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Tumour heterogeneity and intercellular networks of
nasopharyngeal carcinoma at single cell resolution
Yang Liu1,11, Shuai He 1,2,3,11, Xi-Liang Wang4,11, Wan Peng1, Qiu-Yan Chen1, Dong-Mei Chi1,5, Jie-Rong Chen1,6,

Bo-Wei Han1, Guo-Wang Lin1,7, Yi-Qi Li1, Qian-Yu Wang 1, Rou-Jun Peng1, Pan-Pan Wei1, Xiang Guo1,

Bo Li 8,9, Xiaojun Xia 1, Hai-Qiang Mai1, Xue-Da Hu4, Zemin Zhang 4,10✉, Yi-Xin Zeng 1✉ &

Jin-Xin Bei 1,2,3✉

The heterogeneous nature of tumour microenvironment (TME) underlying diverse treatment

responses remains unclear in nasopharyngeal carcinoma (NPC). Here, we profile 176,447

cells from 10 NPC tumour-blood pairs, using single-cell transcriptome coupled with T cell

receptor sequencing. Our analyses reveal 53 cell subtypes, including tumour-infiltrating

CD8+ T, regulatory T (Treg), and dendritic cells (DCs), as well as malignant cells with

different Epstein-Barr virus infection status. Trajectory analyses reveal exhausted CD8+ T

and immune-suppressive TNFRSF4+ Treg cells in tumours might derive from peripheral

CX3CR1+CD8+ T and naïve Treg cells, respectively. Moreover, we identify immune-

regulatory and tolerogenic LAMP3+ DCs. Noteworthily, we observe intensive inter-cell

interactions among LAMP3+ DCs, Treg, exhausted CD8+ T, and malignant cells, suggesting

potential cross-talks to foster an immune-suppressive niche for the TME. Collectively, our

study uncovers the heterogeneity and interacting molecules of the TME in NPC at single-cell

resolution, which provide insights into the mechanisms underlying NPC progression and the

development of precise therapies for NPC.
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Nasopharyngeal carcinoma (NPC) is a distinct type of head
and neck cancer, which has been closely linked with the
infection of Epstein-Barr virus (EBV)1. NPC has a

remarkable ethnic and geographic prevalence, where high inci-
dence rate of 15–50 cases per 100,000 people was reported in
Southern China and Southeast Asia, as compared to 0.4 per
100,000 in western populations2. In general, patients with NPC
are diagnosed with advanced stages largely due to non-specific
symptoms. Radiotherapy is the primary treatment modality for
patients with NPC because of the radiosensitive nature of its
tumour cells2. Survival outcomes of patients with NPC improve
substantially, reaching a 5-year overall survival rate of 85.6%3,4,
mainly benefited from the evolution of radiotherapy techniques
and the addition of platinum-based chemotherapy in patients
with loco-regionally advanced disease. Nevertheless, more than
10% of patients develop recurrent and metastatic NPC2, for
whom recent studies showed an overall response rate of 11.7%
and 25.9–34% to targeted therapy with the addition of an inhi-
bitor for epidermal growth factor receptor5 and immunotherapies
using the immune checkpoint blockade6,7, respectively. These
variations in treatment responses and survival outcomes indicate
the heterogeneous nature of NPC.

Individual genetic makeup and genomic instability foster
genetic diversity of cancer cells that contribute to tumour het-
erogeneity. Genome sequencing analyses have revealed diverse
profiles of somatic alterations in NPC tumours, with high
mutational frequencies at CYLD, NFKBIA, TP53, and CDKN2A/
B, as well as accumulated mutations in MHC class I genes and
chromatin modification genes, which were associated with poor
overall survival of the patients8,9. Apart from heterogeneous
cancer cells, tumours exhibit another dimension of heterogeneity,
which contain diverse normal cells creating the tumour micro-
environment (TME) for the maintenance of cancer hallmarks10.
Heterogeneous immune cells and stromal cells have been char-
acterised using transcriptional profiling at single-cell resolution in
several cancers, revealing that certain subtypes of immune cells
and gene signatures in TME are important for tumour progres-
sion and sustained treatment responses11,12. Profound infiltration
of lymphocytes has been observed in histological biopsies of NPC,
amid other stromal cells and tumour cells of different morphol-
ogy13,14. Moreover, high density of tumour infiltrating lympho-
cytes (TILs) was associated with favourable survival outcomes of
patients with NPC15,16. However, the composition of diverse cell
populations in the TME has not been well illustrated in NPC.
Two recent studies demonstrated the presence of T cells with
various functional states and different immune cells in NPC
tumours, using single-cell transcriptome analysis17,18.

In this work, we aim to provide a comprehensive global view of
tumour heterogeneity of NPC, by analysing the single-cell tran-
scriptional profiles of 176,447 cells from 10 treatment-naïve
patients with NPC. With the combination of T cell receptor
(TCR) repertoire information and individual tumour-blood
sample pairs, we further characterise the clonality and migra-
tions of T cells. In addition, we generate a potential cellular
interaction network of cell populations in the TME of NPC.

Results
Landscape view of cell composition in tumour biopsy and
PBMC in patients with NPC. To shed light on the complexity of
tumour microenvironment (TME) in NPC, we performed single-
cell RNA sequencing in combination of TCR repertoire sequen-
cing on viable cells derived from tumour biopsies and matched
peripheral blood mononuclear cells (PBMC) for 10 patients with
EBV-positive NPC prior to any anti-cancer treatment (Fig. 1a,
Supplementary Fig. 1a, b, and Supplementary Table 1). On

average, we obtained more than 380 million sequencing reads for
each sample, with the median of sequencing saturation (covering
the fraction of library complexity) at 90.75% (75.90%–94.50%;
Supplementary Table 2). After strict quality control filters (low
expression of representative genes and inferred doublets; see
Methods; Supplementary Fig. 1c and Supplementary Table 3), a
total of 176,447 cells were identified from the 10 patients
(including 82,622 and 93,825 for tumours and PBMC, respec-
tively; Supplementary Data 1). We obtained about 1500 genes and
4950 unique molecular identifiers (UMIs) on average for each
cell, indicating sufficient coverage and representative of tran-
scripts (Supplementary Fig. 1d and Supplementary Data 1).

Next, to define groups of cells with similar expression profiles,
we performed unsupervised clustering analysis implemented in
Seurat software19. The distribution of cell clusters for each patient
matched well with that of other patients, suggesting that the
potential variation of expression due to batch effect of sample
processing was minimal (see Methods; Supplementary Fig. 1e).
Each cluster was further identified as a specific cell subpopulation
according to the expression of the most variable genes and the
canonical markers, including CD4+ T cells (gene markers:
PTPRC, CD3D, and CD4), CD8+ T cells (PTPRC, CD3D, and
CD8A), myeloid cells (CD14, ITGAX for CD11C), malignant cells
(EPCAM and KRT5), B cells (CD19 and MS4A1), and NK cells
(FCGR3A and NCAM1; Fig. 1b). Besides, we detected 56
fibroblasts and seven endothelial cells with sparse distribution
among TME cells (Supplementary Fig. 1f), which might reflect
their intrinsic nature in NPC or their low representation due to
technical limitations. All these cell types were widespread in
tumour samples, indicating the heterogeneous cell composition of
TME in NPC (Fig. 1b), consistent with a recent single-cell
transcriptome study of NPC17. We observed that the proportions
of CD8+ T and B cells were increased with 1.34 and 2.33 times on
average, respectively, while the NK cells were decreased in the
tumours compared to the PBMC, suggesting two distinct immune
landscapes between tumour and peripheral blood (Fig. 1c).
Moreover, we compared cell compositions between NPC and
other types of cancers with single-cell data publicly available,
including non-small-cell lung cancer (NSCLC), colorectal cancer
(CRC), and pancreatic ductal adenocarcinoma (PDAC). We
observed the common occurrence of infiltrating immune cells
amid individual heterogeneity of cell composition in all types of
cancers (Supplementary Fig. 1g). Notably, we observed a
significantly higher proportion of T cells in NPC compared to
any other cancers (Supplementary Fig. 1h), which is consistent
with a previous finding that the tumour infiltrating leucocytes was
the main characteristic of NPC stroma20.

