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A pediatric brain tumor atlas of genes deregulated
by somatic genomic rearrangement
Yiqun Zhang1,8, Fengju Chen1,8, Lawrence A. Donehower2,3, Michael E. Scheurer1,4,5 &

Chad J. Creighton 1,3,6,7✉

The global impact of somatic structural variants (SSVs) on gene expression in pediatric brain

tumors has not been thoroughly characterised. Here, using whole-genome and RNA

sequencing from 854 tumors of more than 30 different types from the Children’s Brain

Tumor Tissue Consortium, we report the altered expression of hundreds of genes in asso-

ciation with the presence of nearby SSV breakpoints. SSV-mediated expression changes

involve gene fusions, altered cis-regulation, or gene disruption. SSVs considerably extend the

numbers of patients with tumors somatically altered for critical pathways, including receptor

tyrosine kinases (KRAS, MET, EGFR, NF1), Rb pathway (CDK4), TERT, MYC family (MYC,

MYCN, MYB), and HIPPO (NF2). Compared to initial tumors, progressive or recurrent tumors

involve a distinct set of SSV-gene associations. High overall SSV burden associates with TP53

mutations, histone H3.3 gene H3F3C mutations, and the transcription of DNA damage

response genes. Compared to adult cancers, pediatric brain tumors would involve a different

set of genes with SSV-altered cis-regulation. Our comprehensive and pan-histology genomic

analyses reveal SSVs to play a major role in shaping the transcriptome of pediatric brain

tumors.
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Somatic genomic rearrangements in cancer have a wide-
spread impact on the transcriptome1–5. All classes of
somatic structural variants (SSVs)—including tandem

duplications, insertions, deletions, inversions, and translocations6

—can potentially alter the regulation of specific genes through
several possible mechanisms, including gene fusion, promoter
element disruption, enhancer hijacking, disruption of topologi-
cally associated domains (TADs), and altered DNA methylation4.
Also, cancers harboring a high overall structural variation burden
may exhibit an altered molecular profile reflective of extensive
DNA damage4. To comprehensively study SSVs and other non-
coding genomic alterations in the setting of adult human cancers,
the Pan-cancer Analysis of Whole Genomes (PCAWG) con-
sortium recently aggregated whole-genome sequencing (WGS)
data from over 2000 cancers across 38 tumor types. These
PCAWG data are taken from the International Cancer Genomics
Consortium (ICGC) and The Cancer Genome Atlas (TCGA)
Consortium7. Over 20 studies carried out in conjunction with the
PCAWG consortium explored various aspects of noncoding
genomic alteration in cancer. Among these studies of the
PCAWG sample cohort, we reported that hundreds of genes
showed recurrently altered expression in association with the
nearby presence of an SSV breakpoint3. Genes recurrently
upregulated in association with SSVs included known oncogenes
—such as TERT,MDM2, CDK4, ERBB2, CD274, PDCD1LG2, and
IGF2—while tumor suppressor genes—such as PTEN, STK11,
TP53, and RB1—were frequently disrupted by SSV breakpoints
falling within the gene body. However, PCAWG expression data
did not include any pediatric brain tumor cases, representing a
knowledge gap as to how SSVs may alter expression within this
patient population.

The Children’s Brain Tumor Tissue Consortium (CBTTC)
(https://cbttc.org) is an international, collaborative, and multi-
institutional research program dedicated to studying childhood
brain tumors8. CBTTC efforts include providing open access
genomics data on pediatric brain tumors to the research com-
munity to more fully elucidate these tumors’molecular landscape.
Previous studies of other patient cohorts have carried out WGS
for specific types of pediatric brain cancer9–15. However, the
CBTTC data are unique in involving a large set of samples—854
—with both WGS and RNA sequencing (RNA-seq) data and
spanning multiple histologic types, comparable to the 1220
PCAWG WGS samples with RNA-seq (all but 24 of which were
over the age of 17)3,16. No CBTTC tumors were included as part
of the PCAWG datasets. Using CBTTC genomic data to define
new gene targets altered consistently by somatic structural var-
iation would have implications for personalized and precision
medicine approaches. Pediatric brain cancer—the most common
type of solid tumors in children—is a heterogeneous disease
representing numerous distinct histologic types, involving dif-
ferent sets of driver mutations and different responses to ther-
apy17. CBTTC data offer pan-cancer analysis opportunities to
identify patterns cutting across histologic types of pediatric brain
cancer7,18, in addition to genomic analyses within individual
tumor types. WGS analysis approaches, as demonstrated in adult
cancers by PCAWG consortium and others, remain to be applied
systematically to pediatric cancers, as different genomic loci and
associated genes are likely to be targeted in the pediatric tumor
setting.

This present study utilizes the CBTTC datasets to analyze high
coverage WGS data from 854 pediatric brain tumor samples and
759 individuals. Integrating SSV calls with gene expression data,
we observe a widespread impact of SSVs on the regulation of
genes in the vicinity of SSV breakpoints, independent of copy-
number alterations (CNAs), involving key oncogenes and tumor
suppressor genes. In another line of investigation, we examine

gene expression and DNA mutation features correlated with the
overall SSV tumor burden, independently of where the break-
points fall in proximity to genes. Here, a high SSV burden is
associated with TP53 mutations, histone H3.3 gene H3F3C
mutations, and increased expression of DNA damage
response genes.

Results
SSVs in CBTTC cohort. Our study focused on 854 pediatric
brain tumor samples from the CBTTC, representing 759 patients,
for which both WGS and RNA-seq data were available (Supple-
mentary Data 1). Tumor samples in CBTTC spanned at least 33
different tumor types based on histology, the most highly
represented of which (13 or more tumors for each) included: low-
grade glioma/astrocytoma (PLGG, n= 239 tumors), medullo-
blastoma (MBL, n= 104), ependymoma (EPMT, n= 79), high-
grade glioma/astrocytoma (PHGG, n= 76), ganglioglioma (GNG,
n= 48), craniopharyngioma (CRANIO, n= 36), atypical teratoid
rhabdoid tumor (ATRT, n= 30), meningioma (MNG, n= 30),
dysembryoplastic neuroepithelial tumor (DNT, n= 24),
schwannoma (SCHW, n= 16), neurofibroma/plexiform (NFIB,
n= 16), choroid plexus papilloma (CPP, n= 14), and supra-
tentorial or spinal cord primitive neuroectodermal tumor (PNET,
n= 13). Some tumor types represented in CBTTC—including
Ewing’s sarcoma (ES, n= 6), germinoma (GMN, n= 4), Lan-
gerhans cell histiocytosis (LCH, n= 4), malignant peripheral
nerve sheath tumor (MPNST, n= 3), and neuroblastoma (NBL,
n= 2)—originate from cell types not specific to the brain, even if
the CBTTC tumors were obtained from the brain region. CNAs
were examined in these CBTTC tumors, with overall CNA pat-
terns markedly differing from those of adult brain tumors from
TCGA (Supplementary Fig. 1a), and with a sizable proportion of
CBTTC tumors appearing relatively quiet at the CNA level.

By WGS analysis, a median of 47 SSVs was found per tumor
(with standard deviation, or SD, of 167.2). On average, the
numbers of SSVs detected varied widely according to tumor type
(Fig. 1a). Hemangioblastoma (HMBL), LCH, ES, SCHW, and
DNT tumors tended to have the fewest SSVs (average of 37.7
SSVs for these tumor types). MPNST, PHGG, Diffuse intrinsic
pontine glioma (DIPG), NBL, and sarcoma (SARCNOS) tumors
tended to have the most SSVs (average of 230.8 SSVs). In line
with previous observations in adult cancers3,19, here, genomic
rearrangements could be associated with widespread CNA
patterns in pediatric brain tumors (Fig. 1b). When we considered
the set of all SSV-gene associations involving an SSV breakpoint
falling within 1Mb of gene start site for a given tumor, we found
these associations to be highly enriched for gene-level amplifica-
tion or deletion, though more so for the former. While a
significant proportion of SSVs associated with gene amplification
involved tandem duplication SSVs as might be expected, all
classes of SSV were involved with altered CNA patterns
(Supplementary Fig. 1b). The intra-chromosomal, non-
translocation SSVs associated with CNA showed enrichment for
SSVs of larger DNA sizes (>100 kb, Supplementary Fig. 1c).

