Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reply to ‘Oxic methanogenesis is only a minor source of lake-wide diffusive CH4 emissions from lakes’

The Original Article was published on 22 February 2021

Replying to F. Peeters & H. Hofmann Nature Communications (2021)

The prevailing paradigm in methane research is that biological methane production is exclusive to anoxic or near-anoxic habitats such as sediments and oxygen-deficient bottom waters in lakes. Paradoxically, methane supersaturation in oxic lake waters is widely reported. To resolve this paradox while preserving the paradigm, some researchers assume this methane originates entirely from anoxic sources and is then transported to the oxic waters through physical processes1,2,3. However, multiple recent studies have repeatedly shown, methane production can and does occur under oxic conditions on land, in the seas and in freshwaters, driven by diverse organisms within different life domains (Table 1 and references therein) and via photochemical conversion4. These findings raise legitimate questions about the nature of the environmental dynamics and global budget of methane. Because oxic methane production (OMP) is a recent discovery, its contribution to atmospheric emission is unknown. We conducted a whole-lake basin methane mass balance and analysed relevant literature data to estimate the contribution of OMP to surface emission versus lake morphometry.

Table 1 Literature examples of oxic methane production (OMP) in different habitats and by different domains of life.

Because the dynamics of methane concentration and isotope signal in lake waters are influenced by different and opposing processes simultaneously, one cannot meaningfully deduce the presence or absence of OMP without properly accounting for modulations by physical and biological processes. For example, underestimating surface emission or ignoring oxidation would lead to incorrect interpretation of methane concentration and isotope data and incorrect dismissal of OMP (Supplementary Note 1).

By balancing the gains and losses of epilimnetic methane in a stratified water column, we estimated the contribution of oxic versus anoxic methane to surface emission (Supplementary Fig. 1). Epilimnetic methane may originate from lateral and vertical transport from anoxic zones, ebullition, and internal oxic production (OMP); surface emission and oxidation are the loss terms.

Surface methane emission can be measured directly using a flux chamber, or, in the absence of direct measurements, it is often modelled from surface-water methane concentrations and wind speeds. Both methods are commonly used but the results can differ considerably, and there exist many different wind-based models (for a more detailed discussion we refer readers to the literature5,6). Notably in their manuscript, Peeters and Hofmann excluded our direct measurements of methane fluxes to the atmosphere and exclusively rely on modelling approaches (Supplementary Note 2). We instead combined direct measurements with models that were established for the target lake. Therefore, we consider that our direct measurement approach minimises methodological and model biases, and better represents reality.

For Lake Hallwil, we used the littoral sediment-to-water methane flux as determined by Donis et al.7 who implemented two littoral sediment core measurements sampled at 3 and 7 m depth and applying Fick’s law. In contrast, Peeters and Hofmann implemented only the upper sediment core into their re-analysis. They justify this choice by stating the cores’ methane isotope signature vary. As the depth of Lake Hallwil’s surface mixed layer increased over the seasonal progression7, both sediment cores should be considered in the mass balance especially in the light of natural variability. For Lake Stechlin, we used data from two mesocosms and the open-water to resolve littoral methane input (Supplementary Notes 3 and 4). We estimated ebullitive methane fluxes as negligible in Lake Stechlin8,9. We further applied an ebullitive flux of 1.2 ± 0.8 mmol m−2 d−1 to Lake Hallwil10, giving a total sediment methane input of 3 mmol m−2 d−1 when combined with the diffusive flux, which is higher than the value assumed by Peeters and Hofmann. Vertical diffusive input was calculated from empirically measured methane concentration profiles and turbulent diffusivities. We parameterised methane oxidation as 30% of internal production for Lake Stechlin; in a sensitivity analysis, we evaluated this assumption and also considered the most conservative scenario, e.g., OMP set to minimum. For Lake Hallwil, methane oxidation rates were measured by experiments.