Heterogeneity of T cells and the diversity of TCR repertoire.
Considering the abundance of T and NK cells in NPC tumour
samples and their anti-tumour capabilities, we explored the
intrinsic structure and potential functional subtypes of the overall
T and NK cell populations. We grouped all 141,875 T and NK
cells into 32 subgroups using clustering analysis, of which the
majority were CD4+ and CD8+ T cells (Fig. 2a, Supplementary
Fig. 2a, Supplementary Data 1 and 2). To identify any gene with a
specific expression on a cell type, we performed differential gene
expression (DEG) analysis of T cell clusters. We observed that
CD4+ and CD8+ T cell clusters in tumour samples had wide-
spread overexpression of exhaustion markers (LAG3, TIGIT,
PDCD1, HAVCR2, and CTLA4) and effector molecules (GZMB,
GZMK, INFG, NKG7, GNLY, and IL2; Supplementary Fig. 2b),
with remarkably high expression of the proliferative signatures
for CD8_C10_MKI67 and Treg_C3_MKI67 (Supplementary
Fig. 2c and Supplementary Data 3). The co-expression of
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exhaustion and effector genes in tumour infiltrating T cells has
been also demonstrated recently in NPC17. Together, these
observations suggest that T cells exhibited anti-tumour effects
against antigens, but their effector functions were somehow
suppressed in the TME of NPC. By contrast, we observed naïve

gene signatures (high expression of TCF7, SELL, CCR7 and LEF1)
in the resting T cells in PBMC, including CD4_C1_LEF1,
CD8_C1_LEF1, CD8_C2_TCF7, and DN_LEF1 (CD4−CD8−)
cell clusters, and partially in Treg_C1_SELL and DP_TCF7
(CD4+CD8+; Supplementary Fig. 2b). Besides, we identified two
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Fig. 1 The landscape profiling of single cells in NPC tumours and matching PBMC. a An experimental scheme diagram highlights the overall study design.
Single viable cells were collected using flow cytometry sorting (FACS) and subjected for cell barcoding. The cDNA libraries of 5’-mRNA expression and
TCR were constructed independently, followed by high throughput sequencing and downstream analyses. b UMAP plot of 176,447 single cells grouped into
six major cell types (left panel) and the normalised expression of marker genes for each cell type (right panel). Each dot represents one single cell, coloured
according to cell type (left panel), and the depth of colour from grey to blue represents low to high expression (right panel). c UMAP plot of the above
single cells coloured according to their origins from peripheral blood or tumour (left panel), and the fraction of cell types originating from each patient
(right panel). Each dot represents one single cell, coloured according to sample origin.
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clusters of CD4+ Th1-like cells in tumours, including Th1_li-
ke_C1_CCR7 and Th1_like_C2_TNF, with specific expression of
naïve T cell markers and pro-inflammatory cytokines, respec-
tively, as well as a common expression of Th1-like cell markers21

(CXCL13, BHLHE40, and CXCR3; Supplementary Fig. 2d).
Next, we performed T cell receptor (TCR) repertoire analysis

based on the sequences of α and β chains of TCR, which revealed

38,720 (32.97%; out of 117,447) T cells with detectable TCR α-β
pairs or clonotypes after strict quality control (Supplementary
Fig. 2e and Supplementary Data 4). We observed no sharing of
any identical TCR clonotype among different patients with NPC,
although they had certain preferences of V and J fragments as
well as V–J pairs (Supplementary Fig. 3a, b). Interestingly, we
observed the sharing of the most variable CDR3 sequences across
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the patient samples (Supplementary Fig. 3b), among which
CAVRGTGTASKLTF and CASSFSGANVLTF have been asso-
ciated with the recognition of MLANA and EBV antigens in the
VDJ database22, respectively (Supplementary Table 4). Moreover,
we observed that both CD4+ and CD8+ T cells have more clonal
T cells, which are derived from identical TCR clonotypes and
consistent with a previous study17, in the tumours compared to
the PBMC, suggesting the clonal expansion of certain dominant
clones of tumour infiltrating T cells upon continuous stimulations
by tumour antigens (Supplementary Fig. 3c).

Diversity of CD8+ T cells and the development of exhausted
intratumoral CD8+ T cells. We identified a total of 62,244 CD8+

T cells in all NPC samples, which were grouped into 11 clusters
based on their expression of canonical markers, including two
naïve (CD8_C1_LEF1 and CD8_C2_TCF7), blood central
memory (CD8_C3_KLRB1), blood effector memory
(CD8_C4_KLRG1), high migration (CD8_C5_CX3CR1), tumour
central memory (CD8_C6_IL7R), tumour effector memory
(CD8_C7_GZMK and CD8_C8_MHC), tissue resident memory
(CD8_C9_XCL1), high proliferating (CD8_C10_MKI67), and
exhausted (CD8_C11_PDCD1) T cells (Fig. 2a, b, Supplementary
Data 1 and 2). The majority (>97.68%) of CD8_C6_IL7R,
CD8_C7_GZMK, CD8_C8_MHC, CD8_C9_XCL,
CD8_C10_MKI67, and CD8_C11_PDCD1 were found in NPC
tumours, whereas the majority (>94.85%) of CD8_C1_LEF1,
CD8_C2_TCF7, CD8_C3_KLRB1, CD8_C4_KLRG1, and
CD8_C5_CX3CR1 were in the peripheral blood (Supplementary
Data 1).

To evaluate the functional status of CD8+ T cells, we calculated
cytotoxicity, proliferation, and exhaustion scores for all CD8+ T
cell clusters. We observed the highest cytotoxicity score for
CD8_C5_CX3CR1, the highest proliferation score for
CD8_C10_MKI67, and the highest exhaustion score for
CD8_C11_PDCD1 (Supplementary Fig. 2c and 4a), suggesting
their potential cytotoxic, proliferation, and exhausted functions,
respectively. Next, the DEG analysis revealed high expression of
chemokine receptors (CX3CR1, CXCR1, and CXCR2), S1P
receptors (S1PR1, S1PR4, and S1PR5), and integrins (ITGB2,
ITGA4, ITGAL, and ITGB7) in CD8_C5_CX3CR1, which were
responsible for the regulation of CD8+ T cell migration23

(Supplementary Fig. 4b). Moreover, signalling pathway enrich-
ment analyses of the genes with differential expression revealed
that tumour cytotoxic CD8+ T cell clusters (CD8_C7_GZMK,
CD8_C8_MHC, and CD8_C9_XCL1) were enriched with the
pathways related to cytokine production and lymphocyte
activation; and CD8_C5_CX3CR1 was enriched with the path-
ways related to leukocyte trans-endothelial migration and
leukocyte migration (Supplementary Fig. 4c), which are

consistent with their capability in peripheral circulation and
infiltrating to tumour24.

To further explore the development of CD8+ T cells in NPC,
we first performed pseudotime trajectory analysis using Monocle2
to order each CD8+ T cell along trajectories according to their
expression and transition profiles. We observed the develop-
mental trajectories from CD8_C5_CX3CR1 cells at the initial
state or CD8_C10_MKI67 cells at the intermediate state to
CD8_C11_PDCD1 cells at the terminal state (Fig. 2c). Suppor-
tively, compared to the exhausted CD8_C11_PDCD1,
CD8_C10_MKI67 had an intermediate exhaustion score (Sup-
plementary Fig. 4a) and lower expression of known exhaustion
markers including PDCD1, LAG3, and HAVCR2 (Supplementary
Fig. 2b). TCR repertoire sequencing revealed 21,099 CD8+ T cells
(out of 62,244) with TCR clonotypes (Supplementary Fig. 4d and
Supplementary Data 4). We observed that
CD8_C11_PDCD1 shared considerable proportions of identical
TCRs with other CD8+ T cell clusters, ranging from 17.68% to
41.67% for infiltrating T cell clusters and 5.31% for peripheral
CD8_C5_CX3CR1 (Supplementary Fig. 4e). To track the
dynamic relationships among T cell clusters from NPC tumour
and peripheral blood, we quantitated the expansion (exp, clonal
expansion), migration (migr) and transition (tran, developmental
transition or differentiation) of T cells using gene expression and
TCR information with STARTRAC method24. Consistently, we
observed the highest transition mobility of CD8_C11_PDCD1
with CD8_C10_MKI67, followed by CD8_C7_GZMK,
CD8_C8_MHC, and CD8_C9_XCL1 (Fig. 2d). These observa-
tions strongly suggest that CD8_C11_PDCD1 cells were mainly
expanded by proliferating pre-exhausted intratumoral CD8+

T cells. Moreover, we observed that CD8_C5_CX3CR1 had the
largest number of clonal T cells (Supplementary Fig 4d) and the
highest expansion mobility in CD8+ T cell clusters (Fig. 2e).
Furthermore, CD8_C5_CX3CR1 had the highest proportion of
shared TCR between peripheral blood and tumour (Fig. 2e). The
proportions of TCRs shared with peripheral CD8_C5_CX3CR1
ranged from 4.76% to 12.77% for infiltrating CD8+ T cell clusters
(Supplementary Fig. 4e). These data suggest a common origin of
the intratumoral CD8+ T cells in NPC tumour from CD8+

T cells in peripheral blood including CD8_C5_CX3CR1 cells.

