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Expanded catalog of microbial genes and
metagenome-assembled genomes from the pig gut
microbiome
Congying Chen1,2,3✉, Yunyan Zhou1,2, Hao Fu1, Xinwei Xiong1, Shaoming Fang1, Hui Jiang1, Jinyuan Wu1,

Hui Yang1, Jun Gao1 & Lusheng Huang 1,3✉

Gut microbiota plays an important role in pig health and production. Still, availability of

sequenced genomes and functional information for most pig gut microbes remains limited.

Here we perform a landscape survey of the swine gut microbiome, spanning extensive

sample sources by deep metagenomic sequencing resulting in an expanded gene catalog

named pig integrated gene catalog (PIGC), containing 17,237,052 complete genes clustered

at 90% protein identity from 787 gut metagenomes, of which 28% are unknown proteins.

Using binning analysis, 6339 metagenome-assembled genomes (MAGs) were obtained,

which were clustered to 2673 species-level genome bins (SGBs), among which 86% (2309)

SGBs are unknown based on current databases. Using the present gene catalog and MAGs,

we identified several strain-level differences between the gut microbiome of wild boars and

commercial Duroc pigs. PIGC and MAGs provide expanded resources for swine gut

microbiome-related research.
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Domesticated pigs provide the majority of meat for human
consumption and also serve as an animal model for
biomedical research studies1. The gastrointestinal tract of

swine harbors trillions of bacteria, which play vital roles in host
metabolism, immunity, and even behaviors2–4. Several studies
have reported an association between gut microbiota and pig feed
efficiency5,6, growth7, and diarrhea resistance in early-weaned
piglets8. Most of these studies relied on the available annotation
information of microbes that are often connected to partial
genome sequences. There remains a large portion of microbial
genes that lack functional annotations or have no hit in the
current database9. Reference genes as well as high-quality
microbial genomes are essential resources for understanding the
functional role of specific microbes and quantifying their abun-
dance in the gut microbiome10. However, ~40–50% of gut
microbial species lack reference genomes11.

Compared with the 16S rRNA gene sequencing that is subject
to bias, low sensitivity, and the lack of functional information on
the gut microbiome12,13, metagenomic sequencing can be used to
infer the biological functions of microbial communities and has
been gradually used to test the association between the gut
microbiome and host phenotypes and diseases via metagenome-
wide association study14–16. In fact, bottlenecks are often
encountered when using existing bioinformatics tools for meta-
genomic sequencing data due to the need for extensive compu-
tational support. Misassembles and chimeric contigs can be
created and introduce significant biases into the results17,18.
Assembly-free-based metagenomic approaches enable to profile
low-abundance organisms that are insufficient to assemble due to
low sequence coverage19, and can fast determine functional
capacity of gut microbiome by aligning metagenomic sequence
reads to a microbial reference gene catalog20. However, it is still
difficult to profile those uncharacterized microbes using the
assembly-free approaches. The deficiency of both annotated genes
and reference genomes severely restricts the mining and use of
metagenomic sequencing data and thus presents a major chal-
lenge for metagenomic sequencing analysis. Therefore, the con-
structions of both a complete gene catalog and a complete
genomic catalog are required urgently for the studies of gut
microbiome.

To date, reference gene catalogs of the gut microbiome have
been reported for the human9,21,22, dog23, monkey24, mouse25,26,
rat27, and chicken28. A reference gene catalog of the pig gut
microbiome has also been constructed using 287 fecal samples,
containing 7.7 million nonredundant genes (named PGC in this
study)29. However, the sequencing depth used in the construction
of these catalogs was relatively low (3.31–7.0 Gb/sample). In
addition, only fecal samples from domestic pigs were used. As for
the genome catalog of the gut microbiome, several studies have
reconstructed large numbers of microbial genomes from meta-
genomic sequencing data in both human9,30–32 and agricultural
animal species33,34 using metagenomic assembly approach.
However, metagenome-assembled genomes (MAGs) of gut
microbiota have rarely been applied and reported for pigs35. A
comprehensive genomic catalog of uncultivated microbiota is
useful to the studies of gut microbiome although their corre-
sponding microbial entities of MAGs need to be further con-
firmed by culture-based approaches.

In this work, we construct an integrated gene catalog and
recover MAGs of the pig gut microbiome by sequencing five
hundred samples from a wide range of sample sources spanning
various ages, sexes, breeds, geographical areas, domestication, and
gut locations. Especially, the lumen samples from jejunum, ileal,
and cecum are used to improve the representation of this inte-
grated gene catalog on the microbiome of the whole intestinal
tract. Furthermore, the dataset of the PGC catalog29 is also

integrated into the construction of the catalog. We show gene
catalogs (named pig integrated gene catalog, PIGC) of the pig gut
microbiome consisting of 48,697,887 (PIGC100), 17,237,052
(PIGC90), and 7,246,447 (PIGC50) nonredundant genes at 100%,
90%, and 50% amino acid identity, respectively. In addition, a
total of 6339 MAGs are recovered, which are clustered to 2673
species-level genome bins (SGBs), of which more than 86%
(2309) have no available genome sequence in the current database
(unknown SGBs, uSGBs). To demonstrate the value of these
resources, we use the catalogs of microbial genes and MAGs to
compare the gut microbiomes between wild boars and commer-
cial Duroc pigs, which represent pigs raised in two distinctly
different conditions (free-living vs. standard farm-raised in the
pig industry) to identify the detailed microbiome differences
between these two cohorts.

Results
Description of samples and metagenomic sequencing data. The
metagenomic sequencing data from 787 samples were used in this
study, including 500 samples sequenced in this study. The
500 samples sequenced in this study included 472 feces, 20 cecum
lumen, 6 ileal lumen, and 2 jejunum lumen contents from 8
different breeds of pig or Western × Chinese cross populations
from eight farms. The pigs varied in sex and age and were raised
under different feeding management conditions (Supplementary
Table 1). High-throughput sequencing of DNA samples gener-
ated 5.73 Terabases (Tb) of high-quality clean data from
500 samples and achieved an average sequencing depth of 11.46
Gb/sample (Supplementary Table 1). Gene catalog data from the
287 pig gut metagenomes reported previously29 were downloaded
from NCBI and are included in this study.

