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The tight Second Law inequality for coherent
quantum systems and finite-size heat baths
Marcin Łobejko 1✉

In classical thermodynamics, the optimal work is given by the free energy difference, what

according to the result of Skrzypczyk et al. can be generalized for individual quantum sys-

tems. The saturation of this bound, however, requires an infinite bath and ideal energy

storage that is able to extract work from coherences. Here we present the tight Second Law

inequality, defined in terms of the ergotropy (rather than free energy), that incorporates both

of those important microscopic effects – the locked energy in coherences and the locked

energy due to the finite-size bath. The former is solely quantified by the so-called control-

marginal state, whereas the latter is given by the free energy difference between the global

passive state and the equilibrium state. Furthermore, we discuss the thermodynamic limit

where the finite-size bath correction vanishes, and the locked energy in coherences takes the

form of the entropy difference. We supplement our results by numerical simulations for the

heat bath given by the collection of qubits and the Gaussian model of the work reservoir.
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Quantum thermodynamics is an emerging theory with the
primary goal to generalize the Laws of Thermodynamics,
valid in a macroscopic domain, to the energetic

description of individual quantum systems. Alongside many
other approaches, recently, quantum thermodynamics has been
formulated as a general unitary dynamics and a resource theory
of non-equilibrium quantum states1–9. The fundamental question
to answer in this framework is: how much work can be extracted
providing a particular resource?

To answer this question, in the first place, one should define
what is really the work in a quantum domain, since different
definitions vary from one to another framework and regimes of
interests2,3,5,6,10–12,13–20. The lack of consensus in this field is
mainly due to the presence of coherences in quantum states7,21–26

and the appearance of work fluctuations27–30. For autonomous
thermal machines, where the work reservoir is explicit, one of the
most promising concepts is the translationally-invariant energy
storage (with dynamics equivalent to the physical weight), where
a change of its average energy corresponds to the work5.

It was shown that the work reservoir given by the weight is
consistent with fluctuations theorems31–33, it can be used to
derive the Third Law of Thermodynamics34 or to an analysis of
the optimal performance of heat engines35,36. In particular,
according to the research introducing the weight idea5,
Skrzypczyk et al. proved that the optimal extracted work W
from a quantum state ρ̂S, in contact with a thermal reservoir
at temperature T= β−1, is bounded by the difference of its non-
equilibrium free energy:

W ≤ Fðρ̂SÞ � Fðτ̂SÞ ¼ TSðρ̂Sjjτ̂SÞ; ð1Þ
where Fðρ̂Þ ¼ Eðρ̂Þ � TSðρ̂Þ and Eðρ̂Þ is the average energy, Sðρ̂Þ
is the von Neumann entropy and τ̂S ¼ Z�1

S e�βĤS is a Gibbs state
according to the free Hamiltonian ĤS with partition function ZS.
Sðρ̂jjη̂Þ ¼ Tr½ρ̂ðlog ρ̂� log η̂Þ� is the quantum relative entropy.

Inequality (1) encapsulates the quantum form of the Second
Law of Thermodynamics, which especially restricts all possible
micro engines to operate below the universal Carnot efficiency.
However, as presented by the authors, the optimal work Wmax ¼
Fðρ̂SÞ � Fðτ̂SÞ is only attainable under two strong conditions: (i)
the requirement of an infinite heat bath and (ii) the average
energy conservation. The first assumption is required to split the
protocol into an infinite number of steps, such that the optimal
work can be extracted in a quasi-reversible process. However, it is
seen that the saturation of the Second Law is never possible for
the physical (i.e., finite) heat baths. On the other hand, the second
assumption is imposed in order to make possible the full work
extraction from coherences, but in this approach, the First Law is
not independent of the initial state. On the contrary, imposing the
strict form of the energy-conservation once again (in general)
makes the Second Law not tight22. In other words, as long as the
inequality (1) provides the universal upper bound for the work
extraction, it does not answer the question of when it can be
saturated, which requires additional information about micro-
scopic details of the heat bath and state of the work reservoir.

The work extraction process with the work reservoir given by
the weight was recently studied (within the context of heat
engines) for isolated systems36, where it was proved that the work
flow is limited by the ergotropy of the effective state, the so-called
control-marginal state. On the other hand, a concept of the
ergotropy as the maximal extractable work naturally arises from
the cyclic non-autonomous protocols of closed quantum systems
(with implicit work reservoirs)37, which is an intensively studied
area of so-called ‘quantum batteries’38–49. One of the most
important concepts coming from the work extraction via the
unitary channels is a generalization of the equilibrium state (the
minimal energy state with fixed entropy) to the larger class of the

passive states (the minimal energy states with fixed spectrum of a
density operator).