A subset of CBTTC tumors represented multiple tumors taken
from the same patient, involving 170 tumor samples from 75
patients. These 170 tumors would include samples taken from a
patient at different times, e.g., samples taken from an initial
tumor and later from a progressive or recurrent tumor, or
samples representing a second malignancy (Supplementary
Data 1). In other cases (involving 13 patients), multiple initial
tumors were profiled, often taken from different anatomic sites, as
a patient may present with multiple initial tumors upon
diagnosis. We found that different tumors from the same patient
tended to demonstrate extensive molecular heterogeneity among
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them. Taking an example set of 36 cancer-associated genes20,21,
we examined somatic events, including SSV breakpoints occur-
ring within 100 kb of any genes, across 139 tumors from 60
patients for which multiple tumors were profiled and for which at
least one of the 36 genes had breakpoint associations (Fig. 1c).
SSV patterns—together with patterns of CNA, insertion/deletion

of nucleotide bases (indels), and Single Nucleotide Variants
(SNVs)—revealed both concordant and discordant patterns
among tumors from the same patient. Furthermore, in a global
analysis of SSV breakpoint patterns across the 75 patients
(Supplementary Fig. 1d), inter-profile correlations between
different tumors from the same patient ranged from very high
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to very low, low to the degree of suggesting little relationship
between the tumors. These results lent support to our treating
each tumor as a separate disease entity in the downstream
analyses. In other words, given multiple tumors from the same
patient (e.g., involving multiple initial tumors, or initial compared
to recurrent or progressive tumors), we considered each tumor
sample separately from the others in our analyses.

Global impact of SSVs on gene expression patterns. Using
integration approaches between SSVs and gene expression, pre-
viously demonstrated in adult cancers4,19,22, we assessed gene-
level associations between expression and nearby SSV breakpoints
across the CBTTC tumor cohort. In principle, SSVs with break-
points nearby a gene could lead to altered cis-regulation, e.g., by
enhancer hijacking or altered DNA methylation4, and SSV
breakpoints within a gene could result in gene disruption or a
gene fusion19 (Fig. 2a). For each gene with expression data, we
assessed the pattern of nearby SSV breakpoints within a given
region window (e.g., 100 kb upstream of the gene). From CBTTC
data, we assembled a data matrix of breakpoint patterns for all
18786 unique named genes and 854 tumors. We then assessed the
association between expression and SSV breakpoint pattern for
each gene by linear models correcting for tumor type and gene-
level CNA. As intended, our analytical approach does not assume
the specific mechanism of altered expression, as there may be
multiple mechanisms involved for any given gene across different
tumors. In principle, SSVs of any class or size may lead to altered
cis-regulation, depending on the specifics involving any nearby
rearrangements and the gene regulatory landscape.

Hundreds of genes showed altered gene expression in relation
to nearby SSV breakpoints, including breakpoints located either
downstream or upstream of genes and breakpoints occurring in
the gene body (Fig. 2b and Supplementary Data 2). Incorporating
statistical corrections for gene-level CNA decreased the overall
numbers of significant genes, reflecting the above associations of
SSV breakpoints with copy gain. Many more genes showed
positive correlations with SSV breakpoints (i.e., expression was
higher when SSV breakpoint was present) than negative
correlations. When considering a 1Mb region window upstream
or downstream of each gene (whereby the model weighted the
relative gene distances of the breakpoints4, giving the most weight
to breakpoints closest to the gene), 324 genes showed positive
correlations with SSV breakpoints, and 51 genes showed negative
correlations (FDR < 10%23 by relative distance metric method4,
with corrections for tumor type and CNA). Genes positively
correlated with SSV breakpoints included many known onco-
genes, while genes negatively correlated included many known
tumor suppressor genes (Fig. 2c), as discussed further below. Out
of the 854 CBTTC tumors, 811 (95%) involved overexpression

(SD > 0.4) of a gene from our top set of 324 showing global
positive SSV correlations (FDR < 10%), coupled with an SSV
breakpoint within 1Mb of the gene. The above indicates that
while individual SSV events involving a particular gene may be
relatively infrequent among tumors, the cumulative effect of this
phenomenon across many genes would involve the vast majority
of tumors.

In addition to results using statistical modeling and the Storey
and Tibshirani FDR estimation method23, permutation testing
results reflected widespread significant patterns associating SSVs
with expression (Supplementary Fig. 2a, b). By permuting the 854
SSV breakpoint profiles within tumor types 1000 times, the 324
genes with Storey and Tibshirani FDR < 10% (using the 1Mb
window) would have an estimated FDR of 33% by permutation
method (Supplementary Data 2), indicating that on the order of
67% of the genes would represent true positives. However, the
number of tumor samples in the dataset limited permutation
testing power, as some permutations would not be too far
removed from the actual dataset. Permutation testing results
using a large simulated dataset of over 4000 tumors yielded even
fewer estimated false positives from the 854-tumor permutation
results (Supplementary Fig. 2a), with ~74% of the 324 genes
presumably representing true positives (Supplementary Data 2).
With very large sample sizes, datasets would be expected to yield
permutation testing results much closer to the Storey and
Tibshirani FDR estimates. In our downstream analyses below,
we focused primarily on known cancer genes (including known
fusions) and global associations involving the 324 genes.

The set of genes having significant associations between
expression and nearby SSV breakpoint, as identified in the
CBTTC cohort, overlapped significantly with the genes arising
from similar analyses in adult cancers from combined TCGA-
ICGC cohorts4 (Fig. 2d). Of the 324 genes with significant
positive correlations (using the 1Mb window), 29 were significant
by the same approach as applied to TCGA-ICGC pan-cancer
dataset (overlap p < 1E-5, one-sided Fisher’s exact test), including
CDK4, EGFR, FOXR1, MYC, and TERT. At the same time, this
overlap represented just a fraction of the significant CBTTC
genes, reflecting overall differences between pediatric brain
cancers and adult cancers of various types. Similarly, we evaluated
SSV-gene associations in TCGA glioma dataset (n= 107 GBM/
LGG cases), where 19 of the 324 CBTTC genes overlapped with
the significant TCGA glioma genes (Fig. 2d). However, the vast
majority of significant genes were exclusive to either the pediatric
brain or adult brain settings (Fig. 2e). Genes significant for the
CBTTC dataset but not for TCGA glioma dataset included
important oncogenes such as MYB, FOXR1, TERT, MET, MYC,
and MYCN. For the 13 CBTTC pediatric brain tumor types with
the most tumors (13 or more tumors), we evaluated significant

Fig. 1 SSVs detected across diverse pediatric brain tumor types from the CBTTC. a By brain tumor type, box plot of numbers of SSVs detected for each
CBTTC tumor sample, representing 854 tumors and 759 patients in total. Box plot represents 5% (lower whisker), 25% (lower box), 50% (median), 75%
(upper box), and 95% (upper whisker). See Methods regarding histology-based tumor type abbreviations. b Association of CNAs with genomic
rearrangement. Based on the set of all SSV-gene associations involving an SSV breakpoint falling within 1Mb of gene start site for a given tumor (taken
from all gene X tumor sample pairings), Venn diagrams represent significant enrichment of these SSV-gene associations both for high-level gene
amplification events (left) and for deep gene deletion events (right). For each of the overlapping results sets, lists provide the most frequently affected
genes and associated cytoband regions. P values by chi-squared test. c Evidence of inter-tumoral heterogeneity within patients, by SSV breakpoint patterns
surveyed across multiple tumors from the same patient. Tumor status color bar denotes initial tumor, progressive, recurrence, or second malignancy. Based
on a set of 36 cancer-associated genes (defined using the literature20,21), somatic events are represented across 139 tumors from 60 patients for which
CBTTC profiled multiple tumors (the 139 tumors involve at least one gene with breakpoint association). Black or gray represents SSV breakpoint in
proximity to the gene (within the gene body or 100 kb of the gene, respectively). Green or gold represent somatic SNV/indel (respectively, either missense
SNV within hotspot residue49 or inactivating mutation by indel/nonsense/nonstop). Red or blue represents high-level amplification or deep deletion,
respectively. As tabulated on the right, concordant events are somatic events detected in all tumors from the same patient; discordant events are detected
in only some but not all tumors from the same patient. Tumor type color scheme is from part a.
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SSV-gene associations separately by tumor type. For most
individual tumor types, over 100 significant genes were found
(Supplementary Data 3 and Supplementary Fig. 2c). Notably,
many genes significant in the analysis of individual tumor types
did not reach significance when analyzing the combined pan-
CBTTC set (Fig. 2f), analogous to results of adult pan-cancer
studies surveying significantly mutated genes24 or significant SSV
associations4. SSV-gene associations specific to MBL included
PRDM6 and GFI110.

A fraction of the positive correlations appeared to reflect SSV-
mediated disruption of TAD or enhancer hijacking. For particular
genes of interest, including oncogenes TERT and MYB and tumor
suppressor gene NF1, the relative expression changes in tumors
harboring an SSV breakpoint were more dramatic as compared to

tumors with CNA (Fig. 3a). SSV-associated upregulation of TERT
and MYB appeared allele-specific (Fig. 3b). Using data on TAD
coordinates in human cells25,26, we categorized all SVs in the
CBTTC dataset by those that were TAD disrupting (i.e., the
breakpoints span two different TADs) versus those that were
non-disrupting (i.e., both breakpoints fell within the same TAD).
For SSVs associated with gene overexpression, we observed an
enrichment for TAD-disrupting SSVs (Fig. 3c, p < 1E−80, chi-
squared test), consistent with previous observations in adult
tumors19. Similarly, SSV breakpoints involving gene overexpres-
sion were enriched (p < 1E−15, chi-squared test) for putative
enhancer translocation events, with the rearrangement bringing
an enhancer within 500 kb of the gene (Fig. 3d), involving 103
overexpressed genes and 140 tumors (Fig. 3e and Supplementary
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Data 2). More SSV-associated overexpression events involved
TAD disruption than enhancer hijacking, with, for example, just
one tumor showing TERT-associated enhancer hijacking (Fig. 3e)
but nine tumors with TERT-associated TAD disruption (Fig. 3f).
Significant SSV-gene associations involved all SSV classes and
sizes (Supplementary Fig. 2d, e), various tumor statuses (initial,
recurrent, progressive, or second malignancy, Supplementary
Fig. 2f), and all tumor types (Supplementary Fig. 2g).

Using molecular subtype instead of histologic type in the SSV-
expression modeling, or including only tumors originating from
brain-specific cell types in the analysis, yielded very similar SSV-
gene associations uncovered above using the full cohort of 854
tumors (Supplementary Fig. 3). Based on unsupervised clustering
of RNA-seq data, tumors broadly segregated according to
histologic type (Supplementary Fig. 3a). Our statistical models
included histologic type of the tumor as one of the covariates
when defining genes altered in association with nearby SSV
breakpoints. Still, the histologic type covariate did not heavily
influence the top results (Supplementary Fig. 3b). While many
histologic types may be comprised of molecular subtypes, in a
global molecular analysis, the most-represented histologic types—
including PLGG, PHGG, MBL, EPMT, and ATRT—all formed
fairly homogenous groups (Supplementary Fig. 3a). Consistent
with the approach of other studies of SSVs and expression3,10,27,
our pan-cancer analyses used histologic classification rather than
molecular subtype. Furthermore, the CBTTC’s regulatory for
CNS tumors intentionally allowed for the broad collection of
abnormal cell growth, not necessarily specific to brain-specific cell
types. Likewise, all data from 854 tumors that were available from
CBTTC formed the basis of our study. However, in an alternate
analysis, we first removed tumor types that originated from cell
types not specific to the brain, along with metastatic secondary
tumors and tumors that did not fit within the more common
CBTTC tumor type designations. The remaining set of 793
tumors yielded very similar SSV-expression associations to those
of the 854-tumor set (Supplementary Fig. 3c and Supplementary
Data 2).

SSVs involved with gene fusions or pathway alterations. SSV
breakpoints falling within genes and associated with their
increased expression may represent gene fusions. We found a
highly significant degree of overlapping gene-to-tumor associa-
tions involving predicted fusions using RNA-seq chimeric reads,
gene overexpression, and SSVs breakpoint falling within the
boundary of a gene (Supplementary Fig. 4a). This concordance
between orthogonal results sets suggested a path by which we

could refine RNA-seq-based fusion predictions using SSV data.
Out of 19,211 candidate fusion events identified by RNA-seq
analysis (using Arriba or STAR-fusion algorithms), 1866 corre-
sponded to SSV breakpoints found within one or both genes
(Fig. 4a), and 1208 of these involved a high expression association
(see Methods). This set of 1208 fusion calls with the highest level
of support involved 974 distinct gene fusions, 368 tumors, and
331 patients (Supplementary Data 4), as well as the majority of
gene body-associated SSV breakpoints with overexpression
(Fig. 4b). Of the 368 tumors, 182 had fusions both detectable in
two or more tumors and including a known cancer-associated
gene by COSMIC20 (Fig. 4c). The most prevalent fusion identified
was KIAA1549-BRAF, in 117 tumors, most of them PLGG28,29,
followed by C11orf95-RELA, in 22 tumors, predominantly
involving EPMT30. Other fusions included CLIP1-ROS1 (n= 4
tumors), TRIM24-BRAF (n= 3)31, FGFR1-TACC1 (n= 3)32,
FGFR2-SHTN1 (n= 2)33, and MYB-QKI (n= 2)34. RNA-seq-
based fusion predictions with SSV support were highly enriched
for in-frame fusions (Fig. 4c and Supplementary Fig. 4b). Fur-
thermore, when considering 74 different fusions across 66 tumors
from 27 patients for which CBTTC profiled multiple tumors, 52
of these fusions appeared ubiquitous35 for a given patient (Sup-
plementary Fig. 4c), suggesting that these events might occur
earlier in the disease process.

We found SSVs to considerably extend the numbers of
pediatric brain tumors somatically altered for critical pathways.
Taking a set of cancer-associated pathways and related genes
previously annotated based on domain knowledge19,21,36,37, we
examined the CBTTC tumors for alteration in these pathways.
Alterations considered were gene fusion, SSV-mediated altered
cis-regulation or gene disruption (taking from the genes
significant for 1Mb region), SNV or indel, and deep deletion or
high-level amplification (Supplementary Data 5). Across many
different brain tumor types, SSV-mediated alterations (Fig. 5a)
involved RTK pathway-related genes (KRAS, MET, EGFR, NF1),
p53/Rb-related genes (CDK4), TERT, MYC family genes (MYC,
MYCN, MYB), SWI/SNF complex genes (SMARCB1), and
HIPPO pathway-related genes (NF2). Across the entire CBTTC
cohort, assessment of genes within pathways (Fig. 5b) demon-
strated a high number of alterations involving Receptor Tyrosine
Kinases (RTKs, 39.1% of tumors), p53 or Rb (14.6%), PI3K/AKT/
mTOR (12.3%), chromatin modification (8.8%), TERT (8.1%),
MYC family (8.0%), SWI/SNF complex (8.1%), Wnt/beta-catenin
(5.7%), and HIPPO signaling (2.9%). We found the above
pathways altered in different ways involving different genes in
different tumor types (Fig. 5c and Supplementary Fig. 5). Some

Fig. 3 SSVs associated with disruption of TADs and translocated enhancers. a Box plots of expression for TERT, MYB, and NF1 by alteration class (“amp.”
or high-level gene amplification, approximating copy levels more than 2× greater than that of wild-type; gain, approximating 1–2 additional copies; SNV,
activating promoter mutations in the case of TERT and inactivating mutation by indel/nonsense/nonstop in the case of NF1; SV breakpoint within gene body
or within 100 kb of gene start; or none of the above, i.e., “unaligned”). P values by t-test using log2-transformed data. Box plots represent 5% (lower
whisker), 25% (lower box), 50% (median), 75% (upper box), and 95% (upper whisker). b For tumors with SSV breakpoint within 100 kb of TERT or MYB,
respectively, allele-specific patterns associated with increased expression. P values by binomial test using cis-X52. c As compared to all SSVs, fractions of
SSVs involving topologically associated domain (TAD) disruption and altered gene expression (defined as FDR < 10% for the gene by distance metric
method4 using 1 Mb region window, with corrections for tumor type and CNA, and expression > 0.4 SD or <−4 SD from median for the case harboring the
breakpoint). P values by chi-squared test. d Percentages of SSV breakpoint associations involving the translocation of an enhancer within 0.5Mb of the
SSV breakpoint in proximity to the gene (and closer than any enhancer within 1 Mb of the unaltered gene), as tabulated for the entire set of SSV breakpoint
associations with breakpoint mate on the distal side from the gene, as well as for the subsets of SSV breakpoint associations involving altered gene
expression (defined as for b). P values by chi-squared test. e By gene and by histologic type, the number of SV breakpoint associations involving the
translocation of an enhancer, which involved 103 genes and 140 tumors. f Depiction of the TERT locus (left) and MYB locus (right) and associated TADs
and SSVs. Top: TADs as Hi-C-based contact maps, with gray shading indicating locus interactions (darker, stronger interactions). Bottom: gene expression
levels of TERT and MYB corresponding to SSV breakpoints located in the genomic region. SSV breakpoints are annotated as TAD-preserving (i.e., both
breakpoints fall within the same TAD) or TAD-disrupting. Dotted lines denote breakpoints within the same sample and solid lines denote common
SV event.
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tumor types showed particularly high enrichment for alterations
affecting a specific pathway (Fig. 5b). RTK-related alterations
showed enrichment within PLGG17; p53/Rb-related alterations,
within PHGG17; alterations involving chromatin modifiers,
TERT, and MYC family, within MBL10; SWI/SNF alterations,
within ATRT14; Wnt/beta-catenin alterations, within CRANIO38;
and HIPPO pathway alterations, within MNG39. SSVs in
particular impacted a substantial number of tumors in relation
to RTK (186 out of 334 total impacted tumors), p53-related (30
out of 125), TERT (45 out of 69), MYC family (35 out of 68),
HIPPO (9 out of 25), and SWI/SNF complex (4 out of 69).

SSV associations with progressive or recurrent disease. Of the
854 CBTTC tumor profiles, 174 were from progressive or
recurrent tumors and 633 were from initial tumors. These data
provided an opportunity to study SSV-mediated alterations spe-
cifically occurring within more advanced disease. In a paired

analysis involving 44 patients, increased numbers of SSVs were
detected in recurrent or progressive tumors from a given patient,
as compared to the initial tumor from the same patient (Fig. 6a,
p= 0.007, paired t-test), suggesting that molecular differences
between the two groups would involve SSVs. In addition to
identifying SSV-gene associations across the entire set of tumors
as described above, we applied our analytical approach separately
to the full subset of initial tumors (n= 633) and to the full subset
(n= 174) of recurrent or progressive tumors (using 1Mb region
window, Supplementary Data 6). Both progressive/recurrent and
initial tumor subgroups yielded hundreds of genes—318 genes
and 249 genes, respectively—with differential expression asso-
ciated with nearby SSV breakpoints (FDR < 10%23, correcting for
tumor type and CNA, Fig. 6b).

Of the 318 genes significant (FDR < 10%) for the progressive/
recurrent tumor group, 222 were not significant for either the
initial tumor group or the entire tumor set (Fig. 6b, c), these genes
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including CCND2 (cyclin D2) and NTRK1. In addition to issues
involving sample power and sensitivity, the differences in the
associations made between tumor subsets could involve SSV
events being randomly distributed among initial tumor and
primary/recurrent groups. To enrich for SSV-gene associations
that would be truly specific to progressive or recurrent disease, we
first compared the frequency of SSV breakpoint events for each
gene (using 100 kb region window) of progressive or recurrent
tumors with that of initial tumors. We then overlapped the set of

genes with breakpoints being enriched within progressive or
recurrent tumors (p < 0.05, one-sided Fisher’s exact test) with the
set of genes having SSV-gene associations for the same tumor
group. The overlap of 34 genes between the two gene sets was
statistically significant (p= 0.003, one-sided Fisher’s exact test,
Fig. 6d). The 34 genes included seven COSMIC20 genes (TERT,
CCND2, PLAG1, ROS1, WT1, KRAS, NTHL1), which also
represented a significant overlap (p < 0.0005, one-sided Fisher’s
exact test). Other genes, such as NGF and FGF6, encode growth
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Fig. 5 SSVs associated with key oncogenic or tumor-suppressive pathways. a Genomic rearrangements (represented in circos plots) involving Receptor
Tyrosine Kinase (RTK) pathway-related genes (KRAS, MET, EGFR, NF1), p53/Rb-related genes (CDK4), TERT, SWI/SNF (SMARCB1), MYC family genes
(MYC, MYCN, MYB), and HIPPO pathway-related genes (NF2). SSV events are colored according to tumor type, as indicated. b Pathway-centric view of
somatic alterations in pediatric brain tumors (representing 558 CBTTC tumors and 507 patients with at least one somatic alteration in the indicated
pathways), involving key pathways and genes previously annotated across multiple cancer types based on domain knowledge19,21,36,37. Panel on the right
represents the significance of enrichment (one-sided Fisher’s exact test) of gene alteration events for each pathway within any particular tumor type versus
the rest of the tumors (focusing on the 13 tumor types with the most tumors). c For the pathways from b that also involve at least one SSV event, somatic
alteration events involving each gene included in the pathway are represented. For SSV-impacted genes the corresponding differential mRNA expression
patterns are shown. For a, b, events are colored according to the type of somatic alteration: gene fusion, SSV (for oncogenes, breakpoint falling with 1 Mb of
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expression <−0.4 SD), SNV or indel (for oncogenes, SNV within hotspot residue49; for tumor suppressor genes, SNV within hotspot residue or inactivating
mutation by indel/nonsense/nonstop), and deep deletion or high-level amplification (respectively approximating total copy loss and copy levels more than
2× greater than that of wild-type, based on thresholded values).
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Fig. 6 SSV-impacted genes associated with progressive or recurrent disease. a Significant differences between initial tumor and recurrent or progressive
tumors for total number of SSVs detected, based on a paired analysis involving 44 patients for which both an initial tumor and a recurrent or progressive
tumor were profiled by WGS. P values by paired t-test on log-transformed data. Box plot represents 5% (lower whisker), 25% (lower box), 50% (median),
75% (upper box), and 95% (upper whisker). b Heat map of significance patterns for 673 genes significantly associated with nearby SSV breakpoints (FDR
< 10%) for any one of three groups of tumors from CBTTC cohort: (1) all tumors (n= 854), (2) initial tumors (n= 633), and (3) recurrent or progressive
tumors (n= 174). Significance by 1Mb region window and distance metric method4 (correcting for both tumor type and CNA). Red denotes significant
positive correlation; blue, significant negative correlation. c Significance of genes in the subset of initial tumors (n= 633 tumors, x-axis), as compared to
their significance in the subset of progressive or recurrent tumors (174 tumors, y-axis). Genes in the upper left quadrant reached significance only within
the progressive or recurrent tumors. d SSV breakpoint and mRNA expression patterns for a set of 34 genes with both a significant SSV-expression
association in the subset of progressive or recurrent tumors (b) and with significant enrichment within progressive or recurrent tumors (p < 0.05, one-
sided Fisher’s exact test), as compared to the initial tumors, of SSV breakpoints within 100 kb of the gene. For each of the two tumor subsets represented,
the ordering of tumors is the same between the SSV breakpoint and expression matrices. Genes with significant SSV-gene association for both
progressive/recurrent and initial tumor groups are indicated with an asterisk. See (a) for tumor type coloring scheme.
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factors. Cumulatively, the 34 genes and associated SSV break-
points (using 1Mb window) and gene expression changes
involved 95 out of the 174 progressive or recurrent tumors
(55%). These genes also involved 233 out of 633 initial tumors
(37%), though representing a smaller proportion of those tumors.