Establishment, and assessment of the quality and representa-
tion of pig gut microbiome gene catalogs. The workflow of data
processing is shown in Supplementary Fig. 1. After de novo
assembly, gene prediction, integration of the previously reported
gene catalog29, and filtration of incomplete genes, 126,545,050
complete genes were identified. These genes were clustered at the
protein level following the model of UniRef36 at 100%, 90%, and
50% amino acid identity to form PIGC100, PIGC90, and PIGC50,
respectively. After further filtering out those genes belonging to
eukaryotes (except fungi) in each gene catalog, 48,697,887
(PIGC100), 17,237,052 (PIGC90), and 7,246,447 (PIGC50) pro-
tein clusters were generated (Fig. 1, Supplementary Fig. 1). The
cluster number of PIGC90 was significantly lower compared with
PIGC100 (~65%), but the numbers of known proteins in the
catalog and annotated taxa were not reduced as much (only 11.0
and 3.0%) (Supplementary Fig. 2). Therefore, PIGC90 was used
for further comparison and annotation analysis.

Rarefaction analysis suggested that the number of PIGC90
clusters approached a saturation point when the sample number
reached 100, which is in line with previous estimates29

(Supplementary Fig. 3). The number of protein clusters in the
PIGC90 was six-fold compared with PGC, which contained
3,460,040 complete genes from a total of 7,685,872 nonredundant
genes from 287 pigs, and 2,847,252 complete protein clusters at
90% protein identity (defined as PGC90)29. To assess the
representation of this gene catalog beyond the study cohorts,
five pig gut metagenomic datasets were downloaded from the
public database and mapped against PIGC90. Better ratios of
mapped sequence reads were obtained with PIGC90 (ranging
from 87.03 to 97.83%) compared with PGC90 (ranging from
54.65 to 88.72%) (Supplementary Fig. 4). Furthermore, based on
Uniprot TrEMBL, 4,818,537 (28%) clusters in the PIGC90 are
unknown proteins (Supplementary Fig. 5a). These results imply
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that, compared with the previous database, PIGC significantly
extended the gene number of the pig gut microbiome.

Contribution of sequencing depth and extensive sample sour-
ces to gene content of the PIGC. We first evaluated the con-
tribution of sequencing depth to the capture of gut microbial
genes. Correlation analysis in 301 feces samples from F6 pigs of the
Mosaic population revealed a steady increase in the number of
genes identified following the sequencing depths (P < 2.2 × 10−16)
(Fig. 2a). The cut-off analysis of different sequencing depth in
20 samples with high sequencing depth (12.4 Gb) further sug-
gested a significant influence of sequencing depth in the capture of
microbial genes (P= 1.7 × 10−7; Supplementary Fig. 6). However,
the distribution of unique gene numbers following gene abun-
dances, and the percentages of the genes shared among samples
indicates that most of the 17,237,052 genes were at lower abun-
dance/prevalence within the individual samples (Fig. 2b, c).

Extensive sample sources from different ages, breeds, gut
locations, and geographical conditions, especially the samples
from wild boars, allowed us to evaluate the contribution of
sample sources to the gene number and representation of the
PIGC90. Among the 17,237,052 protein clusters (nonredundant
genes), 2,843,245 genes were sample source-specific (16.5%).
Feces-specific genes from adult domestic pigs occupied most of
the sample source-specific genes (94.0%) likely due to the large
sample size (n= 427). Samples from piglets contributed
78,565 specific genes. With the exception of the feces samples,

samples from different gut locations (small intestine and cecum
lumen) contributed 169,125 nonredundant genes (including small
intestine lumen-specific, cecum lumen-specific, and small intes-
tine and cecum lumen-shared genes in domestic pigs and wild
boars) (Fig. 2d). To our knowledge, this is the first study to
include the cecum lumen and feces samples from wild boars for
constructing the gene catalog of pig gut microbiome. These
samples provided 95,302 wild boar-specific nonredundant genes
(Fig. 2d). We further analyzed the abundances of these sample
source-specific genes in the corresponding sample source that
they came from. Notably, high proportions of small intestine
lumen-specific (65.3%), piglet sample-specific (39.7%), and wild
boar sample-specific genes had the abundances of ≥ average
abundance of gene set. However, most of the feces sample-specific
genes of domestic pigs (97.4%) showed low abundances in the
samples that they came from (Fig. 2e). This result suggested that
the utilization of the samples from different gut locations and
wild boars provided very useful gene set to improve the
representation of the PIGC catalog.

Taxonomic and functional characteristics of pig gut micro-
biome based on the PIGC90. Of the 17,237,052 nonredundant
genes in PIGC90, 12,418,515 can be blasted to the Uniprot
TrEMBL (known proteins) (Supplementary Fig. 5a). Among
these, only 1,745,932 genes could be taxonomically classified
(Supplementary Fig. 5b). More than 98.9% of the classified genes
were assigned to bacteria, whereas the remaining 1.1% belonged

Fig. 1 Pipeline for the construction of pig integrated gene catalog (PIGC) and metagenome-assembled genomes (MAGs). Metagenomic sequencing
data from the samples spanning age, sex, breed, gut location, geography, and domestication, as well as a pig gene catalog (PGC) from 287 metagenome
data were integrated and used to construct the PIGC catalog. The complete genes were clustered at 100, 90, and 50% amino acid identity to generate
nonredundant gene catalogs of PIGC100, PIGC90, and PIGC50. The reconstructed microbial genomes were clustered to strain-level and species-level
genome bins (SGBs) at 99% and 95% of the average nucleotide identity (ANI), respectively. The 6339 nonredundant MAGs were divided into medium-
quality MAGs (more than 50% completeness and <5% contamination) and high-quality MAGs (more than 90% completeness and <5% contamination).
SGBs containing at least one reference genome (or metagenome-assembled genome) in the Genome Taxonomy Database (GTDB) were considered as
known SGBs (kSGB). The SGBs without reference genomes were considered as unknown SGBs (uSGBs).
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to viruses and archaea (Supplementary Fig. 5c). These classified
genes were annotated to 38 phyla, 705 genera, and 1280 species.
Of the 38 phyla, Firmicutes (65.5%), Bacteroidetes (14.0%),
Proteobacteria (10.1%), and Actinobacteria (7.1%) were pre-
dominant (Supplementary Fig. 5d). The distribution of annotated
bacterial taxa in the 500 samples was further analyzed. The