By balancing the different input and output fluxes, we produced the first system-wide OMP estimate for Lake Stechlin, which agrees well with direct bottle incubation measurements reported earlier11. To further account for (seasonal) variabilities and measurement uncertainties, we conducted Monte Carlo simulations and sensitivity analysis applying various conservative scenarios to the mass balance. It is, however, worth noting that the mass balance is sensitive to the flux parameterisation and the accuracy of its result is hinged on how reliably one accounts for these fluxes. To better resolve OMP and allow for more general and firm statements about OMP (including different lake systems), future studies should aim to reduce uncertainties associated with the littoral methane input (e.g. methodological uncertainty in sediment core measurements12) and methane oxidation—two key parameters in the epilimnetic methane budget.

OMP by diverse organisms (Table 1) and pathways13,14,15 point to its wider potential relevance on a global scale. To examine how OMP may vary according to lake characteristics, we combined our results with analysis of literature data to estimate OMP contribution in relation to basin morphometry (Supplementary Note 5). The epilimnetic methane sources considered here are littoral sediment and OMP. On a whole-system level, the relative contributions of these sources are proportional to the total littoral sediment area and the epilimnion volume, respectively. Because the ratio of littoral sediment area to epilimnion volume decreases with increasing lake size, the contribution of OMP to surface emission is expected to increase with lake size. This trend does not change even when we assume a larger littoral sediment area by decreasing the sediment slope as suggested by Peeters and Hofmann (Fig. 1). As the current OMP dataset is limited to only a few lakes (four data points based on mass balance and seven based on transport modelling), future studies should aim to increase the number and types of lakes to verify the trend on a larger scale.

Fig. 1: Oxic methane contribution (OMC) to surface emission in relation to lake morphology.

Comparison of (a) the original relationship and (b) the alternative parameterisation using a smaller sediment slope angle. Ased is the littoral sediment area and is the surface mixed layer volume. Note, OMC is defined as in our original study; the x-axis is linearly scaled, and the y-axes is scaled to log2.7.

Note, as Peeters’ and Hofmann’s re-analysis excludes internal methane modulation, their OMP estimates reflect net rates while our study presents gross rates. Accordingly, their contribution pattern of oxic versus anoxic methane source to surface emission (NOMC) cannot be directly compared to our estimates (OMC) (further discrepancy is explained by Supplementary Note 5).

Oxic methane production defies the century-old teaching of anoxic methanogenesis and the convention of considering only anoxic sources in methane research; as such, skepticism is expected. While some may dismiss OMP as irrelevant16, others take a more practical approach and investigate the phenomenon at the ecological, organismal, and molecular levels13,17. However, the novelty of OMP also means researchers are still trialling different methods, each with their limitations (Table 2).

Table 2 Overview on approaches to investigate oxic methane production (OMP) in lake waters.

A better understanding of production, storage, consumption, and distribution processes of methane, including methane produced in oxic environments, is needed to improve the assessment of the global methane cycle. This requires better spatio-temporal data resolution and better constraints of data uncertainties by using multiple methods. For instance, OMP rates determined by bottle incubations can complement results based on mass budgets, as we did in our study. The incorporation of methane carbon18 and hydrogen19 isotope data into mass budgets is a promising way to further tease apart the different methane sources. Omic approaches can be used to investigate the different OMP pathways and the organisms involved.

We have discussed the caveats of our mass balance analysis, such as the limited amount of OMP and littoral flux data, limited types of lakes being considered, and the influence by other compounding factors. The global significance of OMP can only be fully assessed when more relevant data become available, but this also requires researchers to look beyond the anoxic paradigm and consider OMP in future methane measurements. We hope our and others’ work will continue to stimulate more research and constructive discussions on this topic.

Data availability

Data are made available in graphical or tabular form throughout the paper and Supplementary Information. Source data are provided with this paper.


  1. 1.

    Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 18, GB4009 (2004).

    ADS  Article  Google Scholar 

  2. 2.

    Murase, J., Sakai, Y., Kametani, A. & Sugimoto, A. Dynamics of methane in mesotrophic Lake Biwa, Japan. Ecol. Res. 20, 377–385 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    Fernandez, J. E., Peeters, F. & Hofmann, H. On the methane paradox: transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes. J. Geophys. Res. Biogeosci. 121, 2717–2726 (2016).

    Article  Google Scholar 

  4. 4.