In this article, we use the above concepts and study the work
extraction process from quantum systems in contact with (finite-
size) heat baths, which establish the tight Second Law inequality.
In particular, we reveal that the control-marginal state solely
quantifies the locked energy in coherences, and the free energy
difference between the corresponding passive state and the
equilibrium state is equal to the locked energy in a finite-size
thermal reservoir.

Results
Quantum weight and work extraction process. We consider the
work extraction process as the unitary evolution ρ̂SW � τ̂B !
Û ρ̂SW � τ̂BÛ

y
, where ρ̂SW is the arbitrary joint state of the system

and the weight, and τ̂B ¼ Z�1
B e�βĤB is the Gibbs state of the bath

(with the partition function ZB). Next, we impose strict energy
conservation in the form:

½Û ; ĤS þ ĤB þ ĤW � ¼ 0; ð2Þ

where ĤS; ĤB and ĤW are corresponding free Hamiltonians
of the subsystems. The symmetry ensures that the average
energy is conserved for the arbitrary initial state before and after a

protocol. Notice that tracing out the bath, the channel Λ½ρ̂SW � ¼
TrB½Û ρ̂SW � τ̂BÛ

y� is the thermal operation2.
The second most important ingredient for the framework of

thermodynamics (after the energy conservation) is a proper
definition of work. Here, for an autonomous system, it is done by
a definition of the work reservoir. Specifically, we consider the
weight model with the Hamiltonian ĤW ¼ R

dϵ ϵ ϵj i ϵh jW (where
ϵj iW is the energy eigenstate), and we postulate the translational
symmetry in the form31,34:

½Û ; Δ̂W � ¼ 0; ð3Þ

where Δ̂W is the generator of shifts in the energy spectrum of the

weight, i.e., Γ̂ε ¼ e�iΔ̂W ε such that Γ̂
y
εĤW Γ̂ε ¼ ĤW þ ε for arbitrary

real ϵ (for more details, see Supplementary Notes 1 and 2).
Finally, work is defined as a change of the average energy of the
weight, namely

W :¼ Tr½ĤWðÛ ρ̂SW � τ̂BÛ
y � ρ̂SW � τ̂BÞ�: ð4Þ

To interpret the physical meaning of the weight model (and
especially the translational symmetry), let us consider the classical
definition of work given by a displacement of the system δx times
the force F acting on it, i.e., δW= Fδx. According to this analogy,
one should notice that the Hamiltonian ĤW can be mapped into
the form ĤW ¼ Fx̂, where x̂ is the position operator. In this
sense, the energy is stored as potential energy within an external
homogeneous field (e.g., gravitational field). However, the most
important thing that comes from this analogy is the physical
meaning of the symmetry given by Eq. (3), which simply reveals
the isotropy of space, i.e., in the homogeneous field, the protocol
should not depend on the absolute position of the system.

In this sense, the Hamiltonian ĤW obeying condition (3) can
be seen as the ‘quantized’ version of the classical work definition.
Notice that here we replace the scalar with the operator, such that
the expected value also involves the quantum state ρ̂W . As a
consequence, the definition of the (‘quantized’) work is enriched
by purely quantum effects, like work extraction from coherences
(present in the state ρ̂W).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21140-4

2 NATURE COMMUNICATIONS |          (2021) 12:918 | https://doi.org/10.1038/s41467-021-21140-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Tight Second Law. We reveal that for arbitrary protocol

ρ̂SW � τ̂B ! Û ρ̂SW � τ̂BÛ
y
, where Û is the energy-conserving

and translationally-invariant unitary (Eqs. (2) and (3)), the tight
Second Law can be written in the form:

W ≤Rðσ̂S � τ̂BÞ; ð5Þ

where Rðρ̂Þ is the ergotropy of the state ρ̂37:

Rðρ̂Þ :¼ Eðρ̂Þ � EðP½ρ̂�Þ; P½ρ̂� :¼ arg minÛ�unitaryEðÛ ρ̂Û
yÞ;
ð6Þ

i.e., the maximal energy extracted from an arbitrary unitary

channel ρ̂ ! Û ρ̂Û
y
with fixed Hamiltonian Ĥ, where P½ρ̂� is the

passive state50 (i.e., the minimal energy state with fixed spec-
trum). According to the quantity Rðσ̂S � τ̂BÞ the constant
Hamiltonian is equal to ĤS þ ĤB, and σ̂S is the so-called control-
marginal state36:

σ̂S :¼ TrW ½e�iĤS�Δ̂W ρ̂SWeiĤS�Δ̂W �: ð7Þ

From now to the end of this article, we will consider only product
states, i.e., ρ̂SW ¼ ρ̂S � ρ̂W , such that the control-marginal
operator is given as a mixture of unitaries:

σ̂S ¼
Z

dt pðtÞ Ût ρ̂SÛ
y
t ; ð8Þ

where pðtÞ ¼ Tr½ρ̂W tj i th jW �, Ût ¼ e�iĤSt and tj iW is an eigenstate
of the shift generator Δ̂W , i.e., the canonically conjugate ‘time
state’ with respect to the energy eigenvectors εj iW , such that
tj iW ¼ R

dϵ eiϵt ϵj iW . We refer the reader to Supplementary
Note 3 for the derivation of Eq. (8) and Supplementary Note 4 for
the proof of Eq. (5).

Inequality (5) presents that the optimal work done on a weight
via energy-conserving unitary dynamics is equal to the ergotropy
of the composite state σ̂S � τ̂B. Furthermore, we reveal that it can
be expressed in the form:

Rðσ̂S � τ̂BÞ ¼ TSðρ̂Sjjτ̂SÞ � ΔBðρ̂S; τ̂BÞ � ΔCðρ̂S; ρ̂W ; τ̂BÞ; ð9Þ

where ΔBðρ̂S; τ̂BÞ and ΔCðρ̂S; ρ̂W ; τ̂BÞ are non-negative corrections
to the ultimate thermodynamic bound given by Eq. (1). The
former has a non-vanishing value for the finite-size heat baths,
and the latter is solely connected with the presence of the locked
energy in coherences. These two quantities, the main object of
this research, are defined and discussed in detail in the following
subsections.

Work extraction via contact with a finite-size heat bath. Let us
start with an analysis of the work extraction process from the
system in contact with a finite-size heat reservoir. One should
observe that the optimal work Rðσ̂S � τ̂BÞ depends explicitly
on the heat bath equilibrium state τ̂B, which is defined both by
the temperature T and the Hamiltonian ĤB. On the contrary,
the only information coming from the environment included
in the Second Law given by Eq. (1), formulated solely in terms of
the free energy, is the temperature T. This ignorance of micro-
scopic details of the thermal reservoir as a consequence makes the
inequality in general not tight.

Now, we would like to state a general relation between
ergotropy and free energy for quantum systems coupled to the
heat bath. We show that for arbitrary quantum state ρ̂S with
Hamiltonian ĤS and arbitrary Gibbs state τ̂B with Hamiltonian

ĤB the ergotropy of a composite system can be expressed as:

Rðρ̂S � τ̂BÞ ¼ Eðρ̂S � τ̂BÞ � EðP½ρ̂S � τ̂B�Þ ¼ Fðρ̂S � τ̂BÞ � FðP½ρ̂S � τ̂B�Þ
¼ Fðρ̂S � τ̂BÞ � Fðτ̂S � τ̂BÞ � FðP½ρ̂S � τ̂B�Þ þ Fðτ̂S � τ̂BÞ
¼ T½Sðρ̂Sjjτ̂SÞ � SðP½ρ̂S � τ̂B�jjτ̂S � τ̂BÞ�;

ð10Þ
where τ̂S is the Gibbs state according to the Hamiltonian ĤS, and
both the Gibbs states likewise the free energy are defined with
respect to the same and arbitrary temperature T. In the first line,
we use the fact that Sðρ̂S � τ̂BÞ ¼ SðP½ρ̂S � τ̂B�Þ. Next, according
to Eq. (9), we define a quantity that describes the inability of
extracting work from a given heat bath in the state τ̂B, namely

ΔBðρ̂S; τ̂BÞ :¼ TSðρ̂Sjjτ̂SÞ � Rðρ̂S � τ̂BÞ
¼ TSðP½ρ̂S � τ̂B�jjτ̂S � τ̂BÞ≥ 0:

ð11Þ

It provides a measure of how the corresponding thermal reservoir
is able to extract free energy from the non-equilibrium quantum
state, and we call it the locked energy in a finite-size bath. The
expression (11) shows that this bounded energy is proportional to
the relative entropy between the global passive state and the
corresponding equilibrium state, which provides an interesting
measure of the thermal reservoir’s effectiveness. Moreover, the
non-negativity of this quantity directly proves the Second Law,
such that the maximal extracted work (ergotropy) never exceeds
the non-equilibrium free energy, i.e., Rðρ̂S � τ̂BÞ≤TSðρ̂Sjjτ̂SÞ (see
Supplementary Note 5 for extended analysis and alternative
derivation).

Finally, let us examine how the locked energy (11) behaves
with respect to the growing size of the bath. We consider a
thermal reservoir composed of N subsystems (e.g., qubits, see
subsection Example) such that its total (Gibbs) state is denoted by

τ̂ðNÞ
B . Next, let us note that Rðρ̂S � τ̂ðNþ1Þ

B Þ≥Rðρ̂S � τ̂ðNÞ
B Þ, i.e., the

ergotropy cannot decrease with respect to N since the optimiza-
tion (6) for a smaller heat bath is done over the subset of all
possible unitaries acting on the greater Hilbert space. As a
consequence, we prove that the locked energy is always non-
increasing with the growing size of the thermal reservoir, namely