bacterial taxa detected in more than 90% of the tested samples
were defined as the core bacteria of pig gut microbiome and 19
(50% in all annotated phyla) phyla, 234 (33%) genera, and 254
(20%) species were identified as core bacteria. Among these, 15
phyla, 135 genera, and 97 species were detected in all 500 samples
(Fig. 3a). The abundances of these 97 species occupied more than
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Fig. 2 Contribution of sequencing depth and sample sources to the gene content of the PIGC. a Association of predicted gene number with the
sequencing depth (n= 301). The predicted gene number was increased significantly following the sequencing depth. Adjusted R-squared and P-values
were calculated by a linear regression model in R (v3.6.2). b The distribution of the gene numbers following the relative abundances. The gene abundances
shown in the x-axis were average abundance of each gene (fpkm) in 500 samples. The blue bars indicate the numbers of genes under the average
abundance, the green bars indicate the numbers of genes above the average abundance, and the red bar shows the number of genes at the average
abundance. c The numbers (percentages) of nonredundant genes in the PIGC90 shared among different proportions of samples. The values next to the dot
indicate the number and proportion of genes in the PIGC90 shared among each proportion of samples. Most of the genes are low prevalence.
d Contribution of different sample sources to gene content of the PIGC. All 500 samples were divided into six subsets, including feces samples from wild
boars (WB_feces, n= 6), lumen samples from the cecum of wild boars (WB_cecum, n= 8), the feces samples from adult domestic pigs (Dom_feces, n=
427), lumen samples from the cecum of adult domestic pigs (Dom_cecum, n= 12), lumen samples from the small intestine of adult domestic pigs (SI, n=
8), and feces samples from piglets (piglet, n= 39). Vertical bars represent the number of genes shared between the specific study sets highlighted with
black dots in the lower panel. Horizontal bars in the lower panel indicate the total number of genes contained in each sample subset. e The proportions of
sample source-specific genes having high abundance (≥ average abundance) in the corresponding samples that they came from.

Fig. 3 Core bacterial taxa and functional capacities of pig gut microbiome. a Numbers (percentages) of shared bacterial taxa among different proportions
of samples at the phylum (red), genus (green), and species (blue) level. The percentage of shared items and the proportion of shared samples are
represented on the y- and x-axis, respectively. The number and the percentage for each item that are shared in 20, 50, 90, and 100% of samples are
indicated in the Figure. Nineteen phyla, 234 genera, and 254 species were shared in 90% samples and defined as core bacteria. b The top 20 bacterial
species in relative abundances in ileum lumen, cecum lumen, and feces, respectively. The yellow color indicates the species in the top 20 lists of all three
gut locations, and the colors corresponding to boxplots show the top 20 species specific to each gut location. The log10 (relative abundance) values are
shown on the x-axis. c Numbers (percentages) of shared function items among different proportions of samples for KEGG orthologues (red), KEGG
pathways (olive), CAZy family (cyan), and eggNOG (purple). Other legends are like (a). Boxplots show median, 25th and 75th percentile, the whiskers
indicate the minima and maxima, and the points laying outside the whiskers of boxplots represent the outliers.
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92.29% of the total abundance of the 1280 annotated bacterial
species, suggesting their high prevalence and important roles in
the gut microbiome of pigs. The top 20 bacterial species in
abundance in feces, ileum lumen, and cecum lumen samples are
listed in Fig. 3b. Ten bacterial species, including Lactobacillus
reuteri, Lactobacillus johnsonii, Lactobacillus amylovorus, Rumi-
nococcaceae bacterium, Escherichia coli, Prevotella copri, Bacter-
oides fragilis, Streptococcus suis, Phascolarctobacterium
succinatutens, and Salmonella enterica, are in the lists of all feces,
ileum, and cecum samples. However, there were 16 bacterial
species whose abundance achieved the top 20 in only one gut
location. This result suggests a significant difference in the relative
abundances of the same bacterial species in different gut loca-
tions. For example, consistent with our previous report37, Clos-
tridium (Clostridium butyricum and Clostridium perfringens) and
Clostridioides difficile are highly abundant in ileum lumen sam-
ples, though only three and five bacterial species were detected
that are specific for ileum and cecum lumen, respectively (Sup-
plementary Fig. 7).

Using KEGG, CAZy, and eggNOG for functional annotation of
genes, 16.56% (2,853,603) of nonredundant genes in the PIGC90
could be annotated to 6363 KEGG orthologous groups (KOs) and
438 KEGG pathways; 61.54% (10,606,969) of the genes were
annotated to 81,406 eggNOG orthologous groups. In addition,
11.86% (2,045,161), 0.01% (996), and 12.68% (2,184,919) of the
nonredundant genes in the PIGC90, could be classified to the
Carbohydrate-Active enZYmes (CAZy) families, the Compre-
hensive Antibiotic Research Database (CARD), and the Virulence
Factors Database (VFDB), respectively (Supplementary Table 2).
The predominant functional capacities of the gut microbiome in
pigs, based on the PIGC90 are listed in Supplementary Table 3.
Compared with the core species, there were significantly higher
percentages of KOs (45%), KEGG pathways (91%), eggNOG
orthologous (22%), and CAZymes (72%) found in more than 90%
of the 500 samples (core functional capacities) (Fig. 3c), implying
the functional redundancy of the gut microbiota. However, the
utilization of the samples from different gut locations and wild
boars did not significantly increase the number of KEGG
pathways and CAZymes (Supplementary Fig. 7).

Reconstruction of microbial genomes from gut metagenomic
sequencing data. Microbial genomes were constructed from the
metagenomic sequencing data obtained from the 500 samples
described above. High-throughput deep metagenomic sequencing
generated 21,609 MAGs at a threshold of >50% completeness and
contamination of ≤5%. These reconstructed microbial genomes
were then compiled and dereplicated at 99% of the average
nucleotide identity (ANI). A final set of 6339 nonredundant
MAGs were obtained (Supplementary Data 1). Among these,
4981 MAGs satisfied the medium-quality criteria (more than 50%
completeness and <5% contamination), and 1358 MAGs showed
high-quality (more than 90% completeness and <5% con-
tamination) (Supplementary Fig. 8a)38,39. Most of the high-
quality MAGs had a contig number <250 and ≥18 of the standard
tRNAs (Supplementary Fig. 8b, c). Of the 1358 high-quality
MAGs, 36 had the 5S, 16S, and 23S rRNA genes together with at
least 18 tRNAs, and conformed to the MIMAG standards for the
‘high quality’ MAG set by the Genomic Standards Consortium39.
All MAGs showed high prevalence in the 500 metagenomes; for
example, 5211 MAGs were identified in all 500 samples, and the
other MAGs (1128) existed in at least 92.6% of the 500 meta-
genomes (Supplementary Data 1), suggesting that these MAGs
belong to strains of the core species.

The 6339 MAGs were subsequently classified into taxa using
the Genome Taxonomy Database Toolkit (GTDB-Tk). All 6339

MAGs were classified to the kingdom level (6285 to bacteria and
54 to archaea), the vast majority of MAGs (6219, 98%) were
assigned to the family level, 4783 (75%) were assigned to the
genus level, and only 865 MAGs were assigned to 365 known
species (Fig. 4a). Some representative genomes of the MAGs
could not be matched to any isolated genomes in the current
database, suggesting the representation of potential new species.

The 6339 MAGs were further organized into species-level
genome bins (SGBs) at an ANI threshold of 95%. This clustering
analysis resulted in a total of 2673 prokaryotic species, of which
2309 (86.38%) SGBs represented species without any publicly
available genomes and were defined as unknown SGBs (uSGB).
The taxonomic context of SGBs was obtained by recursive
clustering of SGB representatives at the phylum-level genetic
divergence. More than 69.1% (1846) of SGBs belonged to
Firmicutes and 312 to Bacteroidetes (Fig. 4b, c). The 2309 uSGB
were widely distributed in different phyla. The percentage of
uSGBs of the total SBGs of each phylum are shown in Fig. 4c.
Furthermore, about 73.55% of the uSGBs contained only one
reconstructed genome, representing relatively rare pig-associated
microbes; however, of the top 10 SGBs with the largest number of
reconstructed genomes, eight were uSGBs (Supplementary
Data 2).

Implementation of the PIGC and MAGs: comparison of gut
microbiome between wild boars and highly selected commer-
cial Duroc pigs. Free-living wild boars scavenge grass, roots, and
fruits as foods for survival. Comparatively, Duroc is one of the
most commonly used commercial pig breeds which are raised in
the uniform farms of the modern pig industry living in high
density in captivity and fed formula feeds that contain high levels
of protein and energy. Whether there are distinct differences in
gut microbial composition and functional capacity between wild
boars and Duroc pigs is largely unknown. In this study, the PIGC
was used to compare the gut microbiome between free-living wild
boars and Duroc pigs from two farms. The farm-raised Duroc
pigs were given high energy and protein formula feed (see
“Methods”). Distinct gut microbial compositions were observed
among the wild boars, Duroc-SH, and Duroc-JY (Supplementary
Fig. 9a). Compared with Duroc pigs, wild boars had higher α-
diversity of the gut microbiome at the genus level although the
difference was not achieved significance level between wild boars
and Duroc-JY (Supplementary Fig. 9b). However, this difference
was not observed at the species level (Supplementary Fig. 9c).
This should be caused by the poor annotations of metagenomic
sequencing data at the species level. A significantly lower α-
diversity was observed in Duroc-SH pigs, which might be caused
by the extremely high abundance of P. copri in the gut of Duroc-
SH (the overgrowth of P. copri, 54.06% in relative abundance)
(Supplementary Fig. 9b–d). We then focused on those bacterial
species enriched in wild boars or Duroc pigs using the PIGC90. It
was discovered that the gut microbiome of wild boars had a
significantly higher abundance of bacterial species from Bacter-
oides (10 species) and Bifidobacterium (4 species), Hungatella
hathewayi, and Alistipes (5 species) (Fig. 5a, Supplementary
Data 3). However, the species from Prevotella (23 species) and
Lactobacillus (8 species), which are associated with porcine fat
accumulation and lean meat percentage were enriched in both
Duroc populations (e.g., the relative abundance of P. copri
achieved 23.38% and 54.06% in Duroc-JY and Duroc-SH,
respectively) (Fig. 5a and Supplementary Fig. 9d). It is worth
noting that the abundance of Streptococcus species, such as
Streptococcus suis, which is one of the pathogens that influences
pig production around the world, was significantly higher in
Duroc pigs (Fig. 5a).
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MAGs were then implemented to further compare the gut
microbiomes of wild boars and Duroc pigs at the strain level
(MAGs) (Supplementary Data 4). Some MAGs from the same
SGB showed different directions of enrichment between wild
boars and Duroc pigs in a total of 7 SGBs annotated to bacteria, of
which 6 SGBs were uSGBs (Fig. 6a, b). For example, among 19
MAGs that were clustered into SGB_2312 annotated to
Oscillospirales, 2 MAGs were enriched in wild boars, 2 MAGs
in Duroc pigs, and the other 15 MAGs showed no differential
abundances between Duroc pigs and wild boars (Fig. 6a, b).
Similarly, SGB_600 was a uSGB containing 33 MAGs and
belonged to Methanomethylophilaceae in Archaea, and there
were four and two MAGs enriched in wild boars and Duroc pigs,
respectively (Fig. 6c, d). This indicates differences in the gut
microbiome at the strain level between wild boars and Duroc
pigs, which could not be detected without a powerful MAGs
database.

