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Non-CG methylation and multiple histone profiles
associate child abuse with immune and small
GTPase dysregulation
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Early-life adversity (ELA) is a major predictor of psychopathology, and is thought to increase

lifetime risk by epigenetically regulating the genome. Here, focusing on the lateral amygdala,

a major brain site for emotional homeostasis, we describe molecular cross-talk among

multiple mechanisms of genomic regulation, including 6 histone marks and DNA methylation,

and the transcriptome, in subjects with a history of ELA and controls. In the healthy brain

tissue, we first uncover interactions between different histone marks and non-CG methyla-

tion in the CAC context. Additionally, we find that ELA associates with methylomic changes

that are as frequent in the CAC as in the canonical CG context, while these two forms of

plasticity occur in sharply distinct genomic regions, features, and chromatin states. Com-

bining these multiple data indicates that immune-related and small GTPase signaling path-

ways are most consistently impaired in the amygdala of ELA individuals. Overall, this work

provides insights into genomic brain regulation as a function of early-life experience.
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Early-life adversity (ELA), including sexual and physical
abuse, as well as other forms of child maltreatment, is a
major public health problem that affects children of all

socio-economic backgrounds1. ELA is a strong predictor of
increased lifetime risk of negative mental health outcomes,
including depressive disorders2. Among other findings, a large
number of studies suggest an association between ELA and
morphological and functional changes in the amygdala3, a brain
structure critically involved in emotional regulation4. It is possi-
ble, thus, that amygdala changes observed in individuals who
experienced ELA may contribute to increased risk of
psychopathology.

The amygdala is composed of interconnected nuclei, among
which the basal and lateral sub-divisions are responsible for
receiving and integrating external information. In turn, these
nuclei innervate the central amygdala, the primary nucleus pro-
jecting outside the amygdalar complex to mediate behavioral
outputs4. While specific properties of these nuclei remain difficult
to assess in humans, animal studies indicate that the basal and
lateral sub-divisions exhibit differential responsivity to stress, in
particular as a function of the developmental timing of exposure
(adolescence versus adulthood)5,6. Here, we focused on homo-
geneous, carefully dissected tissue from the human lateral
amygdala.

Childhood is a sensitive period during which the brain is more
responsive to the effect of life experiences7. Proper emotional
development is contingent on the availability of a supportive
caregiver, with whom children develop secure attachments8. On
the other hand, ELA signals an unreliable environment that
triggers adaptive responses and deprives the organism of essential
experience. A growing body of evidence now supports the
hypothesis that epigenetic mechanisms play a major role in the
persistent impact of ELA on gene expression and behavior9.
While DNA methylation has received considerable attention,
available data also point toward histone modifications as another
critical and possibly interacting factor9.

Therefore, in this study, we conduct a comprehensive char-
acterization of epigenetic changes occurring in individuals with a
history of severe ELA and carry out genome-wide investigations
of multiple epigenetic layers, and their cross-talk. Using post-
mortem brain tissue from a well-defined cohort of depressed
individuals with histories of ELA, and controls with no such
history, we characterize six histone marks, DNA methylation, as
well as their final endpoint at the gene expression level. We first
generate data for six histone modifications: H3K4me1, H3K4me3,
H3K27ac, H3K36me3, H3K9me3, and H3K27me310, using
chromatin immunoprecipitation sequencing (ChIP-Seq). This
allows us to create high-resolution maps for each mark, and to
define chromatin states throughout the epigenome. In parallel, we
characterize DNA methylation using whole-genome bisulfite
sequencing (WGBS). While previous studies in psychiatry
focused on the canonical form of DNA methylation that occurs at
CG dinucleotides (mCG), here we investigate both CG and non-
CG contexts. Indeed, recent data has shown that non-CG
methylation is not restricted to stem cells, and can be detected
in brain tissue at even higher levels11. Available evidence also
indicates that it progressively accumulates, preferentially in
neurons, during the first decade of life12,13, a period when ELA
typically occurs. Thus, we postulate that changes in non-CG
methylation might contribute to lifelong consequences of ELA,
and focus in particular on the CAC context, where non-CG
methylation is most abundant. Our results indicate that ELA
leaves distinct, albeit equally frequent, traces at CG and CAC
sites. Further, analyses of all epigenetic layers and the tran-
scriptome converge to identify immune system processes and
small GTPases as critical pathways associated with ELA.

Altogether, these data uncover previously unforeseen sources of
epigenetic and transcriptomic plasticity, which may contribute to
the severe and lifelong impact of ELA on behavioral regulation,
and the risk of depression.

Results
Histone landscapes. Six histone modifications were assessed in
depressed subjects with histories of ELA, and healthy controls (C)
with no such history (Supplementary Tables1 and 2). Because of
the small size of the lateral amygdala, and the significant amount
of tissue required for multiple immuno-precipitations and ChIP-
seq analysis of six marks, tissues were distributed into 7 ELA and
4 C pools (see Supplementary Table 3). In contrast, WGBS and
RNA-Seq data (see below) were generated for each individual
sample (C, n= 17; ELA, n= 21). Following the International
Human Epigenome Consortium (IHEC) procedures, we achieved
>60 and >30 million reads for broad (H3K4me1, H3K36me3,
H3K27me3, and H3K9me3) and narrow (H3K27ac and
H3K4me3) histone marks, respectively (4.0 billion reads total;
Supplementary Fig. 1a and Supplementary Data 1). Quality
controls confirmed that all samples for the two narrow marks
showed relative and normalized strand cross-correlations greater
than 0.8 and 1.05 (Supplementary Fig. 1b), respectively, according
to expectations14. Relative to genes (Fig. 1a, c), reads obtained for
H3K27ac, H3K4me3 and H3K4me1 were strongly enriched
around Transcription Start Sites (TSS), while H3K27me3 and
H3K36me3 showed antagonistic distributions, consistent with
patterns seen in other tissues10. Samples clustered by histone
mark, with a strong distinction between activating and repressive
marks (Fig. 1b). To investigate the tissue specificity of our dataset,
we compared it with data from other brain regions and blood
tissue (Supplementary Fig. 2). For each modification, we observed
higher correlations among amygdalar samples (r= 0.75–0.92
across the six marks) than when compared with samples from
other brain regions (r= 0.51–0.81), and even lower correlations
with blood mononuclear cells (r= 0.35–0.64), consistent with the
role of histones in tissue identity.

We next investigated relationships between histones and gene
expression (Fig. 1d). As expected, we observed activating
functions for H3K27ac, H3K4me1, H3K36me3, and H3K4me3,
and repressive functions for H3K27me3 and H3K9me3. Distinct
correlative profiles were found between marks along the spectrum
of gene expression, indicating that multiple marks likely better
predict gene expression than individual ones. Comparisons
between ELA and C groups found no significant overall
differences in terms of read distribution (Fig. 1c) or relationship
to gene expression (Fig. 1d), indicating that ELA does not globally
reconfigure amygdalar histone landscapes.

Considering that different combinations of histone modifica-
tions define so-called “chromatin states”, we then conducted an
integrative analysis of all marks using ChromHMM15. Maps of
chromatin states were generated as described previously16, with
each state corresponding to a distinct combination of individual
marks. This unbiased approach defined a consensus map
(corresponding to regions showing ≥50% agreement across all
samples; see Fig. 1e, Supplementary Fig. 3a–d and “Methods”)
consistent with studies in the brain and other tissues: for
example16–18, regions defined by H3K27ac and H3K4me1, or by
H3K36me3, corresponded to known enhancers (Gen Enh and
Enh) and transcribed regions (Str-Trans and Wk-Trans),
respectively (Supplementary Fig. 3e, f)19. Compared with known
genomic features (Fig. 1f), this map showed expected enrichments
of promoter chromatin states (Act, Wk, or Flk-Prom) at
transcription start sites and CpG islands, and of transcription
states (Str-Trans and Wk-Trans) within genes. Finally, the
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chromatin states exhibit expected correlations with gene expres-
sion (Supplementary Fig. 4). As detailed below, these maps
allowed us to characterize cross-talks between chromatin and
DNA methylation, and differences between groups.