Molecular alterations involving the overall burden of structural
variation. As another line of investigation, we examined gene
expression and DNA mutation features that correlated with the
total number of SSV breakpoints detected per tumor, indepen-
dently of where the breakpoints fall in proximity to genes.
Increased numbers of SSVs detected in a tumor from a patient
associated with worse patient survival (Fig. 7a, Cox p= 0.002,
correcting for tumor type). This observation was consistent with
previous observations in adult tumors involving SV or CNA
burden4,40 and supports the notion that tumors with high SSV
burden have biological differences from other tumors. We sear-
ched for genes with inactivating SNVs or indels correlated with
high SSV burden, with 17 genes being significant (Fig. 7b, FDR <
5%, Pearson’s correlation). While we might not expect all of the
17 genes to have a causative role in SSV burden, two genes of
interest included TP53 and H3F3C, as explored below. As a well-
known guardian of genome integrity41, a role of p53 in pre-
venting the type of DNA damage represented by double-strand
breaks and SSVs would seem clear. TP53 hotspot SNVs and
inactivating SNVs and indels, along with single-copy loss, were
associated with higher SSV burden, in both the CBTTC pediatric
brain and TCGA adult pan-cancer cohorts (Fig. 7c). Although not
perfectly correlated with SSV burden, the overall burden of SNVs
and indels represents another measure of extent of DNA damage
(Supplementary Fig. 6a). TP53 mutation also corresponded to
increases in detected SNVs and indels, in addition to SSV burden
(Supplementary Figs. 6b), with mutation and copy loss events
mostly occurring in PHGG and MBL tumors.

We found thousands of gene expression correlates of overall
SSV burden levels (Fig. 7d and Supplementary Data 7), with 2381
genes either increased or decreased (FDR < 5% by linear
regression model, correcting for tumor type and gene-level
CNA). We observed highly significant overlapping gene patterns
between the respective expression signatures of SSV burden
between pediatric brain cancers and adult pan-cancers (Supple-
mentary Fig. 6c), indicative of common processes at work across
multiple tumor types. We compared enriched gene categories
among the respective SSV burden association signatures from
pediatric brain tumor, adult glioma (Supplementary Fig. 6d), and
adult pan-cancer. All three signatures showed high enrichment
for genes related to cell cycle process, chromosome organization,
cell division, DNA repair including double-strand break repair,
and telomere organization (Fig. 7e). The associations involving
DNA double-strand break repair pathway, in particular, were also
evident when examining essential individual genes, including
BRCA1, BRCA2, CHEK2, FANCB, FANCD2, FANCI, and RAD51,
and XRCC2 (Fig. 7f and Supplementary Fig. 6e). On the other
hand, the p53/Rb1 pathways appeared altered differently among
the different tumor types at the gene expression level, with
pediatric brain tumors showing highMDM2 expression with high
SSV burden and with adult pan-cancers instead showing high
expression of CCNE1 and E2F3, though with both sets of tumors
showing high CDK4 (Fig. 7f). Notably, however, a previously
noted decrease in gene signatures of immune cell infiltrates and in
immune response-related genes4 was observed here only for adult
non-brain tumors (Fig. 7f).

A survey of Histone H3 genes showed frequent mutations in
H3F3A and H3F3C across CBTTC tumors (Supplementary
Fig. 7a). While H3F3A mutations are commonly associated with

pediatric brain tumors, particularly with PHGG and DIPG28,42,
H3F3C, which also encodes for an H3.3 histone component,
appears to be much less studied in the context of cancer,
including pediatric brain cancer. H3F3C was uniquely associated
with SSV burden over thousands of other genes tested (Fig. 7b),
with no hypermutated tumors having H3F3C mutations. While
H3F3A mutations in CBTTC tumors primarily involved the
known K28M/K27M43 hotspot (n= 30 tumors), followed by the
G35R/G34R43 hotspot (n= 4), H3F3C mutations followed
another distinctive pattern. All nine impacted tumors (three
PLGG, two EPMT, and one each for ATRT, MNG, PHGG, and
SARCNOS; two progressive, two recurrent, and one second
malignancy) had nucleotide changes involving both K37
duplication and N79K amino acid change (Fig. 8a). Two of the
nine tumors also harbored amino acid changes L104F and V89I.
H3F3C mutations were mutually exclusive with TP53 alterations
(Fig. 8b). Relative to other cancers, H3F3C-mutated CBTTC
tumors showed a very high number of detected SSVs (Fig. 8b, c)
as well as SNVs and indels (Supplementary Fig. 7b), reflecting the
role of Histone H3.3 in maintaining genome integrity44. H3F3C-
mutated CBTTC tumors also showed lower H3F3C mRNA
expression versus wild-type (p < 0.03, t-test on log-transformed
data). We went on to survey whole-exome sequencing data from
10,224 TCGA adult cancers21 for H3F3C mutations. Of all TCGA
tumors, 49—representing many different tissues of origin—
harbored a mutation in H3F3C (Fig. 8d), and these tumors also
showed a high mutation rate (Fig. 8e). H3F3C-mutated tumors
(n= 7) in PCAWG WGS dataset, also showed increased SSV
burden (Supplementary Fig. 7c). The TCGA H3F3C mutations
did not show the same tight hotspot pattern found in CBTTC
tumors, although TCGA mutations did include G35R (two
patients), N79K (one patient), and V89I (four patients).

Discussion
Using the CBTTC pediatric brain tumor datasets of WGS and
gene expression, we have shown here how genomic rearrange-
ments, leading to altered gene regulation or gene disruption,
globally impact large numbers of genes and patients. We found
that the overall phenomenon of SSV-mediated cis-regulatory
alterations, as previously observed in adult cancers of various
types represented in the PCAWG and TCGA datasets3,4,19, is also
at work in pediatric brain tumors of various types. Aspects of this
phenomenon, as observed in both PCAWG and CBTTC cohorts,
include: hundreds of genes recurrently impacted, SSV breakpoints
as far as 1 Mb from the gene contributing to deregulation, rear-
rangements involving widespread CNA patterns, many more
genes with increased over decreased expression associated with
SSV breakpoints, and overexpressed and under-expressed genes
respectively representing known oncogenes and tumor suppressor
genes. At the same time, the specific set of genes deregulated by
SSVs differed considerably between pediatric brain and adult
cancers, including adult gliomas. Our study provides a rich
resource, whereby the SSV-mRNA associations uncovered here
may be further explored to establish novel pediatric brain cancer
drivers and mechanistic links with cancer phenotypes. This
relatively new class of genomic alterations involving noncoding
regions would also have implications for personalized and pre-
cision medicine approaches, which at present may focus more on
alterations within the exome.