The diversity and trajectory of Treg cells in NPC. Treg cells are
potent suppressors of immune cells and are essential to main-
taining immunological tolerance and homoeostasis. We identified
a total of 11,631 Treg cells based on their transcription of
canonical markers (CD4, IL2RA, and FOXP3), which were
grouped into four cell clusters, including Treg_C1_SELL,
Treg_C2_HSPA1A, Treg_C3_MKI67, and Treg_C4_TNFRSF4
(Fig. 2a, Supplementary Fig. 5a, Supplementary Data 1 and 2).
We observed that the proportion of Treg cells among CD4+

Fig. 2 Expression profile and development of CD8+ T cells. a UMAP plot of 141,875 T and NK cells grouped into 32 cell types. Each dot represents a cell,
coloured according to the cell types indicated at the right legend. b Violin plots showed the normalised expression of CD8+ T cell markers (rows) in each
CD8+ T cell cluster (columns). Cell clusters and the expression level of a gene are indicated at the x- and y-axis, respectively. c Pseudotime trajectory
analysis of selected CD8+ T cells (CD8_C5, CD8_C7, CD8_C8, CD8_C9, CD8_C10, and CD8_C11; n= 10,000) with high variable genes. Each dot
represents one single cell, coloured according to its cluster label. The inlet plot showed each cell with a pseudotime score from dark blue to yellow,
indicating early and terminal states, respectively. For CD8+ T cell clusters, 10,000 cells were randomly selected for the analysis. d Box plots showed the
transition-index scores of exhausted CD8+ T cells (CD8_C11_PDCD1) and other CD8+ T cells (n= 10). Comparison was made using a two-sided Wilcoxon
test. Cell clusters and transition-index scores are indicated at the x- and y-axis, respectively. Endpoints depict minimum and maximum values; centre lines
denote median values; whiskers denote 1.5× the interquartile range; coloured dots denote each patient. e Box plots showed the expansion- (top panel) and
PBMC-Tumour migration-index (bottom panel) scores of each CD8+ T cell cluster (n= 10). Each comparison was made using either a two-sided Wilcoxon
test (top panel) or Kruskal–Wallis test (bottom panel). Cell clusters are indicated at the x-axis, and the y-axis shows the expansion- and PBMC-Tumour
migration-index scores at the top and bottom panel, respectively. Endpoints depict minimum and maximum values; centre lines denote median values;
whiskers denote 1.5× the interquartile range; coloured dots denote each patient.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21043-4 ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:741 | https://doi.org/10.1038/s41467-021-21043-4 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


T cells in the tumours was much higher than that in the PBMC
(Supplementary Fig. 5b). All Treg_C4_TNFRSF4 cells and the
majority of Treg_C2_HSPA1A (99.5%; 4,762 out of 4,786) and
Treg_C3_MKI67 (90.0%; 1,187 out of 1,319) cells were found in
the tumours, while Treg_C1_SELL cells were in the PBMC
(Supplementary Data 1). To explore the immune-regulatory
functions of Treg cells, we first calculated the IL2R scores for each
cell based on their expression level of CD25 (IL2RA), CD122
(IL2RB), and CD132 (IL2RG) using the AddModuleScore func-
tion implemented in Seurat software. The three genes encode
transmembrane proteins that form a receptor complex competi-
tively binding IL2 (the T cell growth factor) with high affinity so
as to inhibit effector T cells25. We observed the highest IL2R score
for Treg_C4_TNFRSF4 among all Treg clusters (Fig. 3a), sug-
gesting the strongest IL-2 binding potential of
Treg_C4_TNFRSF4 cells. Similarly, we also observed the highest
inhibitory and co-stimulatory scores for Treg_C4_TNFRSF4 cells
based on their expression levels of genes with immune-inhibitory
functions and co-stimulatory receptors, respectively (Fig. 3a and
Supplementary Fig. 5a), suggesting that Treg_C4_TNFRSF4 cells
had a stronger suppression potential on immune response and
were much activated than the other Treg cells. Consistently, such
a subset of Treg cells were also identified in CRC, NSCLC, and
hepatocellular carcinoma (HCC), with high activation and
immune-suppressive potential as indicated by the high IL2R,
inhibitory, and co-stimulatory scores (Supplementary Fig. 5c).
Besides, we observed elevated expression levels of chemokine
receptors in Treg_C4_TNFRSF4 cells, including CXCR3, CXCR6,
and CCR8 that have been implicated in several cancers26 (Sup-
plementary Fig. 5a).

To characterise the potential functions of Treg cells, we first
performed signalling pathway enrichment analyses for each Treg
cluster based on the expression levels of genes implicated in each
pathway. We observed a distinct pattern of pathway enrichment
for each Treg cluster, suggesting their various functions.
Particularly, the ‘cytokine-cytokine receptor interaction’ was
highly enriched in Treg_C4_TNFRSF4 (Fig. 3b), consistent with
their chemotactic potentials as mentioned earlier. Moreover, the
‘interleukin-10 production’, ‘TNF signalling pathway’ and ‘NF-κB
signalling pathway’ were enriched in both Treg_C4_TNFRSF4
and Treg_C2_HSPA1A (Fig. 3b). As such, we further compared
the major pathways between Treg_C4_TNFRSF4 and
Treg_C2_HSPA1A using Gene Set Enrichment Analysis (GSEA),
which revealed a higher enrichment of pathways related to cell
cycle, chemokine, TGF-β, and negative regulation of T cell
proliferation, as well as transcription factors activating NF-κB and
STAT pathways in Treg_C4_TNFRSF4 (Supplementary Fig. 5d).
Since Treg_C4_TNFRSF4 expressed CCR8 specifically (Supple-
mentary Fig. 5a), we used the normalised mRNA ratio of
CCR8/FOXP3 to estimate the fraction of Treg_C4_TNFRSF4 cells
in Treg cells (FOXP3+). Survival analysis showed that the higher
ratio of CCR8/FOXP3 was associated with the decreased
progression-free survival (PFS; Supplementary Fig. 5e), suggest-
ing that a higher fraction of Treg_C4_TNFRSF4 cells with
activated potential in Treg cells had a strong immune-suppressive
function in NPC.

To trace the origin of intratumoral Treg cells, we first
performed pseudotime trajectory analysis using Monocle2, which
revealed the most terminal status with the highest pseudotime
scores for Treg_C4_TNFRSF4 cells and two developmental
trajectories of Treg_C4_TNFRSF4 cells from Treg_C1_SELL cells
in PBMC and Treg_C3_MKI67 cells in tumours (Fig. 3c). We
next examined the expression of tissue resident markers (CD69,
ITGAE, and BHLHE40; Supplementary Table 5) in Treg cells and
observed much higher expression of ITGAE and BHLHE40 in
Treg_C4_TNFRSF4 and Treg_C3_MKI67 cells than

Treg_C2_HSPA1A and Treg_C1_SELL cells (Supplementary
Fig. 6a). Given that the majority of Treg_C2_HSPA1A cells was
in tumours and originated from Treg_C1_SELL cells according to
the pseudotime trajectory analysis (Fig. 3c), the scarce expression
of the resident markers might suggest the most recent recruit-
ment of Treg_C2_HSPA1A cells from peripheral blood.

TCR repertoire analysis revealed 17,621 (out of 47,384) CD4+

T cells assigned with clonotypes, among which Treg_C2_H-
SPA1A and Treg_C4_TNFRSF4 had intermediate numbers of
clonotypes (Supplementary Fig. 6b and Supplementary Data 4).
Noteworthily, Treg_C4_TNFRSF4 had the largest proportion of
clonal cells, meaning the highest clonality, among all CD4+

T cells (Supplementary Fig. 6b). Consistently, we observed that
Treg_C4_TNFRSF4 had the highest expansion score, meaning
the highest degree of clonal expansion, among the Treg cell
clusters (Fig. 3d). We also observed the highest migration score,
meaning the highest mobility, for Treg_C1_SELL derived from
the PBMC (Fig. 3d). DEG analysis revealed that Treg_C1_SELL
had high expression of chemokine receptors CCR4, which are
chemotactic counterparts for CCL5, CCL17, and CCL22 produced
by intratumoral CD8+ T, NK, and myeloid cells in NPC
(Supplementary Figs. 5a and 6c). These observations suggest that
the migration capability and chemotactic interaction potentials
with intratumoral cells make the movement of peripheral
Treg_C1_SELL cells to tumour site possible. Indeed, we observed
a small number of shared TCRs between Treg cells from tumour
and peripheral blood (Supplementary Fig. 6d), which is consistent
with a previous finding that intratumoral Treg cells were partially
recruited from peripheral blood27. We further examined the
transition mobility of Treg_C2_HSPA1A and
Treg_C4_TNFRSF4 with other Treg cells. We observed that
Treg_C4_TNFRSF4 cells had the highest transition mobility
with Treg_C3_MKI67 cells, followed by Treg_C2_HSPA1A and
Treg_C1_SELL cells; and Treg_C2_HSPA1A cells had high
transition mobility with Treg_C4_TNFRSF4 and
Treg_C3_MKI67 cells (Fig. 3e). These observations again
supported the developmental trajectory of intratumoral
Treg_C4_TNFRSF4 cells from naïve Treg_C1_SELL cells through
intermediate Treg_C2_HSPA1A or Treg_C3_MKI67 cells
(Fig. 3c).