CG and non-CG methylation patterns. We used WGBS to
characterize the amygdala methylome (C, n= 17; ELA, n= 21).
Rates of bisulfite conversion, sequencing depth, and library

diversity met IHEC standards and were similar across groups
(Supplementary Fig. 5a–d). In this large dataset, >13 million CGs
showed an average coverage ≥5 in the cohort (Supplementary
Fig. 5e), which favorably compares with recent human brain
studies in terms of sample size20 or CGs covered21,22.

Because non-CG methylation is enriched in mammalian
brains11,23, we first computed average genome-wide levels of
methylation in multiple cytosine contexts. Focusing on three-
letter contexts (Fig. 2a), we observed that, as expected,

Fig. 1 Characterization of six histone post-translational modifications in the human brain lateral amygdala. a Snapshot of typical ChIP-seq read
distribution for the six histone marks. b Unsupervised hierarchical clustering using Pearson correlations for all marks. Correlations were computed using
read number per 10 kb-bins across the whole genome and normalized to input and library size. Note the expected separation between activating (H3K27ac,
H3K36me3, H3K4me1, H3K4me3) and repressive (H3K27me3, H3K9me3) marks. c Average enrichment over the input of ChIP-seq reads across all gene
bodies and their flanking regions (+/− 2 kilobases, kb) in the human genome, for each histone mark. Note the expected biphasic distribution of reads
around the TSS for H3K27ac, H3K4me3, and H3K4me1. No significant differences were observed for any mark across C and ELA groups (two-sided two-
way repeated-measures ANOVA, group effects: H3K4me1, P= 0.89; H3K36me3, P= 0.87; H3K4me3, P= 0.64; H3K27me3, P= 0.35; H3K9me3, P=
0.88; H3K27ac, P= 0.86). Averages for the healthy controls group (C) are shown as dashed lines, while averages for the early-life adversity group (ELA)
are shown as solid lines. d Average enrichment of reads over gene bodies (for H3K27me3, H3K36me3, H3K4me1, and H3K9me3) or TSS+ /− 1 kb (for
H3K27ac and H3K4me3) for all genes ranked from most highly (left) to least (right) expressed. Strongly significant effects of gene ranking on ChIP-Seq
reads were observed for all marks (P < 0.0001). Again, no difference was observed as a function of ELA for any group (two-sided two-way repeated-
measures ANOVA, group effects: H3K4me1, P= 0.66; H3K36me3, P= 0.67; H3K4me3, P= 0.98; H3K27me3, P= 0.31; H3K9me3, P= 0.74; H3K27ac,
P= 0.48). e ChromHMM emission parameters (see main text and “Methods”) for the 10-state model of chromatin generated using data from the six
histone marks, at a resolution of 200 bp, as described previously16. Maps of chromatin states have already been characterized in other brain regions (e.g.,
cingulate cortex, caudate nucleus, substantia nigra49) but, to our knowledge, not in the amygdala. f Intersections of chromatin states with gene features
(from RefSeq) and methylomic features (lowly methylated and unmethylated regions, LMR and UMR, defined using methylseekR; see “Methods”) were
computed using chromHMM’s OverlapEnrichment function. As expected, CpG-dense UMRs mostly overlapped with Promoter chromatin states, while
LMRs associated with more diverse chromatin states, including Enhancers (Fig. 1f and Supplementary Fig. 10a), consistent with their role as distant
regulatory sites31. Act-Prom active promoter, Enh enhancer, Flk-Prom flanking promoter, Heterochr heterochromatin, LADs lamina-associated domains,
PcR polycomb repressed, Str-Enh strong enhancer, Str-Trans strong transcription, TES transcription end site, TSS transcription start site, Wk-Prom weak
promoter, Wk-Trans weak transcription. Source data are provided as a Source Data file.
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methylation levels were highly variable among the 16 possibilities
(two-way ANOVA; context effect: [F(15,540)= 196283; P <
0.0001]), with much higher methylation levels in the CGN
contexts than in the 12 non-CG contexts. Of note, no difference
was found in overall methylation between groups ([F(1,36)=
0.12; P= 0.73]), indicating that ELA does not associate with a
global dysregulation of the methylome. Among non-CG contexts,
as previously described by others in mice24 or humans25,26

(Supplementary Fig. 6a, b), methylation levels were highest at
CACs (4.1 ± 0.1%), followed by a group of contexts between 1.8
and 1.1% (CTC, CAG, CAT, and CAA), and remaining ones
below 0.4%. Considering that methylation at CA27 or CAC28 sites
may have specific functions in the brain, and because CAC

methylation (hereafter mCAC) was most abundant, we focused
on this context.

We first compared mCG and mCAC. While CG sites were
highly methylated, CAC (Fig. 2b, c) or other non-CG (Supple-
mentary Fig. 6c) sites were mostly unmethylated, with a minority
of them showing methylation levels between 10 and 20%,
consistent with mouse data29. Regarding distinct genomic
features and chromosomal location, we confirmed that (i) while
mCG is lower within promoters, this effect is much less
pronounced for mCAC (Supplementary Fig. 7a)11; (ii) compared
with CGs30, depletion of methylation from pericentromeric
regions is even stronger at CACs, and (iii) as expected,
methylation levels were very low in both contexts in the

Fig. 2 Characterization of non-CG methylation in the human brain lateral amygdala. a Average genome-wide levels of DNA methylation were measured
among the sixteen three-letter cytosine contexts (CNN, where N stands for any base) in the human brain lateral amygdala, using whole-genome bisulfite
sequencing. While highest DNA methylation levels were observed in the four CGN contexts (CGC: 84.1 ± 0.2%; CGA: 81.9 ± 0.1%; CGC: 81.4 ± 0.2%, CGT:
80.2 ± 0.1%; mean ± sem in the whole cohort), detectable non-CG methylation was also observed in CHN context (where H stands for A, C, and T), most
notably at CAC sites (4.1 ± 0.1% in combined control, C, and early-life adversity, ELA, groups; n= 38 subjects total), with no detectable differences
between groups for any context (two-way repeated-measures ANOVA; group effect: [F(1,36)= 0.12; P= 0.73]). b DNA methylation in the CG context
mostly corresponded to highly methylated sites. In contrast, as previously described in the mouse hippocampus29, most CAC sites were unmethylated (c),
with only a minority of them showing low methylation levels, between 10 and 20% (n= 38 subjects). This likely reflects the fact that non-CG methylation
does not occur in all cell types, and is notably enriched in neuronal cells and, to a lesser extent, in glial cells11. In the CG or CAC contexts (two-way
ANOVA; group effect: CG, [F(1,720)= 5.0E-11; P > 0.99]; CAC, [F(1,36)= 0; P > 0.99]), ELA did not associate with any significant change in these global
distributions. Box plots show median and interquartile range, with whiskers representing minimum and maximum values. d In both contexts, patterns of
DNA methylation along gene bodies showed the expected anti-correlation with gene expression, as shown here comparing 1000 most highly (top 1000) or
lowly (bottom 1000) expressed genes, consistent with previous rodent data. In the CG (e) or CAC (f) contexts, no difference in DNA methylation levels
was observed between C and ELA groups for any chromatin state (values are mean ± sem in each C or ELA group; n= 17 and 21 subjects, respectively). We
observed, however, dissociations in the relationship of DNA methylation and histone marks across the CG and CAC contexts (see main text). Values are
mean ± sem. Act-Prom active promoter, Enh enhancer, Flk-Prom flanking promoter, Heterochr heterochromatin, PcR polycomb repressed, Str-Enh strong
enhancer, Str-Trans strong transcription, TES transcription end site, TSS transcription start site, Wk-Prom weak promoter, Wk-Trans weak transcription.
Source data are provided as a Source Data file.
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mitochondrial genome (Supplementary Fig. 7b). We also
confronted methylation data with gene expression, regardless of
group status, and found the expected anti-correlation in both
contexts (Fig. 2d; CG: [F(1,37)= 557; P= 6.7E-24]; CAC: [F
(1,37)= 3283; P= 9.7E-38]). Because CAC sites, in contrast with
CGs, are asymmetric on the two DNA strands, we wondered
whether this anti-correlation would be different when contrasting
gene expression with mCAC levels on its sense or antisense
strand (Supplementary Fig. 8). No difference was found,
indicating that gene expression is predicted to the same extent
by mCAC on either strand, at least for the coverage achieved here.
Finally, we used methylseekR to characterize active regulatory
sites in the human brain defined as unmethylated (UMR) and
lowly methylated (LMR) regions (Supplementary Fig. 9a–e). As
observed in other tissues, CG-dense UMRs mostly overlapped
with CpG islands and promoter chromatin states (Fig. 1f,
Supplementary Fig. 9d, and Supplementary Fig. 10a), while
LMRs associated with more diverse states (including enhancers;
Supplementary Fig. 1f, and Supplementary Fig. 10a), consistent
with their role as distant regulatory sites31. Among each LMR and
UMR category, significant variations in levels of mCG or mCAC
were observed across various chromatin states (Supplementary
Fig. 9f). Regarding individual histone marks at LMR and UMR,
we further documented specific associations, including patterns of
depletion and enrichment specific to UMR shores not character-
ized previously (see Supplementary Fig. 10b–g for details).
Overall, these differences and similarities between mCG and
mCAC extend previous results obtained in smaller cohorts of
mouse or human samples29,32.

Regarding histone modifications, while mechanisms mediating
their interactions with mCG have been documented, no data are
available to describe such a relationship for non-CG contexts. To
address this gap, we confronted our consensus model of
chromatin states with DNA methylation (Fig. 2e, f). Levels of
mCG ([F(9,324)= 5127; P < 0.0001]) and mCAC ([F(9,324)=
910.7; P < 0.0001]) strongly differed between states, unraveling
previously uncharacterized patterns. First, the lowest levels of
mCG were found in the three promoter states (Fig. 2e),
corresponding to a strong anti-correlation between DNA
methylation and both forms of H3K4me1,3 methylation,
consistent with previous findings in other cell types33. Accord-
ingly, these three promoter states were defined (Fig. 1e) by high
levels of H3K4me3 in combination with either: (i) high H3K4me1
(flanking promoter, Flk-Prom; P < 0.0001 for every post hoc
comparison, except against the Polycomb repressed state, PcR);
(ii) high H3K27ac (active promoter, Act-Prom; P < 0.0001 for
every comparison against other states), or (iii) intermediate levels
of both H3K27ac and H3K4me1 (weak promoter, Wk-Prom; P <
0.0001 against other states). In contrast, among these three
promoter states, mCAC was particularly enriched in Wk-Prom
regions (P < 0.0001 against Act-Prom and Flk-Prom; Fig. 2f,
Supplementary Fig. 3d). Second, mCG was abundant in
transcribed regions defined by either intermediate (weak
transcription, Wk-Trans) or high (strong transcription, Str-
Trans) H3K36me3. By contrast, mCAC was selectively decreased
in the Str-Trans state (P < 0.0001 against Wk-Trans). Third, while
mCG levels were high in heterochromatin (Heteroch, defined by
high H3K9me3), consistent with its role in chromatin condensa-
tion, mCAC appeared depleted from these regions (P < 0.0001 for
every comparison against other states, except PcR and Flk-Prom).
These results indicate that interactions between DNA methyla-
tion, histones, and chromatin strikingly differ across mCG and
mCAC, possibly as a result of brain-specific epigenetic processes
in the latter three-letter context32. Finally, as expected, ELA
did not associate with a global disruption of this cross talk,
as no changes in genome-wide levels of mCG ([F(1,36)= 0.36;

P= 0.55]) or mCAC ([F(1,36)= 0.07; P= 0.80]) were observed
across C and ELA groups for any state.

Changes in histone marks and chromatin states as a function
of ELA. We investigated local histone adaptations in ELA subjects
using diffReps34. A total of 5126 differential sites (DS) were
identified across the 6 marks (Fig. 3a, b, Supplementary Fig. 11,
and Supplementary Data 2) using consensus significance
thresholds35 (P < 10−4, FDR-q < 0.1). H3K27ac contributed to
30% of all DS, suggesting a prominent role of this mark. Anno-
tation to genomic features revealed distinct distributions of DS
across marks (df= 25, χ2= 1244, P < 0.001; Supplementary
Fig. 12a): H3K4me1- and H3K4me3-DS were equally found in
promoter regions and gene bodies, while H3K36me3- and
H3K27ac-DS were highly gene-body enriched, and H3K27me3-
and H3K9me3-DS found in intergenic/gene desert regions. Sites
showing enrichment (up-DS) or depletion (down DS) of reads in
ELA subjects were found for each mark, with an increased pro-
portion of down DS associated within H3K4me1, H3K4me3,
H3K36me3, and H3K27me3 changes (Supplementary Fig. 12b).

We then used GREAT (Supplementary Data 3), a tool that
maps regulatory elements to genes based on proximity, to test
whether ELA subjects had histone modifications affecting genes
in specific pathways36. We performed this GO analysis on each
mark and found significant enrichments for three of them
(Fig. 3c, d). Importantly, overlaps between enriched GO terms
were observed across these three marks: notably, terms related to
immune processes, as well as small GTPases and Integrin
signaling (Supplementary Fig. 12c) were enriched for
H3K36me3- and H3K27ac-DS, suggesting these pathways may
play a significant role in ELA.

To strengthen these findings, a complementary analysis was
conducted using chromatin state maps15. First, we identified
genomic regions where a state transition (ST; n= 61,922)
occurred between groups (Supplementary Data 4). Across the
90 possible ST in our 10-state model, only 56 were observed, with
a high proportion (50.2%; * in Fig. 4a) involving regions in
quiescent (Quies), Wk-Trans or Enh states in the C group that
mostly turned into Quies, Str-Trans, Wk-Trans, and Heteroch
states in the ELA group. Furthermore, 17% and 59% of ST
occurred in regions within 3 kb of a promoter or in gene bodies
(Fig. 4b), respectively, suggesting that ELA-associated changes
affected selected chromatin states, and mostly occurred within
genes.

We next investigated GO enrichment of ST using GREAT
(Fig. 4c, d, Supplementary Data 5) and a co-occurrence score
reflecting both the significance of GO terms and their recurrence
across multiple ST35. Importantly, biological processes (Fig. 4c)
with the highest co-occurrence scores were similar to those found
from the GO analysis of individual histone marks, and clustered
in two main categories: immune system and small GTPases.
These terms were significant for ST involving transcription,
quiescent, and enhancer states. Regarding molecular functions
(Fig. 4d), most enriched categories were related to GTPases, and
involved the same types of ST. Therefore, analyses of individual
histone marks and chromatin states converged to suggest
impairments in similar GO pathways.

Differential DNA methylation in ELA. We next sought to
identify changes in DNA methylation. As mCG and mCAC were
very different, and considering data suggesting possible mCAC-
specific processes28, we used BSmooth37 to identify DMRs
separately in each context, with strictly similar parameters (see
“Methods”). DMRs were defined as regions of ≥5 clustered
cytosines that each exhibited a significant group difference in
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methylation (P < 0.001). Also, because age and sex are known to
affect DNA methylation38,39, generalized linear models were
computed for each DMR, and only those that remained sig-
nificant when taking these two covariates into account were kept
for downstream analyses. Surprisingly, we found that as many
DMRs could be identified in the CAC (n= 840) as in the cano-
nical CG (n= 795) context, suggesting that cytosines in the CAC
context may represent a significant form of plasticity.

While both types of DMRs were similarly abundant and
distributed throughout the genome (Fig. 5a, b), they nevertheless
showed striking differences. Compared with CG-DMRs, CAC-
DMRs were composed of slightly fewer cytosines (Supplementary
Fig. 13a, P= 2.9E-04) and smaller (Supplementary Fig. 13b, P <
2.2E-16). CG-DMRs also affected sites showing a wide range of
methylation levels, while CAC-DMRs were located in lowly
methylated regions (Fig. 5c, d), consistent with genome-wide
lower mCAC levels. In addition, the magnitude of methylation
changes detected in the ELA group were less pronounced in the
CAC context, with smaller % changes (P < 2.2E-16; Fig. 5e, f and
Supplementary Fig. 13c) and areaStat values (the statistical
strength of DMRs37; P= 5.8E-08, Supplementary Fig. 13d).

Further strengthening differences between the two contexts,
CG- and CAC-DMRs showed no genomic overlap (Supplemen-
tary Fig. 13e) and very distinct distributions among UMR and
LMR features (Fig. 5g). Finally, when considered collectively,
genomic regions where CG-DMRs were identified as a function of
ELA showed no group difference in the CAC context (and vice
versa for mCG levels at CAC-DMRs; see Fig. 5h), indicating that
ELA-related processes do not simultaneously affect both cytosine
contexts.