The functional capacities of the gut microbiome were then
compared between wild boars and Duroc pigs using the PIGC90.
A total of 103 pathways showing differential abundances were
identified, including 92 pathways enriched in wild boars and 11
pathways having higher abundances in Duroc pigs. The pathways
enriched in the gut microbiome of wild boars were mainly related
to amino acid biosynthesis and metabolism, lipid metabolism
(e.g., secondary bile acid biosynthesis, fatty acid biosynthesis,
and degradation), carbohydrate metabolism, vitamin metabolism

(e.g., Vitamin B6 and biotin metabolism), antibiotic biosynthesis
(e.g., neomycin, kanamycin, and gentamicin biosynthesis),
whereas the gut microbiome of Duroc pigs was mostly enriched
by the pathways associated with genetic information processing
(e.g., DNA replication and homologous recombination)
(Supplementary Data 5). We were particularly interested in the
distribution of antibiotic-resistant genes (ARGs) in wild
boars. Compared with Duroc pigs, the gut microbiome of wild
boars had a significantly lower number of ARGs (wild boars vs.
Duroc-JY, P= 6.9 × 10−4; wild boars vs. Duroc-SH, P= 6.9 × 10
−4) (Supplementary Fig. 10a). The abundances of resistance
classes that ARGs were classified into in wild boars and Duroc
pigs were shown in Supplementary Fig. 10b. Duroc pigs had a
high abundance of ARGs related to tetracycline, aminoglycoside,
nucleoside, M-L-S (macrolide antibiotic, lincosamide
antibiotic, and streptogramin antibiotic), and lincosamide.
However, almost all classes of antibiotic resistance genes were
less abundant in wild boars (Supplementary Fig. 10b and
Supplementary Table 4).

Discussion
In the current study, a reference gene catalog of the pig gut
microbiome was generated covering more than 17.24 million full-
length proteins clustered at 90% identity and 6339 microbial
genomes were constructed. These datasets are comprehensive

Fig. 4 Taxonomic annotation and phylogenetic tree of 6339 metagenome-assembled genomes (MAGs). a Taxonomic classification of 6339 MAGs at
different levels. b Phylogenetic tree of MAGs. The outer cycle represents kingdoms and the different colors of the background of clades represent phylum.
The tree was constructed by PhyloPhlAn (v3.0.51) and visualized by iTOL (v5.6.2). c The number of species-level genome bins (SGBs) and the percentage
of unknown SGB (uSGB) in each phylum. Two phyla are from Archaea and the others belong to Bacteria. The SGBs without existing reference genome
(could not be annotated at the species level by GTDB-tk) were defined as unknown SGBs (uSGBs), while the SGBs having at least one MAG could be
annotated at the species level as known SGBs (kSGBs). The color of each phylum was consistent with (b).
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resources for investigating the pig gut microbiome. The improved
ratio of mapped sequence reads of the metagenomic sequencing
datasets and several million new proteins based on UniProt
TrEMBL database in the PIGC90 means that this gene catalog
will greatly facilitate assembly-free metagenomic sequencing data
analysis and the metatranscriptome and metaproteome analyses
similar to that performed on host genomes and via tran-
scriptomics analysis using mapping approaches40,41.

Compared with the previously reported PGC catalog, the PIGC
was constructed using a diversified landscape of samples not only
from feces, but also from the lumen of different gut locations, and
not only from domestic pigs worldwide, but also from wild boars.

This broad sample source significantly increased the diversity and
representation of the PIGC (Fig. 2d). However, compared with
the contribution of more than 170,000 specific genes from the
domestic pig, the utilization of lumen samples from ileum and
cecum, and the samples from wild boars did not contribute many
specific species or functional categories to the metagenome
(Supplementary Fig. 7). This may be due to a number of factors:
(1) pan-genome of microbial species among sample sources; (2)
limited annotation using the current database; (3) the effect of
much lower sample numbers of ileum, cecum, and wild boars.
The predicted gene (protein) number increased steadily following
increasing sequencing depths. However, most of the genes in the

Fig. 5 Bacterial species enriched in wild boars and commercial Duroc pigs, respectively. Heatmap showed the parts of bacterial species enriched in wild
boars and both two Duroc populations (Duroc-JY and Duroc-SH), respectively, at the significance threshold of Bonferroni-corrected P-value <0.01. All
180 significant bacteria species are listed in Supplementary Data 3.
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catalog had low abundance and prevalence within individual
samples. This is similar to what was observed in the human gut
and oral microbiome42.

The 6339 MAGs are another highly valuable dataset resource
generated by this study. Only a small portion of the MAGs
represent previously sequenced microbial species (13.65%). Most
of the MAGs appear to be novel species with sequenced relatives

at higher taxonomic levels. These MAGs significantly increase the
number of available microbial reference genomes.

PIGC90 and constructed MAGs were used to compare the
gut microbiomes of wild boars and highly commercialized
Duroc pigs as an example of the implementation of PIGC90
and MAGs. Diversity of the gut microbiota is likely very
important to animal health. Whether the high density in