ΔBðρ̂S; τ̂ðNþ1Þ
B Þ ≤ΔBðρ̂S; τ̂ðNÞ

B Þ. Furthermore, according to the result
of Skrzypczyk et al.5, for some specific heat baths in the
thermodynamic limit, it is possible to achieve that for the arbitrary
state of the system, the locked energy vanishes, i.e.,

8ρ̂S lim N!1ΔB

�
ρ̂S; τ̂

ðNÞ
B

�
¼ 0: ð12Þ

This proves that the bound Rðρ̂S � τ̂BÞ ¼ TSðρ̂Sjjτ̂SÞ is attainable
for the generic macroscopic thermal reservoirs, which in some
sense shows that the ergotropy Rðρ̂S � τ̂BÞ is a generalization of
the free energy for the finite-size heat baths.

Work extraction from coherences. Next, we turn to the second
(fully quantum) contribution that decreases the optimal work in
Eq. (9). One of the most interesting features of quantum ther-
modynamics is a possibility of extracting work from the quantum
coherence. Notice, however, that the symmetry given by Eq. (2)
provides not only that the energy flow is conserved, but it
also imposes the additional constraints on the manipulation of
the off-diagonal elements (between different energy eigenstates).
In general, this leads to the phenomenon known as ‘work-lock-
ing’22, i.e., the inability of the free energy (or ergotropy) extrac-
tion contributed from the quantum coherences.

To understand this phenomenon for the energy storage given
by the quantum weight, firstly, one should notice that the optimal
work Rðσ̂S � τ̂BÞ depends implicitly on the state of the work
reservoir ρ̂W through the control-marginal state σ̂S. We point out,
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however, that the channel (8) only affects the off-diagonal
elements of the density matrix ρ̂S, i.e., if ½ρ̂S; ĤS� ¼ 0 then
σ̂S ¼ ρ̂S. From this follows that for quasi-classical diagonal states,
the work extraction protocol is independent of the weight state at
all. Nevertheless, if we consider a coherent state ρ̂S, it is no longer
true, i.e., in general σ̂S≠ρ̂S, and the optimal value of work
indirectly depends on the state of the weight (and especially of its
amount of coherences). In order to quantify how much of the
energy is bounded, we define the locked energy in coherences (see
Eq. (9)):

ΔCðρ̂S; ρ̂W ; τ̂BÞ :¼ Rðρ̂S � τ̂BÞ � Rðσ̂S � τ̂BÞ≥ 0; ð13Þ
i.e., a quantum thermodynamic resource that cannot be extracted
as work via a state of the weight ρ̂W . The non-negativity of this
quantity is ensured by a definition of the channel (8), given as a
mixture of unitaries, and proved in Supplementary Note 6.

In this way, we can introduce a concept of the ideal weight, i.e.,
an energy storage system that is able to the full work extraction
from coherences with ΔC= 0. In particular, this is the case if the
state of the weight tends to the time state, i.e., ρ̂W ! tj i th jW , such

that we have σ̂S ! Ût ρ̂SÛ
y
t and ΔC→ 0. The time state of the

weight is an extreme and idealized example of the system with an
‘infinite amount of coherence’ (see e.g.,3,22), and in this sense, it
can perform a unitary transformation on the subsystem and
achieve the optimal work extraction. In the opposite limit, where
the energy storage tends to the energy eigenstate, i.e.,
ρ̂W ! εj i εh jW , the control-marginal state loses all of the
coherences, such that σ̂S ! D½ρ̂S� (where D½�� is a dephasing
channel in the energy basis), and hence ΔC is maximal. The fact
that σ̂S ¼ D½ρ̂S� for incoherent states of the work reservoirs was
previously observed22, where the authors discuss the work
extraction from coherences via the additional ancillary system,
a source of coherence, acting as a catalyst. Here, on the contrary,
we allow to use the coherent states of the weight (i.e., a fully
quantum energy storage) and reveal how this can ‘unlock’ the
extracted work, where via the control-marginal state, we are able
to quantify all the intermediate cases.

Finally, we would like to derive the thermodynamic limit of the
locked energy ΔC. Firstly, let us rewritten Eq. (13) in the form:

ΔCðρ̂S; ρ̂W ; τ̂BÞ ¼ T½Sðρ̂Sjjτ̂SÞ � Sðσ̂Sjjτ̂SÞ� � ΔBðρ̂S; τ̂BÞ þ ΔBðσ̂S; τ̂BÞ
¼ Fðρ̂SÞ � Fðσ̂SÞ � ΔBðρ̂S; τ̂BÞ þ ΔBðσ̂S; τ̂BÞ
¼ T Sðσ̂SÞ � Sðρ̂SÞ