We next characterized genomic features where DMRs occurred
and observed that their distribution again strikingly differed (P <
2.2E-16; Fig. 6a, b, Supplementary Table 9): CG-DMRs were
located in promoters (38.5% in the proximal promoter,
promoter1k and promoter3k) and gene bodies (35.4%), while
CAC-DMRs were mostly in gene bodies (53%) and intergenic
regions (28.1%). Second, we characterized histone modifications
around DMRs (Fig. 6c, d, and Supplementary Fig. 14): CG-DMRs
were enriched with H3K4me1, H3K4me3 and H3K27ac (Fig. 6c),
coherent with our observations that these histone marks (Fig. 1e)
and DMRs (Fig. 6a) preferentially located at promoters. In sharp
contrast, the two main features characterizing CAC-DMRs were

Fig. 3 Analysis of genomic sites showing differential enrichment for individual histone marks in subjects with a history of early-life adversity (ELA).
a Representation of three top Differential Sites (DS), identified using diffReps34. ELA is shown in red, healthy controls (C) are shown in blue. Gray
rectangles delineate the coordinates of each DS. b Relative proportion of DS contributed by each histone mark. Percentages of the total number of DS, and
absolute number of DS (in brackets) are shown for each mark. Both depletion- and enrichment-DS were observed for each of the six marks (Supplementary
Fig. 12b). Among genes most strongly affected (Supplementary Table 5), several have been previously associated with psychopathology, such as QKI
(H3K27ac top hit)40,95 or HTR1A (H3K4me3 top hit)96. c, d Top five most significant non-redundant gene ontology “Biological Processes” (c) or
“Molecular Functions” (d) terms enriched for each histone mark DS, as identified by GREAT36 using hypergeometric and binomial testing (fold change ≥
1.5 and FDR-q≤ 0.1 for both tests). Surprisingly, the single most significant result implicated epigenetic dysregulation of odor perception in ELA subjects
(consistent with recent clinical studies97), while immune processes (indicated by *), and small GTPases (+) were consistently found affected across
different marks. Negative logarithmic P values are shown for binomial testing. The color indicates histone mark concerned, arrows indicate the direction of
event: terms associated with depletion- (down arrow) or enrichment-DS (up arrow). Source data are provided as a Source Data file.
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an enrichment in H3K36me3 and a depletion in H3K9me3
(Fig. 6d and Supplementary Fig. 14d, f). These differences were
further supported by the analysis of chromatin states (P < 2.2E-
16; Fig. 6e, Supplementary Fig. 14g, and Supplementary Table 10).
CAC-DMRs were largely absent from promoter (Act-Prom, Flk-
Prom, and Wk-Prom) and enhancer (Str-Enh and Enh) states
that were all defined, to varying degrees, by the three marks that
primarily characterize CG-DMRs: H3K4me1, H3K4me3, and
H3K27ac (Fig. 1e). In addition, CAC-DMRs were (i) enriched in
the Wk-Trans state, defined by the presence of H3K36me3, and
(ii) depleted from the two states (PcR, Heteroch) characterized by
H3K9me3.

Finally, we conducted a GREAT analysis of GO terms enriched
for DMRs: CG-DMRs notably associated with terms related to the
regulation of neuronal transmembrane potential (Fig. 6f and
Supplementary Data 6), in agreement with histone results
(Fig. 4c), while CAC-DMRs were enriched for terms related to
glial cells (Fig. 6g), consistent with the immune dysregulation

previously observed with histone DS and ST. Altogether, while
ELA associates with similar numbers of mCG and mCAC
adaptations, these two types of plasticity occur in genomic regions
characterized by different histone marks, chromatin states, and
GO categories, possibly reflecting the implication of distinct
molecular mechanisms.

Differential gene expression in ELA and combined GO ana-
lyses. Analyses of histones and DNA methylation identified GO
terms consistently affected in ELA individuals. To determine how
these epigenetic adaptations may ultimately modulate amygdalar
function, we characterized gene expression in C (n= 17) and
ELA (n= 21) groups using RNA-Sequencing. Samples with
similar RNA integrity across groups were sequenced at >50
million reads/sample (Supplementary Fig. 15). Quantification of
gene expression was conducted using HTSeq-count40 and vali-
dated by an alternative pseudo-alignment approach, Kallisto41,

Fig. 4 Analysis of genomic sites showing a switch between chromatin states as a function of early-life adversity (ELA). a Percentage of each state
transition (ST) type relative to the total number of transitions. For the healthy control (C) versus ELA group comparison, the cumulative percentages of ST
from a specific state to any other state are shown in the “Total” and “T” rows/columns. * indicates most frequent STs (see main text). b Distribution of ST
localizations relative to genomic features, assessed using region_analysis34 (see “Methods”). c, d Gene ontology “Biological Processes” (c) or “Molecular
Functions” (d) terms significantly associated with at least three types of ST (for each ST type, each GO term met the following criteria: fold change ≥ 1.5
and FDR-q≤ 0.1, for both hypergeometric and binomial tests). Terms are grouped based on the overall system involved and ranked by co-occurrence score
(in parentheses after each term), which reflects both their significance and their recurrence across multiple ST (see main text and ref. 35). Individual
binomial P values for each type of ST and each term are shown by the color gradient. Immune-related and small GTPase terms were most strongly affected,
across multiple ST. Of note, a complementary GREAT pathway analysis using MSigDB further strengthened these findings by revealing recurrent
enrichment of the integrin signaling pathway (across six types of ST, as well as for H3K27ac down DS; see Supplementary Fig. 12c), which is known to
interact extensively with small GTPases98. Act-Prom active promoter, Enh enhancer, Flk-Prom flanking promoter, Heterochr heterochromatin, PcR
polycomb repressed, Str-Enh strong enhancer, Str-Trans strong transcription, Wk-Prom weak promoter, Wk-Trans weak transcription. Source data are
provided as a Source Data file.
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generating very similar results (r= 0.82, P < 2.2E-16; Supple-
mentary Fig. 16a). A differential expression analysis between
groups was then performed using DESeq2 (Supplementary
Data 7). Similar to our epigenetic analyses, we searched for pat-
terns of global functional enrichment, using GO and Gene Set
Enrichment Analysis (GSEA)42. Enrichment of GO categories
using genes that showed nominal differential expression in the
ELA group (P < 0.05, n= 735, Fig. 7a, Supplementary Data 8)

identified numerous terms consistent with previous analyses at
the epigenetic level, including immune and small GTPase func-
tions (Fig. 7b). We also used GSEA42, which does not rely on an
arbitrary threshold for significance, and takes the directionality of
gene expression changes into account. GSEA identified 163
genome-wide significant sets, among which 109 were related to
immune processes and negatively correlated with ELA (Supple-
mentary Data 9, Fig. 7c, d, Supplementary Fig. 16d, e). Therefore,
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Fig. 5 Differential DNA methylation in the CG and CAC contexts in subjects with a history of early-life adversity (ELA). a, b Manhattan plots of
differentially methylated regions (DMR) identified using the BSmooth algorithm in the CG and CAC contexts, comparing control (C) and ELA groups.
DMRs were identified separately in each context using the BSmooth algorithm37, with strictly similar parameters (see “Methods”). They were defined as
regions of ≥5 clustered cytosines that each exhibited a significant difference in methylation (P < 0.001) and an absolute methylation difference ≥1%
between groups. Surprisingly, as many DMRs were identified in the CAC context (n= 840) as in the canonical CG context (n= 795). c, d Methylation
abundance in the C group in regions where DMRs were identified in the CG and CAC contexts (n= 840 CAC-DMRs, n= 795 CG-DMRs). CG-DMRs
affected genomic sites showing a wide range of methylation levels (mean ± sem= 55.3 ± 0.5%), while CAC-DMRs occurred in lowly methylated regions
(mean ± sem= 10.0 ± 0.1%), resulting in significantly different distributions (Mann–Whitney U test: U= 686; P < 0.0001). Box and violin plots show
median and interquartile range (IQR), with whiskers representing 1.5 IQR. e DNA methylation differences observed in ELA subjects compared to the C
group in CG- and CAC-DMRs, as a function of the number of cytosines composing each DMR. f DNA methylation differences observed in ELA subjects
compared to the C group in CG- and CAC-DMRs, as a function of areaStat values, the measure of statistical significance of each DMR implemented by
BSmooth. g Distinct distributions (chi-square test: χ2= 884.3, df= 2, P < 1E-15) of CG- and CAC-DMRs among lowly methylated (LMR) and unmethylated
(UMR) regions. h DNA methylation levels observed in CG and CAC contexts at DMRs (n= 840 CAC-DMRs, n= 795 CG-DMRs; raw, unsmoothed values)
and flanking regions (+/− 1.2 kilobases, kb). No average difference in mCAC levels was observed among C and ELA groups at CG-DMRs (upper panels)
that showed either increased (HYPER-DMR, left panels) or decreased (HYPO-DMR, right panels) levels of methylation in ELA subjects (and vice versa for
CAC-DMRs, lower panels). Box plots show median and interquartile range, with whiskers representing 0.1 IQR. Source data are provided as a Source
Data file.