Diversity of B cells in NPC. We identified a total of 22,892 B
cells, which were grouped into nine clusters (Supplementary
Fig. 7a, Supplementary Data 1 and 2). Among them,
B_C1_TCL1A, B_C2_FCRL3, and Plamsa_C1_IgA clusters were
derived from PBMC and the other six clusters were from tumour
samples (Supplementary Fig. 7a). DEG analysis revealed unique
gene signatures for B cell clusters in tumour samples, including
B_C5_ISG15 with interferon induced genes, B_C6_HSPA1A with
stressful gene expression, and Plasma_C2_IgG with elevated
expression level of IgH genes (Supplementary Fig. 7b). We further
identified two B cell clusters (B_C1_TCL1A and B_C4_IFITM3)
before the class switch recombination based on the expression of
IGHM and IGHD (Supplementary Fig. 7b and Supplementary
Table 5). Moreover, correlation analysis revealed that the
expression of TCL1A was highly correlated with that of IGHM
and IGHD in the two clusters, which could be a sufficient marker
to classify B cells before the class switch recombination (Sup-
plementary Fig. 7c). Signalling pathway enrichment analyses of
the genes with differential expression revealed that B cell clusters
were enriched with various pathways related to immune regula-
tion (Supplementary Fig. 7d). Particularly, B_C4_IFITM3,
B_C5_ISG15, and B_C6_HSPA1A had the enrichment of ‘EBV
infection’, ‘defence response to virus’, ‘viral carcinogenesis’, and
‘response to interferon-gamma’ pathways, suggesting that the
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Fig. 3 Expression profile and development of Treg cells. a Violin plots showed the IL2R (left panel), inhibitory (middle panel), and co-stimulatory (right
panel) scores for each Treg cell cluster (n= 11,631). Box plots inside the violins indicated the quartiles of corresponding score levels. Endpoints depict
minimum and maximum values; centre lines denote median values; whiskers denote 1.5× the interquartile range; black dots denote each cell. Violin plots
are coloured according to cell types, and signature scores are indicated at the y-axis. b Heatmap showed the selected signalling pathways (rows) that were
significantly enriched in GO and KEGG analyses for each Treg cell cluster (columns). Filled colours from blue to red represent scaled expression levels
(normalised −log10P values) from low to high. P values were calculated by one-sided hypergeometric test and adjusted for multiple comparisons. Orange
and purple squares on the left column represent the results derived from GO and KEGG signalling pathways analysis, respectively. c Pseudotime trajectory
analysis of Treg cells (Treg_C1, Treg_C2, Treg_C3, and Treg_C4; n= 11,631) with high variable genes. Each dot represents one single cell, coloured
according to its cluster label. The inlet plot showed each cell with a pseudotime score from dark blue to yellow, indicating early and terminal states,
respectively. d Box plots showed the expansion- (top panel) and migration-index (bottom panel) scores of each CD4+ T cell cluster (n= 10). Comparison
was made using two-sided Wilcoxon test. Cell clusters are indicated at the x-axis, and the y-axis shows the expansion- or migration-index at the top or
bottom panel, respectively. Endpoints depict minimum and maximum values; centre lines denote median values; whiskers denote 1.5× the interquartile
range; coloured dots denote each patient. e Box plots showed the transition-index scores of Treg_C4_TNFRSF4 (left panel) and Treg_C2_HSPA1A (right
panel) with other Treg cells (n= 10). Comparison was made using two-sided Kruskal-Wallis test. Cell clusters and the transition-index scores are indicated
at the x- and y-axis, respectively. Endpoints depict minimum and maximum values; centre lines denote median values; whiskers denote 1.5× the
interquartile range; coloured dots denote each patient.
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three groups of cells might be responsible for the immune
response against EBV infection (Supplementary Fig. 7d).

Tumour-associated LAMP3+ DCs display a tolerogenic phe-
notype in NPC. A total of 8,893 myeloid cells were identified and
clustered into 10 subsets including one for mast cells, five for
monocyte or macrophage cells, three for conventional dendritic
cells, and one for plasmacytoid dendritic cells (Fig. 4a, Supple-
mentary Fig. 8a and 8b, Supplementary Data 1 and 2). Among the
four clusters of dendritic cells, DC_C2_CD1C, DC_C3_LAMP3,
and DC_C4_JCHAIN were derived from tumours, and
DC_C1_FCER1A was derived from peripheral blood, which was

assigned as monocyte-like DC because of the expression of
monocyte marker S100A8 (Supplementary Fig. 8a, b). Note-
worthily, we identified DC_C3_LAMP3 cells as a group of DCs
with high maturation, activation, and migration potentials in
NPC, based on the expression levels of the signature genes related
to maturation (LAMP3, MARCKSL1, IDO1, and UBD), activation
(CD80, CD83, and CD40), and migration (CCR7, FSCN1,
and SLCO5A1; Fig. 4b, Supplementary Fig. 8c and Supplementary
Table 5), respectively. Moreover, DC_C3_LAMP3 cells had high
expression of special chemokine ligands (CCL17, CCL19, and
CCL22), which are known to recruit immune cells expressing
chemokine receptors CCR4, CCR7, and CXCR3 (Fig. 4b). We also
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observed significant correlations of expression between the mar-
ker gene LAMP3 and other functional genes related to matura-
tion, migration, activation, and chemokine ligands in
DC_C3_LAMP3 (Supplementary Fig. 8d). These observations
suggest that DC_C3_LAMP3 cells might be LAMP3+ DCs, which
are featured with high migration, activation, and maturation in
several cancers as reported previously28,29.

Signalling pathway enrichment analyses using GO and KEGG
revealed a specific pattern of enriched pathways among the three
conventional DC cell clusters, where the ‘antigen processing and
presentation’ was significantly upregulated in DC_C2_CD1C but
downregulated in DC_C3_LAMP3 (Fig. 4c). Moreover, apoptosis,
NF-κB, and MAPK signalling pathways as well as myeloid cell
differentiation were also upregulated in DC_C3_LAMP3 com-
pared to other two clusters (Fig. 4c). These observations are
consistent with the GSEA analyses (Supplementary Fig. 8e). As
such, we scored the expression levels of genes related to these
pathways in each cluster (Supplementary Data 3), which revealed
the highest levels of differentiation and apoptosis but the lowest
antigen presentation for DC_C3_LAMP3 (Fig. 4d). Furthermore,
we observed that the gene signatures corresponding to the
activation of immune response was reduced in DC_C3_LAMP3
(Fig. 4c), which was consistent with the highest immune-
regulatory score and the increased expression of a subset of
immune-suppressive genes, including CD274 (PD-L1),
PDCD1LG2 (PD-L2), CD200, EBI3, IDO1, IL4I1, SOCS1, SOCS2,
and SOCS3 (Supplementary Fig. 9a and Supplementary Data 3).
Besides, we observed a similar expression profile of LAMP3+ DC
among NPC, HCC, and NSCLC (Supplementary Fig. 9a). These
observations suggest that DC_C3_LAMP3 cells could be
considered as a group of regulatory and tolerogenic DCs, which
restrain the activation of T cells30.