The CBTTC datasets provided unique opportunities for us to
explore SSV-mediated cis-regulatory alterations across pediatric
brain tumors of diverse histologic types. Previous genomic studies
involving pediatric brain tumors have explored the landscape of
SSVs, but without corresponding expression data to link the SSV
breakpoints with transcription of the nearby genes. A recent

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21081-y ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:937 | https://doi.org/10.1038/s41467-021-21081-y | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


study of MBL10 did feature both expression and WGS data on
~164 tumors. However, our present pan-cancer study could
identify SSV-gene associations involving tumors from multiple
histologic types. Some SSV-gene associations were significant in

the analysis of individual tumor types did not reach significance
when analyzing the combined pan-CBTTC set, e.g., associations
involving GFI1 and PRDM6 as previously observed in MBL. Most
significant genes involved cases spanning more than one

Fig. 7 Molecular alterations associated with the overall burden of structural variation across pediatric brain tumors. a Association of the total number
of SSVs detected with patient survival (n= 759 patients, one tumor per patient). As indicated, p values are by either univariate Cox or stratified Cox
according to tumor type (“corrected”), using log-transformed SSVs numbers. b Genes for which inactivating SNVs or indels were associated with
increasing numbers of SSVs in CBTTC tumors (FDR < 5%, Pearson’s correlation, and mutation events in at least three tumors). c For both CBTTC cohort
(left) and TCGA adult pan-cancer cohort (right), association of TP53 mutation or copy loss with the overall burden of SSVs. P values by linear model
correcting for tumor type. Box plots represent 5% (lower whisker), 25% (lower box), 50% (median), 75% (upper box), and 95% (upper whisker).
d Numbers of significant genes (FDR < 5%), showing a correlation between expression and the total number of SSV events detected across the 854 CBTTC
tumors. Linear regression models evaluated significant associations when correcting for specific covariates, as indicated. Proximal BP pattern, SSV
breakpoint pattern in relation to the given gene. SNV count based on exome analysis. e Selected significantly enriched Gene Ontology (GO) terms for
genes correlated (FDR < 10%, with corrections for tumor type and gene-level CNA) with the total number of SSV events, with enrichment patterns (as
indicated by degree of shading) evaluated separately for CBTTC pediatric brain, TCGA adult glioma, and TCGA-ICGC adult pan-cancer. P values by one-
sided Fisher’s exact test. f Diagram of key genes involved with DNA double-strand break repair4 and p53/Rb36 pathways, with corresponding correlations
with the overall structural variation burden within CBTTC pediatric brain, TCGA adult glioma, and TCGA-ICGC adult pan-cancer datasets (red, significantly
higher with an increasing number of SSVs, correcting for tumor type and CNA).
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histologic type, and a few key genes, including EGFR and MYCN
were significant only in the pan-cancer analysis and not asso-
ciated with any individual tumor type, which highlights the utility
of our pan-cancer approach. While several associations found in
the present study would be consistent with previous studies’
findings, we find hundreds of other genes being impacted by SSVs
using our systematic analytical approaches.

Our study identified SSV associations specifically within pro-
gressive or recurrent disease, as compared to the initial tumors.
This result involves another unique aspect of the CBTTC datasets,
which includes patients with multiple tumors profiled. In our
present study, we found that different tumors from the same
patient tended to demonstrate extensive molecular heterogeneity
among them, to the extent that each tumor could be regarded as a
separate disease entity in the molecular analyses. Our observa-
tions would be consistent with those of previous studies. For
example, in MBL studies, genetic events in recurrent tumors
exhibited a very poor overlap (<5%) with those in the matched
initial tumors45. In contrast, most other cancer genomics studies
to date have taken a single tumor profile to be representative of
the patient’s disease. For a given patient, the overall numbers of
SSVs and other somatic mutations tend to increase in a recurrent
or progressive tumor as compared to the primary tumor. How-
ever, finding SSV-mediated expression changes between initial
and recurrent tumor in a paired analysis may be challenging with

the current dataset, as the numbers of tumors involved are rela-
tively few, while the SSV events involving any given gene tend to
be sparse across the entire CBTTC cohort. The CBTTC cohort
may not necessarily lend itself to studies of intratumoral het-
erogeneity35, as in CBTTC multiple initial tumors from the same
patient are profiled, rather than multiple samples taken from the
same initial tumor.

Our study also identified molecular correlates of high overall
SSV burden in pediatric brain cancer. Analogous to results from
adult cancers, transcriptional programs associated with pediatric
brain tumors having high numbers of genomic rearrangements
involved DNA damage response and cell proliferation. DNA
mutation correlates of high SSV burden included mutations in
TP53 and histone H3.3 genes. Our TP53-related findings would
be consistent with those of an adult pan-cancer study of TCGA
data46, in which TP53 mutational status was associated with
global increases in DNA copy number instability and somatic
SNV/indel frequency. Other studies have also linked TP53
mutation with increased numbers of chromosome rearrange-
ments in pediatric cancers15,47. While H3F3A mutations are
commonly associated with pediatric brain cancers, H3F3C
appears to be much less studied in cancer, including pediatric
brain cancer. Interestingly, a search of the PeCan (https://pecan.
stjude.cloud/) and PedCBioportal (https://pedcbioportal.
kidsfirstdrc.org/) databases—representing more than 1000
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additional pediatric brain tumors—did not uncover additional
cases of H3F3C hotspot mutation. This may be because mutations
in CBTTC cohort were few and spread among multiple histologic
types and involving progressive or recurrent or second malig-
nancy cases. At the same time, the observations in adult tumors
would suggest that alteration of histone H3.3 genes (including
H3F3C) may cumulatively involve many patients, with the
functional impact not being limited to hotspot mutations. Our
study demonstrated that combined genomic analyses utilizing
CBTTC and PCAWG data could identify patterns occurring
across adult and pediatric cancers and patterns unique to
pediatric brain cancer.

Methods
Patient cohorts. Results are based upon data generated by the CBTTC. Combined
WGS analysis (at ×60 coverage) and RNA-seq analysis (at ×30 coverage) was
carried out for 854 pediatric brain tumor samples in total, representing 759
patients. Tumor samples in CBTTC spanned at least 33 different tumor types:
adenoma; ATRT; chordoma; neurocytoma; choroid plexus carcinoma; CPP;
CRANIO; DIPG; DNT; EPM, subependymal giant cell astrocytoma; EPMT; ES;
GMN; ganglioneuroblastoma; GNG; GNOS, glial-neuronal tumor not otherwise
specified (NOS); HMBL; LCH; MBL; MNG; MPNST; NBL; NFIB; oligoden-
droglioma; pineoblastoma; primary CNS lymphoma; PHGG (WHO grade III/IV);
PLGG (WHO grade I/II); PNET, supratentorial or spinal cord primitive neu-
roectodermal; rhabdomyosarcoma; SARCNOS; SCHW; teratoma; and other/
unspecified. The histologic designations of the tumors, as provided by the indivi-
dual CBTTC member institutions contributing the samples, were confirmed by
independent pathology review at the CBTTC centralized biorepository, with the
majority of contributing sites providing representative histology slides. Tumor
molecular profiling data were generated through informed consent as part of
CBTTC efforts and analyzed here per CBTTC’s data use guidelines and restrictions.

A subset of CBTTC tumors represents multiple tumors taken from the same
patient, involving 170 tumor samples from 75 patients in total. As indicated in
Supplementary Data 1, multiple tumors from the same patient may entail samples
from multiple initial tumors, or samples taken at different times, e.g., samples taken
initially from the initial tumor and later from a progressive or recurrent tumor.
Different tumors from the same patient often demonstrated extensive molecular
heterogeneity with respect to each other (Fig. 1c and Supplementary Fig. 1c).
Therefore, each tumor sample was analyzed independently in the integrative
analyses, with the numbers of patients and tumors involved with a particular
pattern of interest noted where warranted.

The results here are also based in part upon data generated by both TCGA
Research Network and the ICGC. Previously, we carried out combined WGS and
RNA-seq analysis for 2334 TCGA-ICGC cancer cases in total4, 1892 of which were
from TCGA and 1232 of which (including all ICGC cases and 790 TCGA cases) were
part of the PCAWG consortium efforts. Of the 2334 cases, 25 involved patients under
the age of 18, of which 21 were ICGC lymphomas. Cases profiled spanned a range of
tumor types (bladder, sarcoma, breast, liver-biliary, cervix, leukemia, colorectal,
lymphoma, prostate, eosophagus, stomach, central nervous system or “cns”, head/
neck, kidney, lung, skin, ovary, pancreas, thyroid, uterus). We aggregated molecular
data from public repositories. Tumors in TCGA spanned 32 different TCGA projects,
each project representing a specific tumor type, listed as follows: LAML, acute myeloid
leukemia; ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; LGG,
lower grade glioma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell
carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma;
CRC, colorectal adenocarcinoma (combining COAD and READ projects);
ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck
squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell
carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular
carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma;
DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; MESO, mesothelioma;
OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma;
PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma;
SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma;
TGCT, testicular germ cell tumors; THYM, thymoma; THCA, thyroid carcinoma;
UCS, uterine carcinosarcoma; UCEC, uterine corpus endometrial carcinoma;
UVM, uveal melanoma. Tumor molecular profiling data were generated through
informed consent as part of previously published studies and analyzed per each
original study’s data use guidelines and restrictions.