Fig. 6 Individual histone marks and global chromatin states defining genomic regions where early-life adversity (ELA) associated with differential
DNA methylation. a, b Localization of differentially methylated regions (DMR) in genomic features, identified using region_analysis34. Distributions were
strongly different among CG and CAC contexts (chi-square test: χ2= 221.2, df= 6, P < 2.2E-16). c, d Histone modifications measured at the level of DMRs
and their flanking regions (+/− 2 kilobases, kb). Distributions were very distinct between CG- and CAC-DMRs, with significant interactions between
cytosine context and cytosine position along DMRs, for each of the six marks (two-way repeated-measures ANOVA interactions, P < 0.0001 for all; see
also Supplementary Fig. 14a). Values are mean ± sem. e Chromatin states found at DMRs. Similarly, CG- and CAC-DMRs occurred in very different
chromatin states (chi-square test: χ2= 390.4, df= 9, P < 2.2E-16). f, g Gene Ontology analysis of CG- and CAC-DMRs using GREAT36 (see main text).
Act-Prom active promoter, Enh enhancer, Flk-Prom flanking promoter, Heterochr heterochromatin, PcR polycomb repressed, Str-Enh strong enhancer, Str-
Trans strong transcription, Wk-Prom weak promoter, Wk-Trans weak transcription. Source data are provided as a Source Data file.
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transcriptomic data revealed gene pathways that in part overlap
with those identified using histone marks and DNA methylation.

Because epigenetic and transcriptomic patterns determine and
reflect cellular identity, adaptations associating with ELA in the
present work may stem from changes in the cellular composition
of the amygdala. To explore this possibility, we deconvoluted our
bulk tissue measures of gene expression and DNA methylation
using BSEQ-sc43 and the CIBERSORT44 algorithm. For gene
expression, we used as reference single-nucleus transcriptomes
recently generated by our group using cortical tissue45. Results
showed proportions of excitatory (80%) and inhibitory (20%)
neuronal subtypes consistent with expectations (Supplementary
Fig. 17a) while, importantly, no changes in abundance of
neuronal populations, microglia, astrocytes, or oligodendrocytes
could be identified as a function of ELA in these analyses
(Supplementary Fig. 17b, c). For DNA methylation, we used as
reference single-cell non-CG methylomes recently published46

and found some convergence with cellular estimates generated
using RNA-Sequencing (Supplementary Fig. 17e). Again, esti-
mated proportions of different classes of excitatory and
inhibitory neurons were unchanged across C and ELA

groups (Supplementary Fig. 17d), reinforcing the hypothesis that
ELA-related adaptations reflect changes in cellular phenotypes
rather than abundance.

To combine analyses conducted for histones, chromatin states,
DNA methylation, and gene expression, we finally grouped GO
terms enriched at each level to identify biological mechanisms
most consistently affected (Supplementary Fig. 16f). Overall, a
clear pattern emerged whereby the highest number of genome-
wide significant terms (n= 101 GO terms) were related to
immune processes, with contributions from each of the four types
of data. Second came terms related to small GTPases, which were
documented by histone modifications, chromatin states, and gene
expression (n= 24), followed by terms related to neuronal
physiology (n= 19, mostly linked with neuronal excitability and
sensory processing; Supplementary Data 10), cellular adhesion
(n= 13), and the cytoskeleton (n= 5). Altogether, these com-
bined analyses defined major epigenetic and transcriptomic
pathways affected by ELA in the lateral amygdala.

Finally, we sought to determine whether molecular changes
associated with ELA in the lateral amygdala might also affect
other brain structures implicated in emotional regulation. To do

Fig. 7 Differential gene expression in subjects with a history of early-life adversity (ELA). a Volcano plot of RNA-Seq data showing the 261 and 474
genes that were up- (green circles) or downregulated (red circles) in the ELA group compared with the control (C) group (GLM model using gender, age,
pH, PMI, and RIN as covariates; nominal P value < 0.05). b Gene Ontology analysis of the 735 differentially expressed genes in the ELA group. Terms
showing evidence of enrichment for differential methylation, histone profile or chromatin state are shown in yellow (small GTPase) or blue (immune
processes; see also Supplementary Fig. 16f). c, d Gene Set Enrichment Analysis (GSEA) of gene expression changes in ELA subjects. Genes were ranked
based on log2 fold changes from the C versus ELA differential expression analysis (“Ranked list metric”, in grey in the lower portion of each panel). Genes
with the highest positive fold changes (in red, upregulated in the ELA group) are at the extreme left of the distribution, and those with the lowest negative
fold changes (in blue, downregulated in the ELA group) are at the extreme right. A running enrichment score (green line, the upper portion of each panel)
was computed for gene sets from the MSigDB curated molecular signatures database and used to identify enriched gene sets42. Among the numerous
gene sets related to the immune function that showed evidence of genome-wide significant negative correlation with ELA (see main text, and
Supplementary Table 14), two representative gene sets are shown (with the middle portion of each panel showing vertical black lines where members of
the gene set appear in the ranked list of genes): c “Interferon-gamma”, and d “Leukocyte migration”. Of note, an oligodendrocyte-specific gene collection,
which we recently found downregulated in the anterior cingulate cortex of subjects with a history of ELA40, positively correlated with ELA in the amygdala
(see Supplementary Fig. 16d), suggesting opposite adaptations in this glial population between cortical and subcortical structures. Source data are provided
as a Source Data file.
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so, we took advantage of gene expression RNA-Seq data recently
published by our group using anterior cingulate cortex (ACC)
tissue from a cohort of C and ELA individuals (n= 50) that,
importantly, included all subjects from the present amygdala
study. To identify patterns of shared transcriptional adaptations
associated with ELA in both regions, we used Rank–Rank
Hypergeometric Overlay (RRHO247). Results uncovered strongly
significant overlapping groups of genes that were either
commonly downregulated (P-adj= 10−487, Benjamini–Yekutieli),
or commonly upregulated (P-adj= 10−388), in both the lateral
amygdala and ACC (Supplementary Fig. 16b). Strikingly,
enrichment analyses (see Supplementary Fig. 16c and full results
in Supplementary Data 11) showed that a large majority of GO
terms previously identified during the multi-epigenetic investiga-
tion of the single amygdala dataset were also recovered by this
combined analysis of transcriptomes from two distinct brain
regions. Future studies will be necessary to better understand
whether similar or divergent epigenetic processes underlie such
common transcriptional effects across various brain regions as a
function of ELA.

Discussion
Imaging studies3 have consistently demonstrated that ELA
associates with impaired function of the amygdala. Here, going
beyond previous studies9, we conducted a comprehensive analysis
of its potential molecular consequences in this brain region across
multiple transcriptional and epigenetic mechanisms. Below, we
discuss the implications of our results: first, in the healthy brain;
second, in relation to ELA.