Next, we performed pseudotime trajectory analysis and
observed that DC_C1_FCER1A cells developed into two branches
including DC_C2_CD1C and DC_C3_LAMP3 cells, and
DC_C3_LAMP3 cells had the highest pseudotime score meaning
the most differentiated and matured DC (Fig. 4e). Combined with
their immune-regulatory and antigen-presenting scores (Fig. 4d),
these data suggest that DC_C1_FCER1A cells in peripheral blood
might infiltrate to tumour, convert to DC_C2_CD1C cells with
increased antigen-presenting capacity and to immune-
suppressive DC_C3_LAMP3 cells (Fig. 4e). Consistently, we
observed the similar pattern of changes in the expression of
transcription factors (TFs) specific for the genes with differential
expression from DC_C1_FCER1A to DC_C2_CD1C and then
DC_C3_LAMP3 cells (Supplementary Fig. 9b). We further
constructed an accurate cellular network to infer the regulons
associated with transcription factors and signalling molecules in
DC_C3_LAMP3 using ARACNe (Supplementary Data 5). We

observed that the upregulation of LAMP3 was linked with
multiple TFs, including ETV3, ETV6, HMGN3, GPBP1, TRAFD1,
ATF3, KDM2B, JUN, HIVEP1, KLF6, ZBTB10, and NFKB1 that
have been related to the maturation of DC in mouse31, while the
downregulation of LAMP3 was linked with CREM (Supplemen-
tary Fig. 9c). We also observed that among these TFs KDM2B,
KLF6, ETV6, JUN, HMGN3, and TRAFD1, as well as NFKB1,
REL, and RELB in the NF-κB pathway were linked with the
upregulated expression of immune-suppressive molecules like
CD274, PDCD1LG2, CD200, and IDO1, but the downregulated
expression of HLA-class II genes (Fig. 4f and Supplementary
Fig. 9c). By contrast, SOX4 and CREM were associated with the
downregulation of CD274, CD200, and IDO1 (Supplementary
Fig. 9c). These observations suggest that multiple TFs regulate the
immune-suppressive function, antigen-presenting capacity, and
maturation of DC_C3_LAMP3 in NPC.

Heterogeneity of malignant cells with different EBV infection
status. We identified a total of 2,787 malignant epithelial cells in
NPC tumours based on their presence of large-scale chromoso-
mal copy number variation (CNV) compared to a reference data
of normal epithelial cells32 (see Methods; Fig. 5a). Given that EBV
is a known factor responsible for the malignant transformation
and tumorigenesis of NPC33, we examined the expression of EBV
molecules in the malignant cells and divided them into EBV+

(EP_C1_LMP1) and EBV− (EP_C2_EPCAM) malignant cells
according to their detectable or not EBV transcripts (LMP-1/
BNLF2a/b, RPMS1/A73, LMP-2A/B, and BNRF1; Fig. 5b, c,
Supplementary Fig. 10a, Supplementary Data 1 and 2). We
observed higher expression of EPHA2 and EGFR in
EP_C1_LMP1 cells (Fig. 5d), which have been related to the
susceptibility of EBV infection34. Moreover, immunofluorescence
staining of an EBV-encoded protein (LMP1) confirmed the pre-
sence of EBV+ malignant cells (LMP1+EPCAM+) and EBV−

malignant cells (LMP1−EPCAM+) in NPC (Fig. 5e). We also
observed specifically high activations of the major genes involved
in NF-κB and Notch pathways as well as chemokines including
CX3CL1 in EP_C1_LMP1 compared to EP_C2_EPCAM cells
(Fig. 5d). Consistently, we observed high expression of CX3CL1
in an independent collection of NPC tumours (n= 113) com-
pared to non-cancerous samples (rhinitis, n= 10; Supplementary
Fig. 10b). Interestingly, we noted that the overexpression of
CX3CR1, the receptor of CX3CL1, in multiple types of immune
cells in peripheral blood (Supplementary Fig. 10c). Signalling
pathway enrichment analyses revealed that EP_C1_LMP1 were
enriched with cytokine-mediated, regulation of cell death, apop-
tosis, and cancer-related pathways (Fig. 5f). Taken together, these
observations suggest that malignant NPC cells exhibit different

Fig. 4 Expression and development of dendritic cells. a UMAP plot of 8,893 myeloid cells grouped into 10 cell types. Each dot represents a cell, coloured
according to cell types. b Heatmap showed the normalised mean expression of genes associated with maturation, activation, migration, and chemokine
ligand (rows) in three dendritic cell clusters (DC_C1, DC_C2, and DC_C3; columns). Filled colours from black to yellow represent scaled gene expression
levels from low to high. c Heatmap showed the selected signalling pathways (rows) with significant enrichment of GO and KEGG terms for three dendritic
cell clusters (DC_C1, DC_C2, and DC_C3; columns). Filled colours from blue to red represent scaled expression levels (normalised −log10P values) from
low to high. P-values were calculated by one-sided hypergeometric test and adjusted for multiple comparisons. Orange and purple squares on the left
column represent the results derived from GO and KEGG signalling pathways analysis, respectively. d Violin plots showed the differentiation, apoptosis,
antigen presentation, and dysfunction scores of three dendritic cell cluster (DC_C1, DC_C2, and DC_C3; n= 1134). Box plots inside the violins indicated the
quartiles of corresponding score levels. Endpoints depict minimum and maximum values; centre lines denote median values; whiskers denote 1.5 × the
interquartile range; black dots denote each cell. Cell clusters and the signature scores are indicated at the x- and y-axis, respectively. e Pseudotime
trajectory analysis of three dendritic cell clusters (DC_C1, DC_C2, and DC_C3; n= 1134) with high variable genes. Each dot represents one single cell,
coloured according to its cluster label. The inlet plot showed each cell with a pseudotime score from dark blue to yellow, indicating early and terminal
states, respectively. f Venn diagram showed overlapped transcription factors regulating LAMP3 gene, immune-suppressive molecules, and HLA-II in
DC_C3_LAMP3 cells.
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susceptibility to EBV infection, leading to distinct expression
profiles.

To further explore the intra-tumour and inter-tumour
heterogeneity of malignant NPC cells, we first divided them into
five prominent cell subgroups (C1–C5; Supplementary Fig. 10d,
e), using clustering analysis without EBV information. Next, we
deciphered the variations of gene expression in malignant cells for

different clusters using gene set variation analysis (GSVA), which
revealed a distinct enrichment of signalling pathway for each
cluster (Supplementary Fig. 10f). We observed variable propor-
tions of cell subtypes among different tumour samples (Supple-
mentary Fig. 10e), which might contribute to the inter-tumour
heterogeneous expression profiles. Indeed, the GSVA data
showed different enrichments of signalling pathways among
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tumour samples (Supplementary Fig. 10f). Noteworthily, the P02,
P08, P11, and P15 samples with a higher proportion of C4 cluster
compared to other samples showed enrichment of cell cycle (E2F,
MYC, and G2M checkpoint) related pathways (Supplementary
Fig. 10e–g), although C4 cluster had the highest proliferation
scores but overall low content in NPC tumours compared to the
other three clusters. These observations suggest the intra- and
inter-tumour heterogeneity of the malignant cells in NPC.

Intercellular interaction network in NPC. To explore the cellular
communication network in NPC, we examined potential ligand-
receptor binding among different cell clusters derived from NPC
tumours and PBMC, using CellPhoneDB software35 (Supplementary
Data 6). We observed intensive cellular interactions among the
DC_C3_LAMP3 cells, Treg cells, and exhausted CD8+ T cells
(CD8_C11_PDCD1) via inhibitory, co-stimulatory molecules, or
chemokines (Fig. 6a, b). Among them, DC_C3_LAMP3 cells were
predicted to interact with Treg_C1_SELL cells in peripheral blood
through CCL17-CCR4 and CCL22-CCR4, which are known for
recruiting Treg cells into tumour tissue36 (Fig. 6a).
Treg_C4_TNFRSF4 cells had high expression of CTLA4, ENTPD1,
and CSF1, which showed ligand-receptor bindings to CD80/CD86,
ADORA2A, and SIRPA on DC_C3_LAMP3 cells, suggesting the
potential interaction between Treg_C4_TNFRSF4 and
DC_C3_LAMP3 cells (Fig. 6a). DC_C3_LAMP3 cells were also
predicted to interact with CD8_C11_PDCD1 cells through CD200-
CD200R signalling, a non-classical immune-suppressive pathway
involved in the suppression of anti-tumour responses37 (Fig. 6b).
Potential ligand-receptor interactions were observed between
Treg_C4_TNFRSF4 and CD8_C11_PDCD1 cells, including those of
chemokines (CCL4-CCR8), adhesive connection (ITGAL-ICAM1
and SELPLG-SELL), and immune regulation (HAVCR2-LGALS9;
Fig. 6b and Supplementary Data 6), which are well-known in the
TME of tumour and promote the immune-suppressive activity of
Treg cells and CD8+ T cells exhaustion26,38. Notably, these potential
interactions were commonly observed in our NPC cohort (Supple-
mentary Fig. 11a). Consistently, in another independent NPC sample
collection (n= 113), we observed strong correlations of expression
among the gene signatures for DC_C3_LAMP3 cells, Treg cells, and
exhausted CD8+ T cells (CD8_C11_PDCD1; r > 0.8, P < 2.2 × 10−16;
Supplementary Fig. 11b). These observations suggest the widespread
occurrence of the immune-regulatory interactions among
DC_C3_LAMP3, Treg_C4_TNFRSF4, and CD8_C11_PDCD1 cells
in NPC tumours. We further performed multiplex immunohis-
tochemistry (IHC) staining of NPC biopsies and confirmed the
physical juxtapositions of CD80-expressing DC_C3_LAMP3 cells
(CD80+) and CTLA4-expressing Treg cells (CD3+CD4+FOXP3+),
as well as PD-L1-expressing DC_C3_LAMP3 cells (CD80+) and PD-
1-expressing CD8+ T cells (CD3+CD8+; Fig. 6c, d).

Between malignant NPC cells and immune cells, we observed
that EBV+ EP_C1_LMP1 cells had significantly more receptor-
ligand interactions than EBV−EP_C2_EPCAM cells in each NPC
patient (Supplementary Fig. 12a). We noted that EP_C1_LMP1-
cells uniquely expressed CX3CL1 in tumour, which was predicted
to interact with CX3CR1 expressed on peripheral immune cells
including CD8_C5_CX3CR1 cells, DC_C1_FCER1A cells, NK
cells, and monocytes (Supplementary Fig. 12b), suggesting the
chemotactic potential of EP_C1_LMP1 cells to immune cells
from peripheral blood. Moreover, we observed that EGFR on
EP_C1_LMP1 cells was predicated to bind TGFB1 on multiple
cell types, which has been reported to regulate the EBV life cycle39

(Supplementary Fig. 12c). We also observed potential interacting
pairs between EP_C1_LMP1 cells with activated Notch pathway
and multiple cell types through NOTCH1-TNF and NOTCH2-
JAG2, which have been related to radiation sensitivity40 and
cancer stem-like side population cells41 in NPC (Supplementary
Fig. 12d). In addition, the above-mentioned interactions were
commonly determined but with individual variable intensity
among the patients (Supplementary Data 6), suggesting that the
interactions are widespread phenomena and heterogeneous in
NPC (Supplementary Fig. 12b–d).

Discussion
Through the comprehensive single-cell transcriptome study on
NPC, we provided a landscape view of the heterogeneous cell
composition and complex interacting network in the tumour
microenvironment and peripheral circulating blood of NPC at
single-cell resolution. Transcriptome analyses of more than
176,000 individual cells of 53 subtypes revealed two distinct
microenvironments between tumour and peripheral blood in
NPC. With such large-scale single-cell data, we identified novel
cell populations with specific gene signatures in NPC. Moreover,
in combination of TCR repertoire sequencing, we delineated the
potential developmental trajectories of intratumoral immune
cells. Furthermore, we dissected a multiple intercellular network
in NPC using ligand-receptor paring analyses (Fig. 7).

CD8+ T cells are the key effector of anti-tumour immunity
with cytotoxicity to kill tumour cells42. We observed an abun-
dance of tumour infiltrating CD8+ T cells in NPC, which
exhibited clonal expansion, effector, proliferation, and exhausted
status, suggesting that the CD8+ T cells were largely suppressed
amid being stimulated by the tumour neoantigens in the TME of
NPC. This observation is consistent with the previous findings in
other cancer types11,43, suggesting a common immunosuppressed
state of CD8+ T cells in tumours. Combining TCR repertoire and
transcriptome analyses for each T cell, we revealed, for the first
time to our knowledge, the differentiation trajectory of CD8+

T cells in NPC, by which CX3CR1+CD8+ T cells

Fig. 5 Heterogeneity of malignant cells with distinct EBV infection in tumour tissues. a Heatmap showed the large-scale CNVs for epithelial cells (rows
along y-axis) from 10 NPC tumours. CNVs were inferred according to the average expression of 100 genes spanning each chromosomal position (x-axis).
Red: gains; blue: losses. Malignant NPC cells from different patients and the range of different chromosomes are indicated as different colour bars on the
left and top to the heatmap, respectively. b UMAP plot of 2,787 malignant cells grouped into two cell clusters (EP_C1_LAMP1 and EP_C2_EPCAM). Each
dot represents a cell, coloured according to a cell cluster. c UMAP plots showed the expression of EBV-encoded genes (LMP-1/BNLF2a/b, RPMS1/A73,
LMP-2A/B, and BNRF1) in malignant cells. Each dot represents a single cell, and the depth of colour from grey to red represents low to high expression.
d Violin plots showed the normalised expression of cluster markers, chemokines, and genes associated with NF-κB and Notch pathways in each cluster. In
each plot, cell clusters and the expression level of a gene as the chart tile are indicated at the x- and y-axis, respectively. e Representative images of
multiplex immunofluorescence staining of malignant cells in NPC tissues. Proteins detected using respective antibodies in the assays are indicated on top.
The red, green, and orange arrows indicated the representative cells positive for EPCAM, LMP1, and co-expression of EPCAM and LMP1 proteins in
malignant cells, respectively. Images are representative of three biological replicates. Scale bars, 50 µm. f Bar plots showed the selected signalling
pathways with significant enrichment of GO (top panel) and KEGG (bottom panel) terms for EBV+ malignant cells (EP_C1_LMP1) compared to EBV-

malignant cells (EP_C2_EPCAM), coloured from light to dark according to their −log10(P-values) from low to high. P-values were calculated by one-sided
hypergeometric test and adjusted for multiple comparisons.
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(CD8_C5_CX3CR1) in the peripheral blood infiltrated and
transformed to the exhausted CD8+ T cells (CD8_C11_PDCD1)
in tumours. Consistently, the CX3CR1+CD8+ T cells of highly
cytotoxic potential shared TCR clonotypes with tumour infil-
trating CD8+ T cells, which are responsible for recognising
antigens. In light of the previous findings that CX3CR1+CD8+

T cells are essential for viral control and infiltrating to tumour site

to reduce tumour growth44,45, our findings raise possible T cell
therapies for NPC by infusing the CX3CR1+CD8+ T cells from
peripheral blood after ex vivo expansion or engaging chimeric
TCR of T cells with CX3CR1 chemotactic potential towards
tumour site.

As cancer cells grow with high immunogenicity, inflammatory
cells that are actively immunosuppressive, including regulatory
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T cells are recruited to help evade immune destruction by sup-
pressing cytotoxic lymphocytes46. We observed three hetero-
geneous Treg cell clusters in NPC tumours, each with specific
gene signatures and functions. Treg_C4_TNFRSF4 cells featured
with high expression of TNFRSF family genes (TNFRSF4,
TNFRSF9, and TNFRSF18) as well as CCR8 and exhibited the
strongest immune-suppressive function compared to other Treg
cell clusters in NPC. Consistently, it has been reported previously
that Treg cells with the expression of TNFRSF family genes
facilitate tumour immune evasion and promote cancer develop-
ment36,47. Moreover, high expression of CCR8 has been
demonstrated as a signature of Treg cells that restrain immunity,
of which their amount in tumours is significantly associated with
poor prognosis in several cancers26,48. Indeed, our present study
revealed that the fraction of Treg_C4_TNFRSF4 in Treg cells
might contribute to the poor survival of NPC. Given that CCR8
can promote immune-suppressive Treg cells26, a blockade of
CCR8 signalling in Treg cells might abolish their specific

suppressive effect on cytotoxic lymphocytes and thus inhibit
tumour growth. While the presence of tumoral Treg cells in NPC
has been confirmed using IHC staining assays in our present
study and previously by other group15, the origin of tumour
infiltrating Treg cells in NPC remains exclusive. Pseudotime
trajectory and TCR repertoire analyses revealed that
Treg_C4_TNFRSF4 cells were differentiated from naive
Treg_C1_SELL cells in peripheral blood through intermediate
Treg_C2_HSPA1A or Treg_C3_MKI67 cells. We suspected that
reducing the migration of Treg cells in the peripheral blood to
tumour sites might attenuate the immune suppressions endowed
by Treg cells. With this, we note that the high expression of CCR4
in Treg_C1_SELL cells might be a potential therapeutic target,
since it has been considered as the key molecule for Treg cells
migrating into tumour49.

Tumour-associated myeloid cells are heterogeneous as reported
previously50. We observed multiple clusters of myeloid cells in
NPC tumours, among which DC_C3_LAMP3 could be

Fig. 6 Intercellular interactions among immune and malignant cells in NPC. a, b Dot plots showed selected ligand-receptor interactions between two cell
clusters, for Treg and DC_C3_LAMP3 cells (a) and for exhausted CD8+ T (CD8_C11_PDCD1) and DC_C3_LAMP3 cells (b). The ligand-receptor
interactions and cell-cell interactions are indicated at columns and rows, respectively. The means of the average expression levels of two interacting
molecules are indicated by colour heatmap (right panel), with blue to red representing low to high expression. The log10(P-values) were indicated by circle
size in one-sided permutation test. Different colour boxes at the bottom represent different function modules of receptor-ligand interactions.
c Representative images of multiplex IHC staining for the juxtaposition of CTLA4-expressing Treg cells (CD3+CD4+FOXP3+) and CD80-expressing
DC_C3_LAMP3 cells in NPC tissue samples. Proteins detected using respective antibodies are indicated on top. The green, red, magenta, cyan, and orange
arrows indicated positive cells with the expression of CD3, CD4, FOXP3, CTLA4, and CD80 proteins in NPC tissue, respectively (bottom panel). Images
are representative of three biological replicates. Scale bars, 100 µm and 20 µm for top and bottom panels, respectively. d Representative images of
multiplex IHC staining for the juxtaposition of PD1-expressing CD8+ T cells (CD3+CD8+) and PD-L1-expressing DC_C3_LAMP3 cells (CD80+) in NPC
tissue samples. Proteins detected using respective antibodies are indicated on top. The yellow, cyan, magenta, red, and green arrows indicated positive
cells with the expression of CD3, CD8, CD80, PD1, and PD-L1 proteins in NPC tissue, respectively (bottom panel). Images are representative of three
biological replicates. Scale bars, 100 and 20 µm for top and bottom panels, respectively.

Fig. 7 Schematic diagram of cross-talks among multiple immune cells in the TME of NPC. EBV infects nasopharyngeal epithelial cells and participates in
the tumorigenic process of NPC. EBV-positive malignant NPC cells secret a variety of chemokines (CX3CL1, etc.) and initiate the recruitment and tumoral
infiltration of multiple immune cells with the chemokines receptors from the peripheral blood. Multiple tumour infiltrating immune cells activate EGFR and
Notch pathway in EBV-positive malignant NPC cells. Naive CD8+ cells infiltrate to the lesion and develop to effector and further exhausted CD8+ cells.
Peripheral DCs infiltrate to the tumour and differentiate into LAMP3+ DCs. The mature LAMP3+ DCs with the expression of PD-L1/PD-L2 interact with
PD1 on CD8+ T cells whereby the signalling restrains the activation of CD8+ T cells and promotes their exhaustion. Treg cells interact with LAMP3+ DCs
through CTLA4-CD80/CD86, which might limit the antigen presentation process of DCs and promote the secretion of IDO1 to induce the proliferation of
Treg cells. The intensive cell-cell interactions among LAMP3+ DCs, Treg cells, exhausted CD8+ T cells, and malignant cells foster an immune-suppressive
niche for the tumour microenvironment of NPC.
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considered as a group of regulatory and tolerogenic DC, showing
high expression of the migration (CCR7) and maturation
(LAMP3) related genes. Both are the signatures of LAMP3+ DCs
that have been recently demonstrated in multiple cancers28,29.
Moreover, DC_C3_LAMP3 cells had the elevated expression of
CD274, PDCD1LG2, CD200, IDO1, EBI3, SOCS1, SOCS2, and
SOCS3, which are immune-suppressive related genes with similar
expression pattern as LAMP3+ DCs in lung cancer51. These
observations suggest that DC_C3_LAMP3 cells are a group of
LAMP3+ DCs in NPC, which are a ubiquitous cell population in
tumours and exert immune-regulatory function and the control
of T cell activation52. Our data also revealed the developmental
trajectory of the LAMP3+ DCs in NPC and the master tran-
scription factors that are potentially crucial for the promoting
maturation, decreased antigen presentation capability, and
increased immune regulatory capability of LAMP3+ DCs. These
transcription factors are connected to each other, forming a
robust regulatory gene expression network in LAMP3+ DCs. We
suspect that targeting these transcription factors might reshape
the dendritic cells towards a normal antigen presentation phe-
notype, leading to potential therapeutic benefits for NPC.

EBV infection is the key feature of NPC in the endemic
regions, and its role in malignant transformation and tumor-
igenesis has been implicated in NPC33. We identified two groups
of malignant cells with (EP_C1_LMP1) or without (EP_C2_EP-
CAM) EBV infection in NPC tumours. The EBV+ NPC cells
showed a distinct transcriptional state compared to the EBV−

NPC cells, with the specific activation of major genes implicated
in EBV entry and cancer-related pathways, such as NF-κB53 and
Notch pathways54. Moreover, the EBV+ NPC cells had more
chemotactic interactions with immune cells derived from
tumours and peripheral blood, which are important for the reg-
ulation of EBV life cycle and the shaping of tumour behaviours
including radiation sensitivity and stemness40,41. The potential
chemotactic interactions might also explain the abundant infil-
tration of immune cells in NPC tumour stroma55. Given that all
endemic NPC are EBV positive, our findings are of particular
interests for future studies on the role of EBV infection in NPC
development and the persistence of EBV in body cells compared
to its gradual loss during in vitro culture. The specific presence of
EBV molecules in NPC cells has been harnessed as an adoptive
immunotherapy for NPC using cytotoxic T lymphocyte recog-
nising EBV in clinical trials56,57. We note that the presence of
TCRs recognising EBV antigen among multiple patients with
NPC may engage T cells targeting NPC cells with higher speci-
ficity. However, it’s noteworthy to explore whether and how the
heterogeneous malignant NPC cells especially the EBV negative
cells and other subtypes of cells with different proliferative cap-
abilities contribute to the variable treatment outcomes. In addi-
tion, we didn’t observe EBV transcripts in any B cells, although B
cells have been known as a primary host for EBV58. It might be
explained by the low expression level of EBV genes in infected
cells and the small fraction of B cells captured in our study.

Our study revealed an intercellular network among LAMP3+

DCs (DC_C3_LAMP3), Treg cells, and exhausted CD8+ T cells
(CD8_C11_PDCD1) in NPC, suggesting potential cross-talks
among multiple immune cells to foster an immune-suppressive
niche for the TME of NPC (Fig. 7). Indeed, the link between
LAMP3+ DCs and Treg cells through the interaction between
CCL17-CCR4 and CCL22-CCR4 has also been demonstrated in
other cancers36, by which LAMP3+ DCs potentiate the chemo-
tactic recruitment of peripheral Treg cells and promote their
infiltration in tumours59. Moreover, LAMP3+ DCs also had
abundant expression of IDO1 in NPC, which could induce the
proliferation of tumour infiltrating Treg cells as reported pre-
viously60. On the other hand, our observation of the interaction

between tumoral Treg cells and LAMP3+ DCs through CTLA4
and CD80/CD86 has been consistently reported in other can-
cers61, whereby Treg cells regulate the maturation of tolerogenic
LAMP3+ DCs. By contrast, the cross-talks between cytotoxic
CD8+ T cells and either DCs or Treg cells have been widely
addressed in multiple cancers28,62,63. The mutual interactions
between LAMP3+ DCs and Treg cells may enhance immune-
suppressive effects on the exhausted CD8+ T cells in NPC.
Together with the observation of chemotactic potential of EBV+

NPC cells to recruit peripheral immune cells, these findings
suggest that these cross-talks among diverse cell types play
important roles in maintaining the homoeostasis of TME in NPC.
It would be plausible that disrupting the interactions might break
the balance of TME and thus cure the tumour. Besides the pro-
mising results of PD-1/PD-L1 blockade immunotherapy in NPC,
antibodies targeting EGFR have been reported to enhance the
current treatment paradigms for locoregionally advanced NPC64.
We suspect that immune-suppressive interaction of CD200-
CD200R1 and LGALS9-HAVCR2 among LAMP3+ DCs, Treg
cells, and exhausted CD8+ T cells might be also potential
immunotherapeutic targets for NPC.