� �� ΔBðρ̂S; τ̂BÞ þ ΔBðσ̂S; τ̂BÞ;
ð14Þ

where we have used Eq. (11), and the last equality follows from

the fact that Eðρ̂SÞ ¼ Eðσ̂SÞ. Next, if for the heat bath τ̂ðNÞ
B holds

Eq. (12), then

lim N!1ΔCðρ̂S; ρ̂W ; τ̂ðNÞ
B Þ ¼ T Sðσ̂SÞ � Sðρ̂SÞ

� �
: ð15Þ

Equation (15) is an interesting formula showing that the
thermodynamic limit of the locked energy in coherences is
equal to the difference of entropy between the control-marginal
state σ̂S and state ρ̂S, multiplied by the bath temperature T. This
characterizes the work extraction process from quantum
coherences in the presence of the macroscopic heat bath.
However, we would like to emphasize that this quantity is not
the upper bound of the locked energy ΔC (as the free energy is for
the optimal work Rðσ̂S � τ̂BÞ), but rather it is the thermodynamic
limit. In the next paragraph, we provide a numerical simulation
of a particular example where the locked energy for the finite-size
bath can be bigger than the value given by Eq. (15), and
moreover, it can be even non-monotonic with respect to the
growing size of the thermal reservoir.

Example. Let us now consider a particular example to illustrate
how the finite-size bath and state of the weight affect the work
extraction process. We would like to concentrate on a system S
given by the qubit in a coherent ‘plus state’, i.e., ρ̂S ¼ þj i þh jS,
where þj iS ¼ 1ffiffi

2
p ð 0j iS þ 1j iSÞ, and with Hamiltonian ĤS ¼

ω 1j i 1h jS. Next, as a model of a bath, we take a collection of
qubits with different energy gaps, namely the bath Hamiltonian
is given by

Ĥ
ðNÞ
B ¼

ON
k¼1

ωk 1kj i 1kh jB; ð16Þ

where ωk ¼ T log ½1�kδ
kδ � and δ ¼ Z�1

S e�βω=N . The choice of the
heat bath is dictated by its property that in the limit of infinite
number of qubits the Eq. (12) is satisfied5. Finally, we take the
weight in a pure state given by a Gaussian superposition of energy
states, i.e., ρ̂W ¼ ψj i ψh jW such that

ψj iW ¼ ð2πσ2Þ�1=4
Z

dε e�
ϵ2

4σ2 εj iW ; ð17Þ

where the standard deviation σ solely parameterizes the vector.
Within this model, the optimal work is equal to

Wmax ¼ R þj i þh jS � τ̂ðNÞ
B

� �
, where the state τ̂ðNÞ

B corresponds

to the bath composed of N qubits (16). We numerically calculate
the locked energy in a finite-size bath, which is given by

ΔBðρ̂S; τ̂ðNÞ
B Þ ¼ ω

2
þ Tlog ½1þ e�βω� � R þj i þh jS � τ̂ðNÞB

� �
;

ð18Þ
and the locked energy in coherences:

ΔCðρ̂S; ρ̂W ; τ̂ðNÞ
B Þ ¼ R þj i þh jS � τ̂ðNÞ

B

� �
� R ξ̂S � τ̂ðNÞ

B

� �
� ωγ

2
;

ð19Þ
where γ ¼ exp½� ω2

8σ2� and

ξ̂S ¼
1
2
ð1þ γÞ 0j i 0h jS þ

1
2
ð1� γÞ 1j i 1h jS: ð20Þ

The results are presented in Fig. 1. It is observed that the locked

energy in a finite-size bath ΔBðρ̂S; τ̂ðNÞ
B Þ vanishes for a large

number of qubits N, providing that the ergotropy Rðρ̂S � τ̂BÞ !
TSðρ̂Sjjτ̂SÞ. Similarly, we analyze the locked energy in coherences

ΔCðρ̂S; ρ̂W ; τ̂ðNÞ
B Þ, where for the Gaussian model of the weight it

depends only via a single parameter σ/ω, i.e., a ratio between a
standard deviation of the work reservoir wave packet σ and the
energy gap of a qubit ω. In Fig. 1a, the computed values are
compared to the derived thermodynamic limit given by
T½Sðσ̂SÞ � Sðρ̂SÞ�(15). An intriguing observation is that as long
as the locked energy in a finite-size bath decreases monotonically
(as it was proven previously), the locked energy in coherences (for
some values of σ/ω) is not necessarily monotonic function.

Further, in Fig. 1b, we present how quickly the locked energy in
coherences vanishes with increasing value of the ratio σ/ω. Two
interesting features are observed here. First, for high values of
σ/ω, the locked energy is increasing with the size of the bath N,
however, this order is changed for low values and becomes non-
monotonic. Secondly, for low values, we observe a plateau, i.e., the
locked energy almost stays constant with the growing width of the
wave packet. Notice that in the limit σ→ 0 state of the weight
tends to the energy state with the maximal locked energy, and in
the limit σ→∞ it tends to the time state for which the locked
energy vanishes.
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Discussion
The ergotropy is a proper resource regarding the work extraction
process if an explicit energy storage is given by the
translationally-invariant weight. This quantity on its own can be
defined as the optimal work extracted from closed systems driven
by the time-dependent and cyclic Hamiltonians, which proves an
important connection between those two frameworks. On the
other hand, we reveal that there is no full equivalence since
models with implicit energy storage do not involve the concept of
the locked energy in coherences, i.e., the off-diagonal part that
contributes to ergotropy (or free energy) but cannot be extracted
as a work. Indeed, one of the main differences between classical
and quantum thermodynamics is that quantum systems are able
to perform the work via coherences. However, it is only possible if
the work reservoir has coherences as well, and the locked energy
naturally emerges if we treat it explicitly. In other words, for the
quantum process of work extraction, the weight must be the
energy reservoir and the reservoir of coherences likewise. We
provide a quantitative definition of the bounded energy in
coherences in terms of the effective control-marginal state. In
particular, it reveals the condition for the ideal work reservoir, i.e.,
the energy storage that is able to the full work extraction from
coherences (which is really the case in the non-autonomous
approach).

Furthermore, we analyze the ergotropy of the non-equilibrium
quantum system in contact with an arbitrary finite-size heat bath.
In the light of the resource theory, such a Gibbs state of the bath
is treated as costless, i.e., it can be for free attached to, and dis-
carded from the system. Due to the non-additivity of the ergo-
tropy, the heat bath activates the non-equilibrium state of the

system, and consequently both of them form the entire thermo-
dynamic resource (given by the total ergotropy). This can be
simply interpreted as a maximal work that can be extracted from
such a quantum state. Moreover, the second most important
result of this work is establishing the general relation between the
ergotropy and free energy for systems coupled to the heat bath,
which provides a bridge between microscopic and macroscopic
thermodynamics. We show that the total ergotropy of the
quantum system and finite-size heat bath never exceeds the non-
equilibrium free energy, whereas the difference is proportional to
the relative entropy between the global passive state and the
corresponding equilibrium state. Furthermore, this kind of locked
energy (due to the finiteness of the thermal environment) van-
ishes in the thermodynamic limit for the generic macroscopic
heat baths. This suggests that the ergotropy of the composite state
of the system and thermal reservoir can be interpreted as the
generalization of the free energy for the finite-size heat bath.
Moreover, the relation between the ergotropy and free energy
leads us to the thermodynamic limit of the locked energy in
coherences. The limit provides an interesting formula, expressed
in terms of the von Neumann entropy, that from one side is fully
quantum since it refers to the extraction of work from coherences
(i.e., requires the coherent state of the system and the energy
storage likewise), but on the other side involves the classical
notion of the macroscopic heat bath.

Finally, we would like to emphasize that the presented here
model can be further slightly modified. In particular, the optimal
work is still equal to the ergotropy Rðσ̂S � τ̂BÞ if we consider the
correlated states ρ̂SW with the control-marginal state equal to (7).
Furthermore, the energy-conservation relation (2) can be gen-
eralized to ½Û ; ĤSB þ ĤW � ¼ 0, where one can include a non-
vanishing interaction term between the system and the bath
before and after the protocol. However, in this case, the optimal
work is given by Rðσ̂SBÞ, where one should take the total
Hamiltonian ĤSB rather than ĤS þ ĤB, and we have a joint
control-marginal state σ̂SB (calculated from Eq. (7) with the
Hamiltonian ĤSB and the total state ρ̂SBW). The motivation to
consider here the simplest formulation (i.e., the product states
and energy-conservation of free Hamiltonians) ensures that both
ΔCðρ̂S; ρ̂W ; τ̂BÞ and ΔBðρ̂S; τ̂BÞ are non-negative. The interesting
question of how those quantities would be changed if we relax
those assumptions we let open for future studies.

Data availability
The data that support the findings of this study are available from the author upon
reasonable request.

Received: 17 September 2020; Accepted: 13 January 2021;

References
1. Rio, L. D., Åberg, J., Renner, R., Dahlsten, O. & Vedral, V. The

thermodynamic meaning of negative entropy. Nature 474, 61–63 (2011).
2. Horodecki, M. & Oppenheim, J. Fundamental limitations for quantum and

nanoscale thermodynamics. Nat. Commun. 4, 2059 (2013).
3. Åberg, J. Truly work-like work extraction via a single-shot analysis. Nat.

Commun. 4, 1925 (2013).
4. Brandão, F. G. S. L., Horodecki, M., Oppenheim, J., Renes, J. M. & Spekkens,

R. W. Resource theory of quantum states out of thermal equilibrium. Phys.
Rev. Lett. 111, 250404 (2013).

5. Skrzypczyk, P., Short, A. J. & Popescu, S. Work extraction and
thermodynamics for individual quantum systems. Nat. Commun. 5, 4185
(2014).

6. Brandão, F., Horodecki, M., Ng, N., Oppenheim, J. & Wehner, S. The second
laws of quantum thermodynamics. Proc. Natl Acad. Sci. 112, 3275–3279
(2015).

Fig. 1 Locked energy for a qubit in the state ρ̂S ¼ þj i þh jS and with the
energy gap ω. a Graph presents how the locked energy in a finite-size bath
ΔBðρ̂S; τ̂ðNÞB Þ and locked energy in coherences ΔCðρ̂S; ρ̂W ; τ̂ðNÞB Þ depends on
the number of qubits N in the heat bath (16), for different values of the
scaled standard deviation σ/ω of the Gaussian state of the weight (17).
Horizontal lines correspond to the thermodynamic limit (N→∞) of the
locked energy in coherences expressed by the entropy difference:
T½Sðσ̂SÞ � Sðρ̂SÞ�. b The vanishing of the locked energy in coherences for
a different size of the heat bath N with respect to the parameter σ/ω. The
temperature of the bath is equal to T= 0.7ω.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21140-4 ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:918 | https://doi.org/10.1038/s41467-021-21140-4 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


7. Lostaglio, M., Jennings, D. & Rudolph, T. Description of quantum coherence
in thermodynamic processes requires constraints beyond free energy. Nat.
Commun. 6, 6383 (2015).

8. Lostaglio, M., Korzekwa, K., Jennings, D. & Rudolph, T. Quantum coherence,
time-translation symmetry, and thermodynamics. Phys. Rev. X 5, 021001
(2015).

9. Guryanova, Y., Popescu, S., Short, A. J., Silva, R. & Skrzypczyk, P.
Thermodynamics of quantum systems with multiple conserved quantities.
Nat. Commun. 7, 12049 (2016).

10. Alicki, R. The quantum open system as a model of the heat engine. J. Phys. A:
Math. Gen. 12, L103–L107 (1979).

11. Yukawa, S. A quantum analogue of the jarzynski equality. J. Phys. Soc. Jpn. 69,
2367–2370 (2000).

12. Allahverdyan, A. E. & Nieuwenhuizen, T. M. The second law and fluctuations
of work: The case against quantum fluctuation theorems (2004). cond-mat/
0408697.

13. Talkner, P., Lutz, E. & Hänggi, P. Fluctuation theorems: work is not an
observable. Phys. Rev. E 75, 050102 (2007).

14. Talkner, P. & Hänggi, P. Aspects of quantum work. Phys. Rev. E 93, 022131
(2016).

15. Jarzynski, C., Quan, H. T. & Rahav, S. Quantum-classical correspondence
principle for work distributions. Phys. Rev. X 5, 031038 (2015).

16. Binder, F., Vinjanampathy, S., Modi, K. & Goold, J. Quantum
thermodynamics of general quantum processes. Phys. Rev. E 91, 032119
(2015).

17. Frenzel, M. F., Jennings, D. & Rudolph, T. Reexamination of pure qubit work
extraction. Phys. Rev. E 90, 052136 (2014).

18. Gallego, R., Eisert, J. & Wilming, H. Thermodynamic work from operational
principles. N. J. Phys. 18, 103017 (2016).

19. Hayashi, M. & Tajima, H. Measurement-based formulation of quantum heat
engines. Phys. Rev. A 95, 032132 (2017).

20. Sampaio, R., Suomela, S., Ala-Nissila, T., Anders, J. & Philbin, T. G. Quantum
work in the bohmian framework. Phys. Rev. A 97, 012131 (2018).

21. Perarnau-Llobet, M., Bäumer, E., Hovhannisyan, K. V., Huber, M. & Acin, A.
No-go theorem for the characterization of work fluctuations in coherent
quantum systems. Phys. Rev. Lett. 118, 070601 (2017).

22. Korzekwa, K., Lostaglio, M., Oppenheim, J. & Jennings, D. The extraction of
work from quantum coherence. N. J. Phys. 18, 023045 (2016).

23. Ćwikliński, P., Studziński, M., Horodecki, M. & Oppenheim, J. Limitations on
the evolution of quantum coherences: towards fully quantum second laws of
thermodynamics. Phys. Rev. Lett. 115, 210403 (2015).

24. Åberg, J. Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014).
25. Narasimhachar, V. & Gour, G. Low-temperature thermodynamics with

quantum coherence. Nat. Commun. 6, 7689 (2015).
26. Uzdin, R., Levy, A. & Kosloff, R. Equivalence of quantum heat machines, and

quantum-thermodynamic signatures. Phys. Rev. X 5, 031044 (2015).
27. Bochkov, G. N. & Kuzovle, Y. E. General theory of thermal fluctuations in

nonlinear systems. Sov. Phys. JETP 45, 125 (1977).
28. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev.

Lett. 78, 2690–2693 (1997).
29. Crooks, G. E. Entropy production fluctuation theorem and the

nonequilibrium work relation for free energy differences. Phys. Rev. E 60,
2721–2726 (1999).