Over the last few years, the significance of non-CG methyla-
tion, and the possibility that it may fulfill biological functions,
have been supported by several lines of evidence, including (i)
distinct methylation patterns shown to preferentially affect CAG
sites in embryonic stem cells, or CACs in neuronal and glial
cells11, (ii) higher abundance of non-CG methylation in long
genes in the human brain27, and (iii) specific binding of the
methyl-CpG-binding domain protein Mecp2 to both mCG and
mCAC in the mouse brain28,48. Here, we provide additional
evidence reinforcing this notion and found that mCG and mCAC
exhibit distinct profiles across genomic features and chromatin
states, which extends on interactions previously identified in
other tissues49,50, or in the brain for mCG49. First, among the
three chromatin promoter states (Act-Prom, Wk-Prom, Flk-
Prom, see Fig. 2e, f), mCAC was selectively enriched in Wk-
Prom, which was not observed for mCG. Considering that Wk-
Prom was relatively depleted in H3K27ac and H3K4me1 com-
pared to the two other promoter states, it is possible to hypo-
thesize that these two histone modifications may potentially
repress mCAC accumulation in brain tissue. A second dissocia-
tion consisted in the fact that lower mCAC levels were measured
in Str-Trans compared with Wk-Trans regions, while no such
difference was observed in the CG context. This may result at
least in part from higher levels of H3K36me3 observed in the Str-
Trans state. Third, among the two tightly compacted chromatin
states defined by the repressive mark H3K9me3, PcR and Het-
eroch, the latter state was characterized by higher DNA methy-
lation in the CG, but not in the CAC, context, as well as by a
relative increase in H3K9me3 and a decrease in H3K27me3.
While there is currently no data, to our knowledge, supporting a
potential interaction between H3K27me3 and non-CG methyla-
tion11, a role for H3K9me3 can be speculated considering studies
of cellular reprogramming. Indeed, in vitro dedifferentiation of
fibroblasts into induced pluripotent stem cells associates with the
restoration of non-CG methylation patterns characteristic of stem
cells, except in genomic regions characterized by high levels of

H3K9me351. Therefore, the possibility exists that H3K9me3 may
be implicated in the regulation of mCAC in the brain, a
hypothesis that warrants further investigation.

Beyond molecular interactions in physiological conditions, this
study was primarily designed to investigate molecular con-
sequences of ELA. Over the last two decades, considerable evi-
dence has associated enhanced inflammation with stress-related
phenotypes such as depression, in particular, based on measures
of cytokines and inflammatory factors in blood samples52. Lim-
ited molecular data, however, document how this pro-
inflammatory state may translate in the brain. Available studies
focused on cortical structures of the frontal lobe and reported
conflicting results for the expression of related genes53–55. At the
histological level, while the prevailing view holds that stress-
related psychopathology associates with tissue inflammation52,
studies conducted on the amygdala showed discordant results,
with lower densities of glial cells in some56,57 but not all58 studies.
In this work, integration of genome-wide data on DNA methy-
lation, histone, and gene expression found converging evidence
for significant enrichment in immune-related GO terms (Figs. 3,
4, 6, 7, and Supplementary Fig. 17). This included decreased
expression of genes encoding the complement system, Toll-like
receptors, clusters of differentiation, and the major histo-
compatibility complex, altogether arguing for a meaningful con-
tribution to psychopathological risk. Of note, deconvolutions of
transcriptomic or methylomic data provided no indications of
changes in amygdala cellular composition as a function of ELA,
suggesting that the reported molecular adaptations may reflect
decreased activity rather than impaired recruitment or pro-
liferation of microglial and astrocytic cells, the main immune
actors in the brain. Altogether, our data suggest that dysregula-
tion of immune-related processes in the amygdala may play an
important role in long-term consequences of ELA and in the
pathophysiology of depression.

While proteins from immune pathways have been historically
identified and studied in the context of immune function and
associated circulating cells (eg lymphocytes, monocytes, and
granulocytes), a growing and significant literature now indicate
that they are also largely expressed by neuronal cells, and play
important role in the regulation of synaptic plasticity59–64.
Consistently, other pathways most significantly altered in ELA
subjects were related to small GTPases, a large family of GTP
hydrolases that regulate synaptic structural plasticity, notably
through interactions with the cytoskeleton65. The association
observed for small GTPases was also accompanied by changes
affecting GO terms related to the cytoskeleton. Overall, our
findings, therefore, point toward altered synaptic plasticity in the
lateral amygdala in relation to ELA and depression and reveals
part of underlying epigenetic mechanisms at DNA methylation
and histone levels. While few molecular studies in humans pre-
viously documented this hypothesis66, it strongly resonates with
the wealth of human imaging and animal data that shows
structural and functional plasticity in this brain region as a
function of stressful experiences4.

Finally, we wondered whether mCAC may also contribute to
molecular responses to ELA in the brain. We found that similar
numbers of differential methylation events could be detected
across CAC and CG contexts in ELA subjects, suggesting that
both contexts might be sensitive to behavioral regulation. While
previous studies already showed that ELA associates with wide-
spread effects on mCG throughout the genome, they were con-
ducted using methodologies primarily designed for the
investigation of mCG (methylated DNA immunoprecipitation
coupled to microarrays67, reduced representation bisulfite
sequencing40). In comparison, the present WGBS study provides
a more comprehensive and unbiased assessment of the overall
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methylome, and represents, to our knowledge, the first indication
in humans that the mCAC form of DNA methylation might be
affected by ELA and related depressive phenotypes. This is con-
sistent with recent mouse work68 that provided evidence for an
effect of early-life positive experiences (in the form of environ-
mental enrichment during the adolescence period) on non-CG
methylation, suggesting that both beneficial and detrimental
experiences may modulate this noncanonical epigenetic
mechanism. Importantly, our combined investigation of DNA
methylation and histone marks provides further characterization
of this form of plasticity. Strikingly, mCAC and mCG changes
occurred in genomic regions that appeared distinct at every level
of analysis (see summary in Fig. 8), including genic or methy-
lomic features, individual histone marks, chromatin states, and
GO categories. Accordingly, CG-DMRs primarily located among
promoter regions and gene bodies; they were enriched in
H3K4me1, H3K4me3, and H3K27ac, and present across all
chromatin states, but mostly in Prom and Enh. In comparison,
CAC-DMRs were less frequently found in promoters, enriched in
H3K36me3 and depleted in H3K9me3, and mostly associated
with Quiescent and Wk-Trans chromatin states. Furthermore,
previous studies on non-CG methylation focused on the com-
parison of distinct cell types (glial vs neuronal cells12, or excita-
tory vs inhibitory neurons24), and identified parallel and
significant differences in both CG and non-CG contexts at
common genomic sites. In sharp contrast, regions showing dif-
ferential methylation as a function of ELA in the present study
were clearly context-specific (Fig. 5h and Supplementary
Fig. 13e), indicating a more subtle and specific modulation of
DNA methylation by ELA than by cell identity. Overall, these
results are consistent with a model whereby the cascades of
neurobiological adaptations associated with ELA result from and
contribute to distinct pathophysiological phenomena that differ-
entially manifest at the level of CG and CAC sites. It is possible
also to speculate that part of these adaptations may result from
the impact of ELA on mechanisms that drive the developmental
emergence of mCAC. Along this line, a molecular pathway has
recently started to be unraveled in the mouse: the methyl-
transferase Dnmt3a was shown to mediate the progressive post-
natal accumulation of DNA methylation in the CA context13,
while in vivo recruitment of MeCP2 primarily relies on mCG and
mCAC levels (rather than methylation at other contexts,
including CAT, CAA, or CAG28). These 2 studies suggest that
DNMT3a and MeCP2 may be implicated in human in the par-
ticular cross-talk that emerges during brain maturation between

mCAC and specific histone modifications (H3K27ac, H3K4me1,
H3K36me3, and H3K9me3). Therefore, future investigations
should focus on these marks, and related histone-modifying
enzymes, to better decipher the lifelong impact of ELA on
molecular epigenetic interactions.

Of note, this study has limitations. First, due to technical
constraints at the beginning of the project, pools of amygdala
tissue from several subjects were analyzed for ChIP-Seq, while
RNA-Seq and WGBS were conducted separately for each sample.
While this may have affected our results (for example, by
obscuring subtle subject-specific histone changes not detected at
pool level), the convergence of functional annotations observed
across multiple types of data suggests a modest detrimental
impact of the pooling approach. Second, the field of genomics is
currently moving towards the molecular analysis of single-cells,
with the hope of achieving higher resolution and a better
understanding of psychopathology. In comparison, this work
focused on bulk tissue only and, as such, may have missed epi-
genetic processes affecting individual or rare cell types. Finally, all
ELA subjects died during a major depressive episode by means of
suicide. Therefore, it is possible that part of the molecular
adaptations that we uncovered, and cautiously associate with
ELA, derive from these complex phenotypes rather than stem
specifically from ELA. Exploring this hypothesis will require
replication in larger cohorts and additional clinical groups (eg,
depressed suicides with no history of ELA).