    Li, Y., Fichot, C. G., Geng, L., Scarratt, M. G. & Xie, H. The contribution of methane photoproduction to the oceanic methane paradox. Geophys. Res. Lett. 47, e2020GL088362 (2020).

    ADS  CAS  Google Scholar 

  5. 5.

    Schilder, J., Bastviken, D., van Hardenbroek, M. & Heiri, O. Spatiotemporal patterns in methane flux and gas transfer velocity at low wind speeds: Implications for upscaling studies on small lakes. J. Geophys. Res. Biogeosci. 121, 1456–1467 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Klaus, M. & Vachon, D. Challenges of predicting gas transfer velocity from wind measurements over global lakes. Aquat. Sci. 82, 53 (2020).

    Article  Google Scholar 

  7. 7.

    Donis, D. et al. Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. Nat. Commun. 8, 1661 (2017).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Casper, P. Methane production in littoral and profundal sediments of an oligotrophic and a eutrophic lake. Arch. Hydrobiol. Spec. Issues Adv. Limnol. 48, 253–259 (1996).

    CAS  Google Scholar 

  9. 9.

    Tang, K. W. et al. Paradox reconsidered: Methane oversaturation in well‐oxygenated lake waters. Limnol. Oceanogr. 59, 275–284 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Flury, S., McGinnis, D. F. & Gessner, M. O. Methane emissions from a freshwater marsh in response to experimentally simulated global warming and nitrogen enrichment. J. Geophys. Res. 115, G01007 (2010).

    ADS  Google Scholar 

  11. 11.

    Grossart, H.-P., Frindte, K., Dziallas, C., Eckert, W. & Tang, K. W. Microbial methane production in oxygenated water column of an oligotrophic lake. Proc. Natl Acad. Sci. USA 108, 19657–19661 (2011).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Bussmann, I. Methane release through resuspension of littoral sediment. Biogeochemistry 74, 283–302 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    Yao, M. C., Henny, C. & Maresca, J. A. Freshwater bacteria release methane as a by-product of phosphorus acquisition. J. Appl. Environ. Microbiol. 82, 6994–7003 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Angle, J. C. et al. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nat. Commun. 8, 1567 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Bizic, M. et al. Aquatic and terrestrial cyanobacteria produce methane. Sci. Adv. 6, eaax5343 (2020).

    ADS  CAS  Article  Google Scholar 

  16. 16.

    Peeters, F., Fernandez, E. J. & Hofmann, H. Sediment fluxes rather than oxic methanogenesis explain diffusive CH4 emissions from lakes and reservoirs. Sci. Rep. 9, 243 (2019).

    ADS  Article  Google Scholar 

  17. 17.

    Karl, D. et al. Aerobic production of methane in the sea. Nat. Geosci. 1, 473–478 (2008).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    Hartmann, J. F. et al. High spatiotemporal dynamics of methane production and emission in oxic surface water. Environ. Sci. Technol. 54, 1451–1463 (2020).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Tsunogai, U. et al. Dual stable isotope characterization of excess methane in oxic waters of a mesotrophic lake. Limnol. Oceanogr. 9999, 1–16 (2020).

    Google Scholar 

  20. 20.

    Keppler, F., Hamilton, J., Brass, M. & Röckmann, T. Methane emissions from terrestrial plants under aerobic conditions. Nature 439, 187–191 (2006).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Messenger, D. J., McLeod, A. R. & Fry, S. C. The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. Plant Cell Environ 32, 1–9 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    Angel, R., Matthies, D. & Conrad, R. Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS ONE 6, e20453 (2011).

    ADS  CAS  Article  Google Scholar 

  23. 23.

    Lenhart, K. et al. Evidence for methane production by saprotrophic fungi. Nat. Commun. (2012).

    Article  PubMed  Google Scholar 

  24. 24.