Fig. 6 The species-level genome bins (SGBs) containing metagenome-assembled genomes (MAGs) showing different directions of enrichment in wild
boars and Duroc pigs. a The phylogenetic tree showing all MAGs from seven SGBs belonging to bacteria. The different colors distinguish each SGB. In
each of these seven SGBs, some MAGs were enriched in wild boars (blue bars), some MAGs in Duroc pigs (red bars), and the others did not show
significant difference between wild boars and Duroc pigs (gray). b Heatmap showing the different enrichments of the 29 MAGs from seven SGBs described
above between wild boars and Duroc pigs. c The phylogenetic tree showing all MAGs from SGB_600, which belongs to Methanomethylophilaceae in
Archaea. Four MAGs in this SGB were enriched in wild boars (blue bars) and two MAGs enriched in Duroc pigs (red bars). d Boxplots showing the different
abundances of the six MAGs in the SGB_600 between wild boars (n= 6) and Duroc pigs (Duroc-JY: n= 16, Duroc-SH: n= 20). *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001, two-tailed Wilcoxon test was used Boxplots show median, 25th and 75th percentile, the whiskers indicate the minima and
maxima, and the points laying outside the whiskers of boxplots represent the outliers.
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capacity and formula feed in the modern pig industry affect the
diversity of the pig gut microbiome is unknown. We did
observe the higher α-diversity of the gut microbiome at the
genus level in wild boars compared with that in Duroc pigs,
especially in Duroc-SH. The gut microbiome of wild boars had
a significantly higher abundance of Bacteroides spp. (Fig. 5a).
Bacteroides play important roles not only in producing valuable
nutrients and energy by breaking down food, but also in reg-
ulating immune abilities. For example, B. uniformis and B.
xylanisolvens can utilize both dietary and endogenous glycans,
along with the production of beneficial end products, such as
short-chain fatty acids (SCFAs), for both the bacterium and the
host43,44. Bacteroides ovatus is a representative of Bacteroides
genus that has immune-regulatory abilities45. Bifidobacterium
spp. were also significantly enriched in the gut microbiome of
wild boars. Bifidobacteria can utilize a diverse range of plant-
derived oligo- and polysaccharides that cannot be degraded by
host46 and produce SCFAs. SCFAs not only provide the energy
for the survival of wild boars47, but also play important roles in
anti-inflammation and improving immunity48. The species
from Prevotella, Lactobacillus, and Streptococcus were enriched
in Duroc pigs. This is similar to the previous report based on
16S rRNA gene sequencing49. In particular, the relative abun-
dance of P. copri in Duroc-JY and Duroc-SH pigs achieved
23.38% and 54.06%, respectively (Supplementary Fig. 9d). In a
previous study, we showed the causative role of P. copri in host
fat accumulation by pro-inflammation response, which relies
on formula diets. Unlike wild boars, in the modern pig industry
Duroc pigs are fed the commercial formula feed containing
high levels of energy (3023 kcal/kg for Duroc-SH and 2960 kcal/
kg for Duroc-JY) and protein to exploit growth potential, which
induces an overgrowth of P. copri in the gut (Supplementary
Fig. 9d). S. suis, a pathogen50, was also enriched in Duroc pigs.
Pigs raised on commercial farms with high density and fed
commercial formula feed easily become sick. Consistent with
the results of microbial composition, the functional capacities
of the gut microbiome enriched in wild boars were mainly
related to the metabolism of nutrients (amino acids, lipid,
carbohydrate, and vitamin), which are essential functions to the
life of both host and microbes. However, the functional capa-
cities enriched in Duroc pigs were mainly related to genetic
information processing, suggesting a high propagation of some
bacterial species in the gut that may be induced by the high
energy and protein diet. All together, these results suggest that
the gut microbiome is greatly advantageous to the survival of
wild boars in their natural free-living habitat.

In summary, the PIGC together with the constructed microbial
genomes of the pig gut microbiome developed in the present
study provide important and powerful resources for generating
insights into the pig gut microbiome and for future metagenomic
sequencing-based studies.

Methods
Animal management and sample collection. A total of 470 pigs from a Mosaic
population, a cross line, five domestic purebreds, and wild boars were gathered and
used in this study (Supplementary Table 1). The mosaic population was con-
structed by random hybridization amongst four Western (Duroc, Landrace, Large
White, and Pietrain) and four Chinese pig breeds (Bamaxiang, Erhualian, Laiwu,
and Zang). All pigs were raised in a uniformed farm of Jiangxi Agricultural Uni-
versity in Nanchang, Jiangxi Province, and provided commercial formula feed
twice daily. The feed contained 16% crude protein and 3100 kcal/kg digestible
energy and 0.78% lysine as previously described51. Water was provided ad libitum
from nipple drinkers. All piglets were weaned at the age of 42 days and the males
were castrated at the age of 80 days. A total of 325 samples were collected from 301
F6 pigs of this mosaic population, including 301 fecal samples at the age of
240 days, 10 fecal samples at the age of 25 days, and 10 cecal lumen and 4 ileal
lumen samples upon slaughtering at the age of 240 days. Forty-nine sows from the
Berkshire × Licha line and 14 purebred sows of Licha were included in this study.

Fecal samples were collected from all 63 sows, which were raised on a commercial
farm in Dingnan, Jiangxi Province, and fed formula feed. Fecal samples from a
total of 36 Duroc pigs from two commercial farms were collected and used in this
study. Duroc pigs from Jiangyin Farm in Guangdong Province (Duroc-JY) were
provided formula feed containing 2960 kcal/kg digestible energy and 15% crude
protein, and Duroc pigs from Shahu Farm in Guangdong Province (Duroc-SH)
were fed formula feed consisting of 3023 kcal/kg digestible energy and 17% crude
protein. Fecal samples were collected from 27 Tibetan pigs from four farms,
including 21 pigs from three high-altitude farms in Kangding, Sichuan Province,
and 6 pigs from a farm in Nanchang, Jiangxi Province. Fecal samples from 29 Large
White piglets at the age of 30 days were also included in this study. These piglets
were raised in Liangyeshan farm, Fujian Province, and weaned at the age of
21 days. Eight adult wild boars were captured from the mountains in Jiangxi
Province. Their feces and cecum luminal contents were harvested upon slaughter.
Two samples were pooled for each of the jejunum, ileum, and cecum of the Laiwu
pigs and used in metagenomic sequencing as previously described37 and used to
construct the gene catalog of the gut microbiome in this study. All fecal samples
were collected from the rectum of experimental pigs. The luminal contents were
separately harvested from the middle part of jejunum and ileum, and the bottom of
the cecum within 30 min after slaughter. All experimental pigs were healthy and
received no probiotic or antibiotic therapy within 2 months of sample collection.
All animal work was conducted according to the guidelines for the care and use of
experimental animals established by the Ministry of Agriculture of China. The
project was also approved by Animal Care and Use Committee (ACUC) in Jiangxi
Agricultural University.