Molecular profiling datasets. The somatic DNA workflow for DNA variant
calling is available in the KidsFirst Github repository (https://github.com/kids-first/
kf-somatic-workflow). CBTTC used Manta SV v1.4.0 algorithm for SSV calls48

based on WGS data. The hg38 reference for SSV calling used was limited to
canonical chromosome regions. We accessed the SSV VCF files through the public
project on the Kids First Data Resource Portal and Cavatica (https://cbttc.org/). We
used only SSV calls that passed quality filters in the analyses. Manta algorithm

classified each SSV call as one of the following: tandem duplications, insertions,
deletions, inversions, and translocations. TCGA-ICGC SSV calls were previously
compiled4 from both PCAWG consortium and internal calling using Meerkat
algorithm6.

CBTTC used both Strelka2 v2.9.3 and Mutect2 v4.1.10 to call simple variants,
i.e., SNV and insertions/deletions (INDEL), based on WGS data. We assessed the
somatic variant MAFs through the public project on the Kids First Data Resource
Portal and Cavatica (https://cbttc.org/). We used only variant calls that passed
quality filters in the analyses. Variant calls made by either Strelka2 or Mutect2 were
considered, as the focus of this study was on SNVs and indels involving already
known cancer genes21 and hotspot residues49, and with allowances made for the
lower sequencing coverage of WGS as compared to that of whole-exome
sequencing (WXS). For TCGAWXS data, we obtained somatic mutation calls from
the publicly available “MC3” TCGA MAF file (covering n= 10224 patients),
available at https://www.synapse.org/#!Synapse:syn7214402; we used variants
called by two or more algorithms in this study.

Gene-level CNA calls, made based on CBTTC WGS data, were obtained from
the PedCBioPortal (https://pedcbioportal.org/datasets). Low-level gene gain
(approximating 3–4 copies), high-level gene amplification (approximating five or
more copies), low-level copy loss (approximating heterozygous loss), or deep copy
loss (approximating gene deletion) were inferred using the “thresholded” calls
(with values of +1, +2, −1, or −2, respectively) as made available by
PedCBioPortal. For TCGA data, we obtained thresholded gene-level CNA calls,
made based on Affymetrix SNP 6.0 arrays, from the Broad Institute Firehose
pipeline (http://gdac.broadinstitute.org/).

We obtained processed RNA-seq data for CBTTC tumors from the
PedCBioPortal (https://pedcbioportal.org/). RNA-seq data were quantile
normalized prior to the analyses. For TCGA glioma cases (GBM and LGG
projects), we obtained RNA-seq data from The Broad Institute Firehose pipeline
(http://gdac.broadinstitute.org/). All RNA-seq sample profiles were aligned using
the by UNC RNA-seq V2 pipeline50. We previously carried out integrative analyses
of SSV and RNA-seq for TCGA-ICGC cohort4, using a combined and harmonized
RNA-seq dataset across the two cohorts.

Integrative analyses between SSVs and gene expression. We defined genes
with altered expression associated with nearby SSV breakpoints by two methods,
demonstrated previously using TCGA and TCGA-ICGC3,4,19 datasets. We used
our “genomic region window” method for patterns involving SSV breakpoints
falling within a given gene or within 100 kb upstream or 100 kb downstream of the
gene, and our “distance metric” method involved weighting the relative distances
from the gene start within a region ±1MB surrounding the gene. These analyses
using the CBTTC datasets included 18,786 unique named genes. By design4, our
analytical approach does not assume the specific mechanism of altered expression
(as many diverse scenarios would be plausible). This aspect would include treating
SSV breakpoints representing different classes (tandem duplications, insertions,
deletions, inversions, and translocations) and insert sizes the same in the inte-
gration with gene expression.

The genomic region window method starts with a set of specified genomic
region windows of interest in relation to genes. For each region, we constructed an
SSV breakpoint matrix by annotating for every tumor the presence or absence
(using “1” or “0”, respectively) of at least one SSV breakpoint within the given
region. For the set of SSVs associated with a given gene within a specified region in
proximity to the gene (e.g., 0–100 kb upstream, 0–100 kb downstream, or within
the gene body), correlation between expression of the gene and the presence of an
SSV breakpoint was assessed using a linear regression model (with log-transformed
expression values). These linear regression models considered genes with at least
three tumors associated with an SSV within the given region.

The distance metric method is similar to the genomic region windows
approach, but with the [gene × tumor] breakpoint pattern matrix constructed
differently. We considered the ±1Mb region window surrounding each gene
(spanning from 1Mb upstream of the gene start to 1 mb downstream of the gene
start). For each tumor, we tabulated the relative distances of the SSV breakpoint
closest to the start of each gene, assembling a [gene × tumor] relative distance
matrix. For a particular gene in a given tumor having no breakpoints within ±1Mb,
we imputed the maximum distance of 1 Mb. We log2-transformed the absolute
relative distances. Using this breakpoint pattern matrix, we assessed the correlation
between expression of the gene and the presence of an SSV breakpoint, using a
linear regression model (with log-transformed expression values). The distance
metric method provides a single result for each gene across the samples,
representing genes consistently altered across the entire ±1Mb region examined.
The 1 Mb window was used as genome rearrangements may involve the
translocation of enhancers, which may impact genes within a distance of ~1Mb4.
The closer that SSV breakpoints are to the gene start in relation to altered
expression, as compared to tumors without breakpoints, the more significant the
association between expression and SSVs. Breakpoints further away from the given
are less weight than breakpoints in closer proximity.

In addition to modeling expression as a function of SSV events, the model
incorporated tumor type (as encapsulated by one of the ~33 CBTTC tumor types)
as a covariate. Therefore, any significant association between genes and SSV
breakpoint patterns must rise above any association that would be explainable by
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tumor type alone. Similarly, the models incorporated gene-level CNA (using the
thresholded values of +1, +2, −1, or −2) as a covariate, given the observed
associations of CNA with nearby SSV breakpoints3,4,19. In the downstream
analyses, we explored the genes for which SSV associations were significant (FDR <
10%) after correcting for both tumor type and CNA. Also, by distance metric
method (including CNA as a covariate), we assessed 13 pediatric brain tumor types
separately for global SSV-expression associations, these tumor types (ATRT, CPP,
CRANIO, DNT, EPMT, GNG, MBL, MNG, NFIB, PHGG, PLGG, PNET, SCHW)
being the ones with the most numbers of tumors in the CBTTC cohort (at least 13
tumors).

Gene fusion analysis. Both STAR-Fusion v1.5.0 and Arriba v1.1.0 algorithms were
used by CBTTC to make candidate fusion calls based on RNA-seq data to identify
chimeric sequencing reads. We assessed these candidate fusion calls through the
public project on the Kids First Data Resource Portal and Cavatica (https://cbttc.
org/). We removed from further consideration fusions likely to represent artifacts
based on membership in the “banned” list by FusionCatcher algorithm (https://
github.com/ndaniel/fusioncatcher/blob/master/bin/generate_banned.py), as well as
events for which both partners represented the same gene. We refined the
remaining 12,624 RNA-seq-based fusion event calls using the SSV data as follows.
We gave priority to fusion calls for which SSV breakpoints by WGS fell within one
or both of the associated genes, and for which there was a high expression asso-
ciation. A high expression association was defined here as one of the following: (1)
for fusion events occurring in one or two tumors, whether for each tumor the
expression of either gene was >0.4 SD from the median; or (2) whether a significant
association between SSV breakpoints and increased expression (p < 0.01, linear
model incorporating tumor type and CNA) was found for either gene, either by
distance metric method or by genomic region window within the gene body.