    Althoff, F. et al. Abiotic methanogenesis from organosulphur compounds under ambient conditions. Nat. Commun. 5, 4205 (2014).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Damm, E. et al. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences 7, 1099–1108 (2010).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    White, A. E., Karl, D. M., Björkman, K. M., Beversdorf, L. J. & Letelier, R. M. Phosphonate metabolism by Trichodesmium IMS101 and the production of greenhouse gases. Limnol. Oceanogr. 55, 1755–1767 (2010).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Carini, P., White, A., Campbell, E. & Giovannoni, S. J. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nat. Commun. 5, 4346 (2014).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Lenhart, K. et al. Evidence for methane production by the marine algae Emiliania huxleyi. Biogeosciences 13, 3163–3174 (2016).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Repeta, D. J. et al. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat. Geosci. 9, 884–887 (2016).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Klintzsch, T. et al. Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment. Biogeosciences 16, 4129–4144 (2019).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Klintzsch, T. et al. Effects of temperature and light on methane production of widespread marine phytoplankton. J. Geophys. Res. Biogeosci. 125, e2020JG005793 (2020).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Ye, W. W., Wang, X. L., Zhang, X. H. & Zhang, G. L. Methane production in oxic seawater of the western North Pacific and its marginal seas. Limnol. Oceanogr. 65, 2352–2365 (2020).

    ADS  Article  Google Scholar 

  33. 33.

    Bogard, M. J. et al. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat. Commun. 5, 5350 (2014).

    ADS  CAS  Article  Google Scholar 

  34. 34.

    Wang, Q., Dore, J. E. & McDermott, T. R. Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake. Environ. Microbiol. 19, 2366–2378 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    DelSontro, T., del Giorgio, P. A. & Prairie, Y. T. No longer a paradox: The interaction between physical transport and biological processes explains the spatial distribution of surface water methane within and across lakes. Ecosystems 21, 1073–1087 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Li, W. et al. Methane production in the oxygenated water column of a perennially ice‐covered Antarctic lake. Limnol. Oceanogr. 65, 143–156 (2019).

    ADS  Article  Google Scholar 

  37. 37.

    Khatun, S. et al. Aerobic methane production by planktonic microbes in lakes. Sci Total Environ 696, 133916 (2019).

    ADS  CAS  Article  Google Scholar 

  38. 38.

    Khatun, S. et al. Linking stoichiometric organic carbon–nitrogen relationships to planktonic cyanobacteria and subsurface methane maximum in deep freshwater lakes. Water 12, 402 (2020).

    CAS  Article  Google Scholar 

  39. 39.

    Günthel, M. et al. Contribution of oxic methane production to surface methane emission in lakes and its global importance. Nat. Commun. 10, 5497 (2019).

    ADS  Article  Google Scholar 

  40. 40.

    Günthel, M. et al. Photosynthesis‐driven methane production in oxic lake water as an important contributor to methane emission. Limnol. Oceanogr. 65, 2853–2865 (2020).

    ADS  Article  Google Scholar 

  41. 41.

    Leon-Palmero, E., Contreras-Ruiz, A., Sierra, A., Morales-Baquero, R. & Reche, I. Dissolved CH4 coupled to photosynthetic picoeukaryotes in oxic waters and to cumulative chlorophyll a in anoxic waters of reservoirs. Biogeosciences 17, 3223–3245 (2020).

    ADS  CAS  Article  Google Scholar 

  42. 42.

    Perez-Coronel, E. & Beman, J. M. Biogeochemical and omic evidence for multiple paradoxical methane production mechanisms in freshwater lakes. bioRxiv (2020).

    Article  Google Scholar 

Download references


We thank Frank Peeters and Hilmar Hofmann for taking an interest in our study and raising several interesting discussion points about oxic methane production.

Author information




M.G., D.D., G.K. and D.F.M. analysed the data. M.G., D.D., G.K., D.I., M.B., D.F.M., H.-P.G. and K.W.T. discussed and wrote the manuscript.

Corresponding authors

Correspondence to Marco Günthel or Daniel F. McGinnis or Hans-Peter Grossart or Kam W. Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Communications thanks John Melack and other, anonymous, reviewers for their contributions to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Günthel, M., Donis, D., Kirillin, G. et al. Reply to ‘Oxic methanogenesis is only a minor source of lake-wide diffusive CH4 emissions from lakes’. Nat Commun 12, 1205 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing