulation volume of thousands of atoms;
here, we measure up to 67 k atom timesteps per second when
running on a single Nvidia V100 GPU. With 80 GPUs, our cur-
rent LAMMPS interface (not fully optimized) achieved 1.6M
atom timesteps per second for the 1.3 M-atom shock simulation.
A study conducted parallel to ours performed ML-MD simula-
tions of 113M copper atoms by using 43% of the Summit
supercomputer (~27 k V100 GPUs)83. The speed of ANI-Al is
perhaps two orders of magnitude slower than an optimized EAM
implementation, but vastly faster than ab initio MD would be.

Because ML models are so flexible, the quality and diversity of
the training dataset is crucial to model accuracy. Here, we focused
on the task of dataset construction and, specifically, sought to
push the limits of active learning. We presented an automated
procedure for building ML potentials. The required inputs

include physical parameters such as the temperature and density
ranges over which to sample, the interaction cutoff radius for the
potential (we selected 7Å for aluminum), and various ML
hyperparameters that we reused from previous studies. We did
not include any expert knowledge about candidate crystal ground
states, defect structures, etc. Nonetheless, the active learning
procedure eventually collected sufficient data to produce a
broadly accurate potential for aluminum.

We emphasize that the starting point for the active learning
procedure consisted of DFT calculations for completely dis-
ordered configurations. As the ML potential improved, the
quality of the MD sampling increased, and the training data
collected could become more physically relevant. The timeline of
this process is illustrated in Fig. 8a. After about ten active learning
iterations (1000+ DFT calculations), the ML potential became
robust enough that the MD simulations could nucleate crystal
structures. From this point onward, the ML predictions for crystal
properties could rapidly improve.

Fig. 8 Visualization of the atomic configurations sampled by active learning. We used the t-distributed stochastic neighbor embedding (t-SNE) method
to map local atomic environments into two dimensions. Radial neighbor regression (RNR) is used to color the average property within a radius of a given
point in the 2D embedding space. a Active learning iteration at which a sample was taken; disordered space is circled. b Force error; eight crystal structures
are marked. c ANI predicted atomic energy; FCC is observed to be the lowest energy configuration in the embedding space. d Volume-scaled atomic stress;
shocked environments are marked and liquid environments are circled.
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Previous potential development efforts have benefited from
careful dataset design. Our decision to pursue a fully automated
approach certainly made the modeling task more difficult but was
motivated by our belief that defects appearing in real, highly
nonequilibrium processes may be difficult to characterize a priori.
As an example, consider the complicated dislocation patterns
appearing in the shock simulation of Fig. 7. It would likely be
difficult to hand-design a dataset that fully captures all defect
patterns appearing in shock. Active learning, however, seems to
do a good job of sampling the relevant configuration space (cf. the
marked points in Fig. 8d). Indeed, throughout the entire shock
simulation, the ANI-Al predicted forces are in good agreement
with new reference DFT calculations, even for atoms very near
dislocation cores. Even though most of the active learned training
data is far from perfect FCC, the ability of ANI-Al to predict
aluminum FCC properties seems roughly in line with other recent
ML studies, as shown in Supplementary Table 432,34.

A challenge for the active learning procedure presented in this
work is its large demand on computational resources. Our final
active learned dataset contains over 6000 DFT calculations; each
calculation was performed on a supercell containing up to 250
atoms. For future work, it would be interesting to explore whether
the majority of the training data could be weighted toward much
smaller supercells. It would also be interesting to investigate ways
to make active learning more efficient, e.g., by systematically
studying the effect of various parameters required by the proce-
dure. Other areas for improvement may include: employing a
dynamics with modulated stress or strain, smarter sampling that
goes beyond nonequilibrium MD84, and better estimation of the
ML error bars.

Methods
This section presents details of the automated procedure to build ANI-Al, our
general-purpose machine-learning potential for bulk aluminum.

The ANI machine-learning model. ANI is a neural network architecture for
modeling interatomic potentials. Our prior work with ANI has largely focused on
modeling clusters of organic molecules25. A variety of ANI potentials are available
online (cf. “Code availability”). Here, we presented ANI-Al, our ANI model for
aluminum in both crystal and melt phases.

Our training data consist of DFT calculations, evaluated on “interesting” atomic
configurations, as identified by an active learning procedure. We used the PBE
functional, with parameters described in Supplementary Note 1. One point to mention
is that our 3 × 3 × 3k-space mesh was, in retrospect, perhaps too small. For the varying

box sizes of our training data, this corresponds to 31.5–51 k-points per Å−1. A more
careful choice would be 57 k-points per Å−1 independent of system size85.

The input to ANI is an atomic configuration (nuclei positions and species). To
describe these configurations in a rotation and translation invariant way, ANI
employs Behler and Parrinello5 type atomic descriptors, but with modified angular
symmetry functions20. Details of all model hyperparameters are provided in
Supplementary Note 3. The most important hyperparameter is the 7Å interaction
cutoff distance, which we selected based on careful trial and error. Other
hyperparameters, such as the number of symmetry functions, were largely reused
from the previous studies25. ANI’s total energy prediction is computed as a sum
over local contributions, evaluated independently at each atom. Each local energy
contribution is calculated using knowledge of all atoms within the 7Å cutoff. Using
backpropagation, one can efficiently calculate all forces as gradients of the
predicted energy.

Each DFT calculation outputs the total system energy E and the forces fj= ∂E/
∂rj for all atoms j= 1…N. Our loss function for a single DFT calculation,

L / Ê � E
� �2 þ ‘20

XN
j¼1

f̂ j � f j
� �2

; ð1Þ

is a measure of disagreement between the ANI predictions for energy, Ê, and
forces, f̂ j ¼ ∂Ê=∂rj, and the DFT reference data. A length hyperparameter ℓ0 is
empirically selected so that energy and force terms have comparable magnitude. In
our tests, the specific choice of ℓ0 did not strongly affect the quality of the
final model.

Training ANI corresponds to tuning all model parameters to minimize the
above loss, summed over all DFT calculations in the dataset. For stochastic gradient
descent, each training iteration requires estimating the ∂L/∂Wi for all model
parameters Wi (in our case, there are order 105 parameters). Because forces f̂ j
appear in L, calculating ∂L/∂Wi seems to involve all second derivatives of the ANI
energy output, i.e., ∂2Ê=∂Wi∂rj . Fortunately, direct calculation of these can be
avoided. Instead, we employ the recently proposed method of Ref. 86 to efficiently
calculate all ∂L/∂Wi in the context of our C++ Neurochem implementation of
ANI. A brief summary of the method is presented in Supplementary Note 5. With
this method, the total cost to calculate all ∂L/∂Wi is within a factor of two of the
cost to calculate all forces.

To improve the quality of our predictions, the angle ANI-Al model actually
employs ensemble-averaging over eight neural networks. Each neural network in
the ensemble is trained to the same data but using an independent random
initialization of the model parameters. We observe that ensemble-averaged energy
and force errors can be up to 20% and 40% smaller, respectively, than those of a
single neural network prediction.

Active learning overview. The active learning process employed here is similar to
that in previous work41, adapted for materials problems and efficient parallel execution
on hundreds to thousands of nodes on the Sierra supercomputer. We first train an
initial model to a dataset of about 400 random disordered atomic configurations. Next,
we begin the AL procedure, as illustrated in Fig. 9. Using the current ML potential, we
simulate many MD trajectories, each initialized to a random disordered configuration.
During these simulations, the temperature is dynamically varied to diversify the sam-
pled configurations. As these MD simulations run, we look at the variance of the
predictions for the eight neural networks within an ensemble to determine whether the
model is operating as expected87. Prior work indicates that this measured ensemble
variance correlates reasonably well with actual model error41. If the ensemble variance
exceeds a threshold value, then it seems likely that collecting more data would be useful
to the model. In this case, MD trajectory is terminated and the final atomic config-
uration is placed on a queue for DFT calculation and addition to the training dataset.
Periodically, the ML model is retrained to the updated training dataset. This AL loop is
iterated until the cost of the MD simulations becomes prohibitively expensive. Speci-
fically, we terminate the procedure when typical MD trajectories reach about 250a ps
(about 2.5 × 105 timesteps) without uncovering any weaknesses in the ML model. The
final active learned dataset contains 6352 DFT calculations, each containing 55–250
atoms, and having varying levels of disorder.

We emphasize that this active learning procedure is fully automated, and
receives no direct guidance regarding atomic configurations of likely relevance,
such as crystal structures. The initial training dataset consists only of disordered
atomic configurations, and every MD simulation is initialized to a disordered
configuration. The MD simulations use only forces as predicted by the most
recently trained ML potential. After many active learning iterations, the MD
simulations will hopefully be sufficiently robust to support nucleation into, e.g., the
crystal ground state, and then the active learning scheme can begin to collect this
type of training data. In this sense, the active learning scheme must automatically
discover the important low energy and nonequilibrium physics.

Supplementary Note 2 gives further details regarding the active learning
procedure.

Randomized atomic configurations. We employ randomized atomic configura-
tions to collect an initial dataset of DFT calculations and to initialize all MD
simulations for AL sampling. The procedure to randomize a supercell is as follows:

Fig. 9 Diagram of active learning for data collection. Multiple active
learning cycles can be run simultaneously, with occasional synchronization
points to merge new data into a single global dataset. The sampling, data
generation, and training steps all benefit from graphics processing unit
(GPU) acceleration.
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1. Randomly sample each of the three linear dimensions of the orthorhombic
supercell uniformly from the range 10.5–17.0Å.

2. Randomly select a target atomic density ρ uniformly from the range
1.80–4.05 g/cm3.

3. Iteratively place atoms randomly in the supercell. If the proposed new atom
lies within a distance rmin ¼ 1:8Å of an existing atom (i.e., roughly the van
der Waals radius), that placement is rejected as unphysical. The placement
of atoms is repeated until the target density ρ has been reached.

Nonequilibrium temperature schedule. To maximize the diversity in active
learning sampling, we perform the MD simulations with a Langevin thermostat
using a temperature that varies in time according to a randomized schedule.
Compared with previous work that sampled from a specific temperature quench
schedule88, here we employ a more diverse and randomly generated collection of
temperature schedules.

Starting at time t= 0, and running until t ¼ tmax = 250 fs, the applied
temperature is,

TðtÞ ¼ Tstart þ
t

tmax
ðTend � TstartÞ þ Tmodsin

2ðπt=t0Þ ð2Þ

The first two terms linearly ramp the background temperature. The initial temperature
Tstart is randomly sampled from the range 10–1000 K. The final background
temperature Tend is randomly sampled from the range 10–600 K. The third term in
Eq. (2) superimposes temperature oscillations. The modulation scale Tmod is randomly
sampled from the range 0–2000 K. The oscillation period t0 is randomly sampled from
the range 10–50 ps.

By spawning MD simulations with many different temperature schedules, we
hope to observe a wide variety of nonequilibrium processes. Given that each MD
simulation begins from a disordered melt configuration, we hope that the
nonequilibrium dynamics will automatically produce: (1) nucleation into various
crystal structures (in particular, the ground-state FCC crystal), (2) a variety of
defect structures and dynamics (dislocation glide, vacancy diffusion, etc.) and (3)
rapid quenches into disordered glass phases. Acquiring snapshots from these types
of dynamics will be crucial to the diversity of the training dataset and, thus, to the
overall generality of the ANI-Al potential.

Data availability
The active learned training dataset and final ANI-Al potential are available at https://
github.com/atomistic-ml/ani-al.

Code availability
Two implementations of the ANI neural network architecture are available online:
TorchANI (https://github.com/aiqm/torchani) and NeuroChem (https://github.com/
atomistic-ml/neurochem).
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