DNA extraction. All samples were dipped in liquid nitrogen, and then transferred
into a −80 °C freezer until use. DNA was extracted using the QIAamp Fast DNA
Stool Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. The concentration and the quality of all DNA samples were measured
using the NanoDrop-1000 and agarose gel electrophoresis.

DNA library construction and metagenomic sequencing. DNA libraries were
constructed following the manufacturer’s instructions (Illumina, San Diego, CA,
USA), and index codes were added to attribute the sequences of each sample. The
clustering of the index-coded samples was performed on a cBot Cluster Generation
System according to the manufacturer’s instructions. After cluster generation, the
library preparations were sequenced on a Novaseq 6000 platform adopting a 150-
bp paired-end sequencing strategy.

Metagenome assembly. Raw reads were filtered to remove adapter sequences and
low-quality sequences using fastp (v0.19.4, --cut_by_quality3 -W 4 -M 20 -n 5 -c -l
50 -w 3)52, and the reads mapped to the host genomic DNA by BWA MEM
(v0.7.17-r1188)53 were filtered out. Metagenome assembly was processed by
MEGAHIT (v1.1.3)54 using the options ‘--min-count 2 --k-min 27 --k-max 87 --k-
step 10 --min-contig-len 500’. The sequence data of each sample were assembled
individually. To make full use of the sequence reads and identify rare genes, the
clean sequence data of all samples were aligned to the assembled contigs by Bowtie
2 (v2.3.4.1)55 to acquire the unassembled reads. All unassembled reads of each
sample in a pig population were then pooled and co-assembled with MEGAHIT
(v1.1.3) using the same parameters for a single sample.

Construction of the gene catalog. A total of 201,051,463 assembled contigs were
used for gene prediction by Prodigal (v2.6)56 software. After removing the
incomplete genes, those genes with a start and stop codon were retained for further
analyses. To expand the gene catalog of the current study, the complete genes were
integrated from 7,685,872 nonredundant genes in the gene catalog of the pig gut
microbiome using 287 pig samples reported previously29. All complete genes were
clustered at protein level following UniRef guidelines36 at 100% (PIGC100), 90%
(PIGC90), and 50% (PIGC50) of protein identity using CD-HIT (v4.8.1)57. Each
member of the clusters in PIGC90 and PIGC50 was required to have at least 80% of
sequence overlap with the longest (seed) sequence. All genes were aligned to the
Uniprot TrEMBL database (https://www.uniprot.org/statistics/TrEMBL) to filter
out those genes belonging to eukaryotes (except fungi).

Taxonomic and functional annotation of genes. The amino acid sequences of
proteins in the catalog were aligned to the Uniprot TrEMBL by DIAMONG
(v0.9.21.122)58 with e-values ≤1e−5. The proteins that could not be aligned in the
database were defined as unknown proteins. For those genes that were matched to
distinguishable taxonomic groups (with multiple records of e-value ≤1e−5), the
taxonomic classification was determined based on the lowest common ancestor
algorithms by BASTA (v1.3)59 at the thresholds of an alignment length >25,
identity >80%, and shared by at least 60% of hits. Similarly, the genes that could not
be classified to any taxa were defined as unknown taxa. The KEGG (Kyoto
Encyclopedia of Genes and Genomes) annotation results were extracted with
KOBAS (v3.0.3)60 software (-t blastout:tab, -s ko). The eggNOG was annotated by
aligning genes to eggNOG 5.061 database using eggnog-mapper (v2.0.1)62, and
carbohydrate-active enzymes (CAZymes) were annotated by aligning genes to
dbCAN database (HMMdb V8)63 with hmmscan program in HMMER (v3.1b2)64.
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Antibiotic resistance genes (ARGs) were annotated by alignment against the
Comprehensive Antibiotic Resistance Database (CARD) using RGI (v5.1.1)65. The
virulent protein sequences were identified by annotation with the Virulence Factor
Database (VFDB)66 using BLAST (v2.10.1+)67. For the aligned protein sequences,
the annotated hit(s) with the highest score was used for the subsequent
analysis21,24,68.

Genome reconstruction. Genome reconstruction of gut microbes with metage-
nomic sequencing data was performed with the function modules of metaWRAP
(v1.1.1)69, which is a pipeline that includes numerous modules for analyzing
metagenomic bins. Briefly, metagenomic bins (or metagenome-assembled gen-
omes, MAGs) were constructed with contigs from single sample, and co-assembly
contigs (co-assembled from unmapped reads of all samples in each pig population)
in 500 metagenome data by two different binning algorithms of ‘--metabat2
--maxbin2’70,71 in metaWRAP software. The default of the minimum length of
contigs used for constructing bins with Maxbin2 and metaBAT2 were 1000 and
1500 bp, respectively. For the construction of metagenomic bins with co-assembled
contigs by Maxbin2, the minimum length of contigs was set at 2500 bp due to
memory limitation and time-consuming computation.

Refinement of MAGs was performed by the bin_refinement module of
metaWRAP69. First, bin set AB was generated by combining bin set A produced by
MaxBin2 and bin set B produced by MetaBAT2. CheckM (v1.0.12)72 was used to
estimate the completeness and contamination of the bins in sets A, B, and AB to
choose the best one of each MAG with the highest scoring function
S=Completion-5*Contamination value. To improve the quality of bins,
metagenomic sequence reads were mapped to each bin, and then, reassembled with
metaSPAdes73 via the reassemble_bins module of metaWRAP. CheckM (v1.0.12)
was re-run to estimate completeness and contamination of the final bins.

Dereplication and species-level clustering of MAGs. dRep (v2.2.3)74 was used
for dereplication of all 21,609 MAGs by two-step cluster. First, MAGs were divided
into primary clusters using Mash at a 90% Mash ANI. Then, each primary cluster
was used to form secondary clusters at the threshold of 99% ANI with at least 25%
overlap between genomes. According to the criteria of quality evaluation by
CheckM (v1.0.12), 6339 nonredundant MAGs were divided into medium-quality
MAGs (more than 50% completeness and <5% contamination) and high-quality
MAGs (more than 90% completeness and <5% contamination)38,39. The MIMAG
standards set up by the Genomic Standards Consortium, which require the 5S, 16S,
and 23S rRNA genes, and at least 18 tRNAs in MAGs39 were also used to evaluate
the quality of MAGs.