Pathway-level somatic alteration categories. For the pathway-centric view of
somatic alterations in pediatric brain tumors (Fig. 5), key pathways and genes
considered included: RTK pathway (BRAF, EGFR, ERBB2, ERBB3, ERBB4, FGFR1,
FGFR2, FGFR3, FGFR4, HRAS, KIT, KRAS, MET, NF1, NRAS), HIPPO pathway
(NF2, SAV1, WWC1), chromatin modification (CREBBP, EHMT1, EHMT2, EP300,
EZH1, EZH2, KAT2A, KAT2B, KDM1A, KDM1B, KDM4A, KDM4B, KDM5A,
KDM5B, KDM5C, KDM6A, KDM6B, KMT2A, KMT2B, KMT2C, KMT2D, KMT2E,
NSD1, SETD2, SMYD4, SRCAP), SWI/SNF complex (ACTB, ACTL6A, ACTL6B,
ARID1A, ARID1B, ARID2, BCL11A, BCL11B, BCL6, BCL6B, BRD7, BRD9, DPF1,
DPF2, DPF3, PBRM1, PHF10, SMARCA2, SMARCA4, SMARCB1, SMARCC1,
SMARCC2, SMARCD1, SMARCD2, SMARCD3, SMARCE1), mTOR pathway
(AKT1, AKT2, AKT3,MTOR, PIK3CA, PIK3R1, PTEN, RHEB, STK11, TSC1, TSC2,
IDH1, IDH2, VHL), MYC family (MYC, MYCN, MYB), TERT, Wnt/beta-catenin
(APC, AXIN1, CTNNB1, FGF19, NCOR1), and p53/Rb-related (ATM, CCND1,
CCNE1, CDK4, CDKN1A, CDKN2A, E2F2, E2F3, FBXW7, MDM2, RB1, TP53).
Other pathways considered included the NRF2 pathway (NFE2L2, KEAP1, CUL3,
SIRT1, FH), but as there were few cases involved in this pathway, we did not
include it in the final presentation. For known oncogenes (e.g., AKT1, MTOR,
PIK3CA, RHEB, BRAF, EGFR, ERBB2, ERBB3, HRAS, KRAS, NRAS), if an SNV
occurred in “hotspot” residues as reported by Chang et al.49, the SNV was con-
sidered in the analysis. We considered all inactivating SNVs (nonstop/nonsense)
and indels in putative tumor suppressor genes (e.g., TP53) in the analyses. We also
considered TERT activating promoter mutations51. At both the gene and pathway
levels, we tabulated somatic alterations in the following order: SNV or indel, gene
fusion, deep deletion (approximating homozygous loss), high-level amplification
(approximating five or more copies), and SSV (for oncogenes, breakpoint falling
with 1 Mb of gene and associated with expression >0.4 SD from median for the
given tumor; for tumor suppressors, breakpoint falling within the gene body and
expression <−0.4 SD). SSVs were considered only for those genes significant (FDR
< 10%) by SSV-expression analyses for either the gene body region or the 1MB
region (incorporating tumor type and CNA).

Molecular correlates of the overall extent of genomic rearrangement. We
assessed differential gene expression patterns associated with the overall burden of
structural variation across pediatric brain tumors, as we did in our previous study
involving adult cancers4. SSV calls made for each tumor profiled were tabulated
(for translocation SSVs where each breakpoint appeared as a separate entry, the
two entries counted as a single SSV). For each gene, we assessed the correlation
between expression and the total number of SSV events detected across the 854
CBTTC tumors. We used linear regression models with both log-transformed
expression values and log-transformed SSV event numbers, correcting for specific
covariates where indicated. We carried out a similar analysis using the TCGA
GBM-LGG combined dataset of 107 tumors, though here a correction was added
for low pass versus high pass WGS (a technical factor impacting SSV detection
involving TCGA datasets19). As a measure of total SNVs and indels for a given
tumor, we used the “mutation count” field from the clinical data files provided by
PedCBioPortal (https://pedcbioportal.org/), which is based on analysis of exomes
by CBTTC investigators.

We also assessed genes with inactivating SNVs and indel mutations associated
with the overall burden of structural variation. For CBTTC datasets, we
constructed a [gene × tumor] matrix, involving 567 genes with nonsense/nonstop/
indel mutations in at least three tumors. We assessed the correlation between
mutation events (presence/absence represented by 1/0, respectively) and log-
transformed SSV numbers by Pearson’s correlation, with FDR correction by Storey
and Tibshirani23. FDR estimation by permutation testing (shuffling the SSV
profiles with respect to the expression profiles) was also carried out for comparison
with the Storey and Tibshirani estimates, with results provided in Supplementary
Fig. 2a and Supplementary Data 2. We then assessed the set of genes significant
with FDR < 5% in the TCGA datasets consisting of 1892 adult cancers, by linear
model correcting for both tumor type and high pass versus low pass WGS.

Integrative analyses using TAD and enhancer genomic coordinates. To
identify breakpoints associated with TAD disruption, we used recently published
TAD data from the IMR90 cell line25, following the same approach as described
previously4,19, and using the UCSC Genome Browser LiftOver tool to convert TAD
coordinates from hg18 to hg38. We defined TAD-disrupting SSVs as those SSVs
for which the two breakpoints did not fall within the same TAD. For specific genes,
we used cis-X52 to evaluate allele-specific expression in relation to SSV-impacted
tumors.

For each SSV breakpoint association 0–500 kb upstream of a gene (each
association involving unique breakpoint and gene pairing, with only the SSV
breakpoint closest to the start of each gene being considered for each tumor in the
instance of multiple breakpoints being detected), we determined the potential for
translocation of an enhancer near the gene that would be represented by the
rearrangement (based on the orientation of the SSV breakpoint mate). We utilized
the enhancer annotations as provided by Kumar et al.26. We tabulated SSV
breakpoint-to-gene associations involving enhancer translocation within 0.5 Mb of
the SSV breakpoint in proximity to the gene (assuming no other disruptions
involving the region), where the unaltered gene either had no enhancer within
1 Mb or had an enhancer further away from the gene than the translocated
enhancer. We considered only SSVs with breakpoints on the distal side from the
gene in this analysis. In other words, for genes on the negative strand, the upstream
sequence of the breakpoint (denoted as positive orientation) should be fused
relative to the breakpoint coordinates, and for genes on the positive strand, the
downstream sequence of the breakpoint (denoted as negative orientation) should
be fused relative to the breakpoint coordinates.

Statistical analysis. All P values were two-sided unless otherwise specified. We
utilized linear regression models to associate the expression of genes with nearby
SSV breakpoints and with structural variation burden, as described above. In all of
the linear models performed in this study, appropriate data transformations were
used to make the data align better with the model assumptions. Linear modeling
was performed using the lm function in R (version 4.0.3), with permutation testing
performed using the shuffle function of the mosaic package. One-sided Fisher’s
exact tests or chi-squared tests determined significance of overlap between two
given feature lists. The method of Storey and Tibshirani23 estimated FDR for
significant genes, using the following formula for each gene: [(nominal p value) ×
(total number of genes tested)/(total number of genes that were significant at the
given p value)]. Visualization using heat maps was performed using JavaTreeview53

and matrix2png (version 1.2.1)54. Enrichment of GO annotation terms within sets
of differentially expressed genes was evaluated using SigTerms software55 and one-
sided Fisher’s exact tests.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available. CBTTC molecular data are available
through the public project on the Kids First Data Resource Portal and Cavatica (https://
cbttc.org/) and through the PedCBioPortal (https://pedcbioportal.org/). PCAWG data
are available at the ICGC Data Portal (https://dcc.icgc.org/pcawg). TCGA expression and
SNP array-based CNA data are available from the Broad Institute Firehose pipeline
(http://gdac.broadinstitute.org/). Access to controlled data from CBTTC or ICGC may be
obtained from the respective consortiums through data use agreements. The remaining
data are available within the Article, Supplementary Information, or available from the
authors upon request. Source data are provided with this paper.

Code availability
Source code in R for the linear modeling integrating SSV with expression data, with
example data files, is available at Github https://github.com/chadcreighton/SV-
expression_integration.
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