In conclusion, the epigenetic and transcriptomic landscape of
the lateral amygdala exhibit targeted reconfigurations as a func-
tion of ELA. This reprogramming can be detected consistently
across multiple epigenetic mechanisms, including the newly
recognized form of DNA methylation affecting CAC sites. Future
studies will hopefully define the extent to which non-CG
methylation at CACs, and potentially at other cytosine contexts,
contribute to the adaptive and maladaptive encoding of life
experiences in the brain.

Methods
Human samples and tissue dissections. Postmortem lateral amygdala brain
tissue was obtained in collaboration with the Quebec Coroner’s Office, from the
Douglas-Bell Canada Brain bank (douglasbrainbank.ca/, Montreal, Canada). This
study included (i) subjects who died suddenly without prolonged agonal state or
protracted medical illness, and with no history of psychiatric disorder (Controls, C,
N= 17), and (ii) subjects with a history of severe child abuse, who died by suicide
in the context of a major depressive episode (Early-life adversity, ELA, N= 21).
Sample characteristics are presented in Supplementary Table 1, while the type of
abuse and mean of death are detailed in Supplementary Table 2. Groups were

Fig. 8 Methylomic adaptations associated with early-life adversity (ELA) in the CG and CAC contexts show multiple distinct properties. The figure
depicts a summary of methylomic and gene features, as well as histone marks and chromatin states that characterize genomic sites where differentially
methylated regions (DMR) were identified as a function of ELA in the CG and CAC contexts. See main text for details. LMR lowly methylated regions, UMR
unmethylated regions, + and − indicate enrichment and depletion in the corresponding histone mark, for each DMR category.
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matched for age, postmortem interval (PMI), and brain pH. Psychological
autopsies were performed by trained clinicians on both controls and cases, with the
informants best-acquainted with the deceased, as described previously69 and as
validated by our group and others70–75. Diagnoses were assigned based on DSM IV
criteria. Characterization of early-life histories was based on adapted Childhood
Experience of Care and Abuse (CECA) interviews assessing experiences of sexual
and physical abuse, psychological abuse, as well as neglect76,77, and for which
scores from siblings are highly concordant70,77. We considered as severe early-life
adversity reports of non-random major physical and/or sexual abuse during
childhood (up to 15 years). Only cases with the maximum severity ratings of 1 and
2 were included. This information was then complemented with medical charts
and coroner records. Ethical approval was obtained from the Institutional Review
Board of the Douglas Mental Health University Institute (REB#08-14). Written
informed consent was obtained from the families of each of the deceased subjects
prior to inclusion in the study.

Next-generation sequencing. WGBS, RNA-Seq, and ChIP-seq experiments were
carried out by expert technicians at the McGill University and Genome Quebec
Innovation Center, following standard operating procedures from the International
Human Epigenome Consortium (IHEC, see ihec-epigenomes.org/).

ChIP-seq library preparation. The following antibodies were used for chromatin
immunoprecipitation: (i) H3K4me1: Cell Signaling Technologies, cat #5326BF, lot
#2 (quantity: 3 µg/concentration: 0.015 µg/µl); (ii) H3K4me3: Cell Signaling
Technologies, cat #9751BF, lot#6 (quantity: 5 µg/concentration: 0.025 µg/µl); (iii)
H3K9me3: Abcam, cat #Ab8898, lot #GR93671-1 (quantity: 3 µg/concentration:
0.015 µg/µl); (iv) H3K27me3: Cell Signaling Technologies, cat #9733S, lot #6
(quantity: 10 µg/concentration: 0.05 µg/µl); (v) H3K27ac: Diagenode, cat #pAB-
196-050, lot #A1723-0041D (quantity: 6 µg/concentration: 0.03 µg/µl); (vi)
H3K36me3: Active motif, cat #MABI0333, lot #12003 (quantity: 2 µg/concentra-
tion: 0.01 µg/µl). Libraries were prepared using the automated protocol for the
Kapa HTP Library Preparation Kit (Illumina), and sequencing was performed
using the Illumina HiSeq 2000, as per the manufacturer’s instructions, to achieve at
least 30 and 60 million reads for narrow (H3K27ac and H3K4me3) and broad
(H3K27me3, H3K36me3, H3K4me1, and H3K9me3) marks, respectively (Sup-
plementary Fig. 1a).

ChIP-seq data processing. Trimmomatic78, BWA79, Picard, and deepTools80

were used to pre-process and align the sequencing reads. Global visualization for
the ChIP-seq data was accomplished using IGV81 and ngs.plot82. Inter-sample
correlations and hierarchical clustering were achieved using deepTools. Identifi-
cation of differential enrichment sites for each histone mark was done using dif-
fReps with window size 1000 bp, sliding step 100 bp, and fragment size 200 bp34. A
FDR < 10% and P < 0.0001 for the negative binomial tests were used as significance
cutoffs. ChromHMM was used to partition the genome into 200-bp bins and
annotate them to chromatin states15. A 10-state model was chosen and applied to
all datasets. A consensus map was first created for general characterization of the
amygdala chromatin states, using genomic regions with at least 6/11 samples in
accordance with a state. For comparisons of the two clinical groups, group-specific
maps were defined using regions showing at least a 70% agreement between
samples (at least 3/4C pools and 5/7 ELA pools). State transitions (ST) were then
defined as regions with differing states between the C and ELA maps. For char-
acterization of the distribution of DS and ST, we used the region_analysis package
(Python v3) to annotate them to genomic features34.

WGBS library preparation. Whole-genome sequencing libraries were generated
from 700 to 1000 ng of genomic DNA spiked with 0.1% (w/w) unmethylated λ
DNA (Promega) previously fragmented to 300–400 base pairs (bp) peak sizes using
the Covaris focused-ultrasonicator E210. Fragment size was controlled on a
Bioanalyzer DNA 1000 Chip (Agilent) and the KAPA High-Throughput Library
Preparation Kit (KAPA Biosystems) was applied. End repair of the generated
dsDNA with 3′- or 5′-overhangs, adenylation of 3′-ends, adaptor ligation, and
clean-up steps were carried out as per KAPA Biosystems’ recommendations. The
cleaned-up ligation product was then analyzed on a Bioanalyzer High Sensitivity
DNA Chip (Agilent) and quantified by PicoGreen (Life Technologies). Samples
were then bisulfite-converted using the Epitect Fast DNA Bisulfite Kit (Qiagen),
according to the manufacturer’s protocol. Bisulfite-converted DNA was quantified
using OliGreen (Life Technologies) and, based on quantity, amplified by 9–12
cycles of PCR using the Kapa Hifi Uracil+DNA polymerase (KAPA Biosystems),
according to the manufacturer’s protocol. The amplified libraries were purified
using Ampure Beads and validated on Bioanalyzer High Sensitivity DNA Chips,
and quantified by PicoGreen. Libraries were run on an Illumina HiSeq 2000 (100
bp paired end), yielding ≈164 million reads/library on average (Supplementary
Fig. 5c), and generating around 6.2 billion reads in total across the whole cohort.

WGBS data processing. As previously described83, methylome libraries were
aligned using BWA 0.6.179 after converting all the reads in bisulfite mode to the
human hg19/GRCh37 genome reference. Both reads in a pair were trimmed of any
low-quality sequence at their 3′-ends (with Phred scale score >= 30). Post-process

read mappings were made as previously described83, including clipping 3′-ends of
overlapping read pairs in both forward and reverse strand mappings, filtering
duplicate, low-mapping quality reads, read pairs not mapped at the expected dis-
tance based on the library insert size as well as reads with >2% mismatches.
Methylation calls of individual cytosines in both CG and CAC contexts were
extracted using Samtools in mpileup mode. Cytosine overlapping SNPs from
dbSNPs (137) and CpGs located within ENCODE DAC blacklisted regions or
Duke excluded regions84 were discarded.

DNA methylation data characterization. All analyses conducted to characterize
the genome-wide abundance and distribution of CG and CAC methylation were
done by focusing on cytosines showing a coverage >= 5 (Fig. 2 and Supplementary
Figs. 6–9). We used the region_analysis package34 to assign each cytosine to a
genomic feature (Supplementary Fig. 7), using the Ensembl v75 annotation for
consistency with RNA-Sequencing data analysis (see below). MethySeekR was used
to call CpG-rich, unmethylated regions (UMR), as well as CpG-poor low-methy-
lated regions (LMR), as described by Burger et al.85.

Differential methylation analysis. Differential methylation analysis was con-
ducted using BSmooth, as described previously86. The context of each C was
determined, which allowed us to classify each C of the genome as CG or CAC.
Methylation levels for each site were estimated by counting the number of reported
C (“methylated” reads) divided by the total number of reported C and T
(“methylated” plus “unmethylated” reads) at the same position of the reference
genome. To identify differentially methylated regions in the CG context, we per-
formed a strand-independent analysis of CG methylation where counts from the
two Cs in a CG and its reverse complement (position i on the plus strand and
position i+ 1 on the minus strand) were combined and assigned to the position of
the C in the plus strand. The summarized methylation estimates of strand-merged
CG sites from the 21 ELA and 17 control samples were used to identify differences
in methylation, using the R package BSmooth/BSseq37 at default parameters. To
minimize the noise in methylation estimates due to low-coverage data, we
restricted the differential methylation analysis to CpG sites with coverage
≥4 sequence reads in at least ten samples in each condition, which still allowed us
to interrogate changes in methylation levels at ~18 million CG and ~39 CAC
million sites. The same strategy was applied for differential methylation analysis in
the CAC context, except that by definition methylation data originated for each
CAC site from one DNA strand only. We identified differentially methylated
regions (DMRs) as regions containing at least five consecutive CG, or CAC, sites
that were significantly differentially methylated using an unpaired Welch t test (P <
0.001) and that exhibited at least a 1% difference in mean methylation levels
between ELA and C groups. To rule out potentially confounding effects of age and
sex (two factors known to contribute to variations in DNA methylation38,39), a
generalized linear model taking into account these two variables was computed on
mean methylation levels for each CG- and CAC-DMR. Only those DMRs for
which differential methylation between C and ELA subjects remained significant
when correcting for age and sex were considered for downstream analyses. Finally,
genomic features were attributed to DMRs using the region_analysis package,
similar to the annotation of ChIP-Seq DS or ST, while intersections of DMRs with
UMRs and LMRs were determined using Bedtools.

RNA-Sequencing library preparation. RNA was extracted from homogenized
brain samples using the RNeasy Lipid Tissue Mini Kit (Qiagen). The quantity and
quality of extracted RNAs were measured using an Agilent 2100 Bioanalyzer. No
sample was excluded because of low RIN value. RNA-Sequencing libraries were
prepared by expert technicians at the McGill University and Genome Quebec
Innovation Center, using IHEC procedures. Briefly, we used the TrueSeq Stranded
Total RNA Sample Preparation kit (Illumina), using the Ribo-Zero Gold kit
(Illumina) for the depletion of ribosomal RNA, followed by first and second-strand
cDNA synthesis and fragmentation of dsDNA. Then, fragmented DNA was used
for A-tailing, adaptor ligation, and 12 cycles of PCR amplification. Libraries were
quantified using a high sensitivity chip on a Labchip (PerkinElmer), quantitative
PCR (KAPA Library Quantification, Kapa Biosystems), and PicoGreen (Life
Technologies). Three libraries were run per lane of an Illumina HiSeq 2000 (100 bp
paired end), yielding ≈54 million reads/library (Supplementary Fig. 15b).

RNA-Sequencing alignment, counting, and differential expression analysis. As
described previously87, we used: FASTX-Toolkit (hannonlab.cshl.edu/fastx_toolkit/
links.html) and Trimmomatic78 for adapter trimming; Bowtie2 for alignment;
TopHat88 for transcript alignment; HTSeq-count89 or Kallisto41 for counting; and
DESeq290 for differential expression analysis. Following high-throughput sequen-
cing, 100 bp paired-end reads were aligned to the hg19 human genome using
TopHat v2.1.0 (tophat.cbcb.umd.edu/) with a mate insert distance of 75 bp (-r) and
library type fr-unstranded. Reads passing a mapping quality of at least 50 were used
for gene and transcript quantification. Gene annotations from the Ensembl release
75 were used for gene-level quantification. We used HTSeq-count version 0.6.1p1
(www-huber.embl.de/users/anders/HTSeq/doc/overview.html), using the
intersection-nonempty mode, and results were combined to form a count
matrix of 20,893 transcribed RNAs across 50 samples. As an alternative strategy to
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HTSeq-count, we also processed reads through the pseudo-aligner Kallisto. Here,
expression counts were obtained for isoforms using Kallisto (v. 0.43.0). Then, the
tximport (v. 1.0.3) R package was used to reconstruct gene-level counts using the
isoform-level counts generated by Kallisto. For differential expression analysis,
genes with no mapped fragments were removed. Furthermore, genes with low
counts were removed by keeping only those with at least 20 counts per subject in
average. Using HTSeq-count, differential expression analysis was performed using
the DESeq2 general linear model (GLM) using the following covariates: gender91,
age92, pH, PMI, and RIN93, based on previous literature documenting their impact
on human brain RNA-Seq datasets.

Gene set enrichment analysis (GSEA). GSEA was performed as previously
described40,42. Log2 fold changes were obtained for each gene from the differential
gene expression analysis. Genes were ranked based on their fold changes where
genes with the highest positive fold changes were at the top of the list and those
with the lowest negative fold changes were at the bottom of the list. The ranked
gene list was then used as an input for the GSEAPreranked tool, with the “classic”
enrichment score calculation option selected. The C2 curated gene sets molecular
signatures database was used to identify enriched gene sets (family-wise error rate,
FWER < 0.1).

Rank–Rank Hypergeometric Overlay (RRHO2). RRHO2 was performed as
described by Cahill et al.47, using the corresponding R package: https://github.com/
Caleb-Huo/RRHO2. Briefly, two lists of genes present in both the lateral amygdala
and ACC RNA-Seq datasets were identified, and the following metric computed for
each brain region: -log10(P value) × sign(log2 fold change). Then, the RRHO2
function was applied to the two gene lists at default parameters (with step size at
140). The significance of hypergeometric overlaps is reported as log10 P values
corrected using the Benjamini–Yekutieli procedure. Lists of genes generated by
RRHO2, and corresponding to most significant hypergeometric overlaps, were then
used for GO enrichment analysis, similar to RNA-Seq data.

Deconvolution of cellular composition. To assess the abundance of various cell
types in our amygdala samples, we used BSEQ-sc43 and the CIBERSORT44 algo-
rithm and applied these to both our RNA-Sequencing and WGBS data. For
deconvolution of these data, we used as reference “signatures”: (i) for gene
expression: a matrix built from single-nuclear RNA-Sequencing data recently
generated by our group using prefrontal cortical tissue45 (archived on GEO
Datasets under the reference series GSE144136), and analyzed using unsupervised
graph-based clustering94, and (ii) for DNA methylation: the non-CG methylation
matrix generated by Luo et al.46 using single-nucleus methyl-cytosine sequencing.
Relative fractions of cells were computed and are displayed in Supplementary
Fig. 17.

Gene ontology. We used GREAT v3.0.036 to identify the enrichment of gene
categories in differential sites (DS) or state transition sites (ST) obtained from
ChIP-Seq experiments, and for DMRs from WGBS experiments. DS, ST, and
DMRs were associated with genes using the default proximal (5 kb upstream, 1 kb
downstream of TSS) and distal (+/− 1Mb of TSS) definition of regulatory regions.
Biological process and molecular function gene categories were kept if they passed
both the hypergeometric and binomial tests with a fold enrichment ≥1.5 and FDR
Q ≤ 0.1. Significant GO terms with less than five genes associated with ST, DS, or
DMRs were discarded. To account for the recurrence of terms across multiple
combinations of ST, we calculated a co-occurrence score for each GO term, con-
sisting of the sum of the –log10 of the binomial P value for each ST enriched in this
term, as described by Feng et al.35.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw and processed data reported in this study using brain tissue from the lateral
amygdala and anterior cingulate cortex are publicly available via the Gene Expression
Omnibus with accession “GSE151827”. All other relevant data supporting the key
findings of this study are available within the article and its Supplementary Information
files or from the corresponding author upon reasonable request. A reporting summary
for this article is available as a Supplementary Information file. Source data are provided
with this paper.

Code availability
The analysis code that supports the main findings of this study is detailed in the
Supplementary Information file.
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