MAGs were clustered into species-level genome bins (SGBs) at the threshold of
95% ANI using the ‘cluster’ program in dRep (v2.2.3). SGBs containing at least one
reference genome (or metagenome-assembled genome) in the Genome Taxonomy
Database (GTDB, https://gtdb.ecogenomic.org/) were considered as known SGBs.
And SGBs without reference genomes were considered as unknown SGBs (uSGBs)31.

Phylogenetic analysis and genome annotation of MAGs. A total of 6339
representative MAGs were classified using the Genome Taxonomy Database
Toolkit (GTDB-tk)75. All phylogenetic trees of the MAGs were built by Phy-
loPhlAn (v3.0.51)76 and visualized using iTOL (v5.6.2)77 or ggtree (v2.3.3.993)78,79

in R package (v3.6.2). The genome annotation of MAGs, including the prediction
of coding sequence (CDS), tRNA, and rRNA, was performed with Prokka80 using
the annotate_bins module of metaWRAP (v1.1.1).

Estimation of the abundances of genes, taxa, function terms, and MAGs.
Clean reads of each sample were aligned to the gene catalog using BWA MEM
(v0.7.17-r1188)53. The outputs were converted to BAM format by Samtools (v1.10)81.
FeatureCounts (v2.0.1)82 was then used to compute the number of successfully
assigned reads. The abundances were normalized to fragments per kilobase of gene
sequence per million reads mapped (FPKM)83. For each sample, the FPKM was
calculated by the formula:

FPKM ¼ numFragments
geneLength

1000 ´ totalNumReads
1;000;000

ð1Þ

where numFragment is the number of fragments mapped to a gene sequence; gene-
Length is the length of the gene sequence; and totalNumReads is the total number of
mapped reads of a sample.

The abundances of microbial taxa, KEGG Orthology (KO), KEGG
pathway, eggNOG Orthology, CAZyme, Antibiotic Resistance Ontology
(ARO), and Virulence Factors (VF) were calculated by adding the abundances
of all the members falling within each category. Salmon (v0.9.1) was used to
quantify the abundance of each MAG in each sample with alignment-based
mode84.

Statistical analysis
Rarefaction curve analysis. Based on the gene profile table, random sampling was
performed 100 times in all tested samples without replacement for a given number
of sample size and the total number of nonredundant genes was calculated for each

sampling time. The sample size increased from 20 to 500 at the rate of 20 samples
per step. The average of the 100 sampling times was plotted for each sample size.

Contribution of sequencing depth to the number of nonredundant genes. To explore the
effect of sequencing depth on the capture of gut microbial genes, the correlation
between the sequencing depth and the number of predicted genes was analyzed in 301
feces samples from F6 pigs of the Mosaic population. The adjusted R-squared and P-
values were calculated using a linear regression model in R package (v3.6.2). We
further selected 20 fecal samples from the F6 population with about 12.4-Gb
sequencing data, and randomly drew 6.2-Gb reads from each sample for assembling,
and predicting microbial genes. The number of predicted genes between two
sequencing depths was compared with the Wilcoxon test by ggpubr in R package
(v3.6.2).

Computation of the mapping ratios of metagenomic sequencing reads. For the PGC,
3,460,040 complete genes were extracted from the gene catalog and dereplicated at
the protein level using CD-HIT (v4.8.1) as described above. A total of 76 meta-
genomic sequencing data obtained from diverse sample sources were downloaded
from five public datasets. After quality control and removing the host genomic
sequence using the methods described above, the clean reads of each sample were
aligned to the PIGC90 and PGC90 by BWA MEM (v0.7.17-r1188). The number of
mapped reads were counted using Samtools (v1.10). The ratio of mapped reads was
calculated by computing the percentage of the mapped reads in the total number of
reads obtained in each sample. The boxplots were visualized by ggpubr in R
package (v3.6.2).

Other statistical analyses. The α-diversity of gut microbiota including the number
of observed species and Shannon index, and principal coordinate analysis based on
the Bray–Curtis distance were calculated by vegan in R package (v3.6.2). Com-
parison of the gut microbiome between wild boars and Duroc pigs was performed
by two-tailed Wilcoxon test (pairwise comparison) or Kruskal–Wallis (multiple
group comparison). Bonferroni-corrected P < 0.01 was set as the significance
threshold for the comparisons of bacteria species, KEGG pathway and MAGs
between wild boars and Duroc pigs. The results were visualized with the boxplots
or heatmaps plotted by ggpubr and pheatmap in R package (v3.6.2), respectively.
Text processing, information extraction and data statistics in pipeline for the
construction of PIGC and MAGs were processed using R (v3.6.2), Python (v3.5.5),
or Perl (v5.10.1) programs.

Public data used. The gene catalog of the pig gut microbiome from
287 samples (PGC) was downloaded from GigaScience Database with link http://
gigadb.org/dataset/view/id/100187/token/F4CDHYruxobOKmsE. Five metage-
nomic sequencing datasets of the pig gut microbiome from the samples varying
in countries, pig breeds, ages, and gut locations, were downloaded from NCBI
with accession numbers ERP024389 (n= 20), SRP108960 (n= 8), SRP116179
(n= 8), and SRP188615 (n= 40), and used for evaluating the representation of
microbial genes in the PIGC. All sources of public databases used in analysis
pipeline can be available from GitHub Repository (https://github.com/
zhouyunyan/PIGC).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Metagenomic sequencing data, microbial genes, and metagenome-assembled genomes
from this study were submitted to China National GeneBank DataBase (CNGBdb) with
accession code: CNP0000824. Source data are provided with this paper.

Code availability
The codes for construction of the reference gene catalog and MAGs, and statistical
analyses and visualization are available from the GitHub repository (https://github.com/
zhouyunyan/PIGC)85.
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