30. Campisi, M., Hänggi, P. & Talkner, P. Colloquium: quantum fluctuation
relations: foundations and applications. Rev. Mod. Phys. 83, 771–791 (2011).

31. Alhambra, A. M., Masanes, L., Oppenheim, J. & Perry, C. Fluctuating work:
from quantum thermodynamical identities to a second law equality. Phys. Rev.
X 6, 041017 (2016).

32. Åberg, J. Fully quantum fluctuation theorems. Phys. Rev. X 8, 011019 (2018).
33. Richens, J. G. & Masanes, L. Work extraction from quantum systems with

bounded fluctuations in work. Nat. Commun. 7, 13511 (2016).
34. Masanes, L. & Oppenheim, J. A general derivation and quantification of the

third law of thermodynamics. Nat. Commun. 8, 14538 (2017).
35. Brunner, N., Linden, N., Popescu, S. & Skrzypczyk, P. Virtual qubits, virtual

temperatures, and the foundations of thermodynamics. Phys. Rev. E 85,
051117 (2012).

36. Łobejko, M., Mazurek, P. & Horodecki, M. Thermodynamics of minimal
coupling quantum heat engines. Quantum 4, 375 (2020).

37. Allahverdyan, A. E., Balian, R. & Nieuwenhuizen, T. M. Maximal work
extraction from finite quantum systems. Europhys. Lett. 67, 565–571 (2004).

38. Alicki, R. & Fannes, M. Entanglement boost for extractable work from
ensembles of quantum batteries. Phys. Rev. E 87, https://doi.org/10.1103/
physreve.87.042123 (2013).

39. Hovhannisyan, K. V., Perarnau-Llobet, M., Huber, M. & Acín, A.
Entanglement generation is not necessary for optimal work extraction. Phys.
Rev. Lett. 111, 240401 (2013).

40. Giorgi, G. L. & Campbell, S. Correlation approach to work extraction from
finite quantum systems. J. Phys. B 48, 035501 (2015).

41. Binder, F. C., Vinjanampathy, S., Modi, K. & Goold, J. Quantacell: powerful
charging of quantum batteries. N. J. Phys. 17, 075015 (2015).

42. Perarnau-Llobet, M. et al. Most energetic passive states. Phys. Rev. E 92,
042147 (2015).

43. Campaioli, F. et al. Enhancing the charging power of quantum batteries. Phys.
Rev. Lett. 118, 150601 (2017).

44. Henao, I. & Serra, R. M. Role of quantum coherence in the thermodynamics of
energy transfer. Phys. Rev. E 97, 062105 (2018).

45. Andolina, G. M. et al. Charger-mediated energy transfer in exactly solvable
models for quantum batteries. Phys. Rev. B 98, 205423 (2018).

46. Le, T. P., Levinsen, J., Modi, K., Parish, M. M. & Pollock, F. A. Spin-chain
model of a many-body quantum battery. Phys. Rev. A 97, 022106 (2018).

47. Ferraro, D., Campisi, M., Andolina, G. M., Pellegrini, V. & Polini, M. High-
power collective charging of a solid-state quantum battery. Phys. Rev. Lett.
120, 117702 (2018).

48. Andolina, G. M. et al. Extractable work, the role of correlations, and
asymptotic freedom in quantum batteries. Phys. Rev. Lett. 122, 047702 (2019).

49. Monsel, J., Fellous-Asiani, M., Huard, B. & Auffèves, A. The energetic cost of
work extraction. Phys. Rev. Lett. 124, 130601 (2020).

50. Pusz, W. & Woronowicz, S. L. Passive states and KMS states for general
quantum systems. Comm. Math. Phys. 3, 273–290 (1978).

Acknowledgements
The author thanks Michał Horodecki, Paweł Mazurek, Anthony J. Short and Patryk
Lipka-Bartosik for helpful and inspiring discussions. This research was supported by the
National Science Centre, Poland, through grant SONATINA 2 2018/28/C/ST2/00364.

Competing interests
The author declares no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-21140-4.

Correspondence and requests for materials should be addressed to M.Ło.

Peer review informationNature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21140-4

6 NATURE COMMUNICATIONS |          (2021) 12:918 | https://doi.org/10.1038/s41467-021-21140-4 | www.nature.com/naturecommunications

https://doi.org/10.1103/physreve.87.042123
https://doi.org/10.1103/physreve.87.042123
https://doi.org/10.1038/s41467-021-21140-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	The tight Second Law inequality for coherent quantum systems and finite-size heat baths
	Results
	Quantum weight and work extraction process
	Tight Second Law
	Work extraction via contact with a finite-size heat bath
	Work extraction from coherences
	Example

	Discussion
	Data availability
	References
	Acknowledgements
	Competing interests
	Additional information