Taken together, through uncovering the heterogeneous tumour
microenvironment of NPC at a high resolution, we identified the
essential cells and molecules with potential contributions to NPC
tumorigenesis, and thus provide insights into the mechanisms
underlying NPC progression and the development of potential
therapeutic strategies for NPC. We acknowledge that our study
has several limitations. First, we observed some trends of the
associations of cell compositions with clinical characteristics
(Supplementary Fig. 13). Particularly, patients with more
advanced NPC had a higher proportion of peripheral
CD8_C10_MKI67 and more intensive cellular interactions in
DC_C4_JCHAIN and NK_C2_FCER1G cells (Supplementary
Fig. 13c, e). However, we are not yet to draw a conclusion with
such a limited cohort size that any components of the TME could
be associated with the clinical outcomes. Second, we believe that
NPC is one of the malignancies that are shaped together with
immunity and neoantigens endowed by the somatic alterations in
malignant cells. However, we are not able to predict any neoan-
tigens, because we have no DNA level (whole genome or exome
sequencing) data with our patient samples for HLA estimations
and somatic mutations callings. Lastly, although our findings of
the key interaction network and molecules of the TME in NPC
were obtained using robust bioinformatic analyses and additional
immunostaining assays, further functional experiments are
awaited to explore the biological consequences and underlying
mechanisms.

Methods
Patient recruitment and sample collection. Ten male individuals with naso-
pharyngeal carcinoma (NPC) were recruited from a local hospital in Guangzhou,
China, an endemic region with high prevalence of NPC, between June 2018 and
September 2018. The patients were histopathologically diagnosed with primary
NPC by at least two pathologists according to the World Health Organization
(WHO) classification. No history of cancer and any anti-tumour therapy prior to
the primary diagnosis was self-reported. Clinical staging of NPC was determined
according to the 8th edition of the International Union against Cancer (UICC)
and American Joint Committee on Cancer (AJCC) staging system. Fresh tumour
sample was obtained using endoscopic nasopharyngeal biopsy and matching
peripheral blood sample was collected for each patient, followed immediately by
single cell preparation as described below. All patients were EBV positive as
confirmed using in situ hybridisation of EBV encoded small RNAs (EBERs) in
tumour tissue. The average age was 50.6 and the patient’s characteristics were
listed in the supplementary (Supplementary Data 1). For immunostaining
assays, additional NPC biopsies were collected. The specimens were collected
within 30 min after the tumour resection and fixed in formalin for 48 h. Written
informed consent was obtained from all participants, and the study was
approved by the Institutional Review Boards at the Sun Yat-sen University
Cancer Center (SYSUCC).
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Preparation of single cell suspensions. Fresh tumour samples were processed
independently with enzymatic digestion and mechanical dissociation immediately
after collection to generate single cell suspensions. Briefly, each tumour was cut
into small pieces with approximately 1-mm3 in a D10 resuspension buffer, con-
taining culture medium (DMEM medium; Gibco™, USA; Cat. no. 11965092) with
10% foetal bovine serum (FBS; Gibco; cat. no. 10099141), followed by enzymatic
type II (Thermo Fisher, USA; cat. no. 17101015) and IV (Thermo Fisher; cat. no.
17104019) digestion for 30 min on a rotator at 37 °C. The digested mixture was
passed through a 40 μm cell-strainer (BD Biosciences, USA; Cat. no. 352340) to
obtain dissociated cells. The filtered mixture was centrifuged at 400 g for 5 min, and
after removal of the supernatant, the pelleted cells were resuspended in 0.8%
NH4Cl red blood cell lysis buffer and incubated on ice for 10 min. After washing
twice with DPBS (Gibco; cat. no. 14190250), the dissociated cells from tumour were
resuspended in a sorting buffer, consisting of 1X DPBS supplemented with 0.04%
BSA (Sigma-Aldrich, USA; cat. no. 9048468). Viable cells were collected using
fluorescence activated cell sorting (FACS; BD FACSAria III; BD Biosciences) with
negative staining of propidium iodide (PI; Thermo Fisher, cat. no. P1304MP). At
least 300,000 cells were collected for each tissue sample.

From blood sample, PBMCs were isolated using a leukocyte separation solution,
following the manufacture’s instruction (HISTOPAQUE-1077; Sigma-Aldrich; cat.
no. 10771). Briefly, 5-ml of fresh peripheral blood was collected in EDTA
anticoagulant tubes (BD; Cat. no. 366643) and subsequently transferred onto the
solution. After density gradient centrifugation for 20 min at 750 X g, PBMCs settled
at the interphase were carefully collected and washed twice with DPBS. Residual
red blood cells were lysed using the same procedure abovementioned. Viable cells
were collected using FACS with PI staining.

Library construction for single cell gene expression and TCR profiling.
Immune repertoire measurement and gene expression at single cell resolution were
conducted using Chromium Single Cell V(D)J Reagent Kit (10x Genomics, USA)
following the manufacturer’s instructions. Briefly, the sorted cells were washed
twice with the sorting buffer. Cell viability and number were determined using
Trypan Blue (Thermo Fisher; Cat. no. 15250061) exclusion assay. Appropriate
volume of cell suspension with a concentration of 700–1200 cells/µl were loaded in
each channel, targeting a capture of 8,000 cells per sample, which were further
mixed with barcoded gel beads on a Chromium Controller (10x Genomics). After
reverse transcription reaction, cDNA amplification for 14 cycles was conducted on
a thermal cycler (C1000; Bio-Rad, USA). The post-amplification cDNA was used as
template to further enrich TCR fragments. Sequencing libraries for cDNA and TCR
were separately constructed according to the instructions. The average fragment
size of a library was quantitated using Qseq100 (Bioptic; Taiwan).

Next generation sequencing and data processing. Each DNA library was loaded
into a sequencing lane on a HiSeq X system (Illumina, USA) and was sequenced
with pair-end reads of 150 bp. Raw data of Binary Base Call (BCL) format was
converted to FASTQ files using bcl2fastq (version v2.19.0.316, Illumina). Next, Cell
Ranger pipelines (version 3.0.1; 10x Genomics) were used to align sequencing reads
in the FASTQ files to reference genomes of interest and generate feature-barcode
matrices. Single-cell 5'-gene expression data and TCR enriched data from the same
cDNA library were processed using Cell Ranger count and Cell Ranger vdj
implemented in the pipelines, respectively. The gene expression data was mapped
to human genome reference sequence (GRCh38; http://cf.10Xgenomics.com/supp/
cell-exp/refdata-cellranger-GRCh38-1.2.0.tar.gz) and EBV reference sequence65

(Akata; https://github.com/flemingtonlab/public/tree/master/
annotation) for cDNA sequencing reads. The TCR enriched data were mapped to
the VDJ reference sequence (http://cf.10Xgenomics.com/supp/cell-vdj/refdata-
cellranger-vdj-GRCh38-alts-ensembl-2.0.0.tar.gz) for TCR sequencing reads.

Single-cell gene expression quantification and determination of cell types.
Doublets are artefactual libraries generated from two cells arising due to errors in
droplet encapsulation of cells, and thus commonly affect the quality of single-cell
sequencing data. The R package “DoubletFinder” (https://github.com/chris-mcginnis-
ucsf/DoubletFinder) was applied to predict doublets in our data. Basically, a doublet is
defined as a single-cell library representing more than one cell, and a closer exam-
ination of some known markers would suggest that the offending cluster consists of
doublets of more than one cell type, while no cell type is known to strongly express
both markers at the same time. We removed doublets in each sample individually,
with an expected doublet rate of 0.05 and default parameters used otherwise (Sup-
plementary Table 3). The remaining cells survived from the filtering criteria were
single cells. Then the gene expression matrices for all remaining PBMC and tumour
cells were combined and converted to a Seurat object using the R package Seurat
(version 2.3.4, https://satijalab.org/seurat). Next, any cells were removed for which
had either less than 101 UMIs, or expression of less than 501 genes, or over 15%
UMIs linked to mitochondrial genes. From the remaining cells, gene expression
matrices were generated with log normalisation and linear regression using the
NormalizeData and ScaleData function of the Seurat package.

Because the samples were processing independently and high-dimensional
variables are common in single-cell sequencing data, which might introduce
potential batch effect, we used canonical correlation analysis (CCA) and

RunUMAP function implemented in Seurat to reduce dimensionality and remove
batch effect. Cell clusters were identified using the FindClusters function in Seurat,
with a K parameter of 20 and default parameters used otherwise. We annotated the
clusters as different major cell types based on their average gene expression of well-
known markers, including CD4+ T cell (PTPRC, CD3D, and CD4), CD8+ T cell
(PTPRC, CD3D, and CD8A), myeloid cell (CD14 and ITGAX encoding CD11C),
malignant cell (EPCAM and KRT family genes), B cell (CD19 andMS4A1), and NK
cell (FCGR3A and NCAM1).

Repeating the abovementioned steps (normalisation, dimensionality reduction,
and clustering), we further identified sub-clusters and annotated them as different
specific cell subtypes by the average expression of respective gene sets in each major
cell type. To identify marker genes for each sub-cluster within the major cell types
(CD4+ T, CD8+ T, NK, B, myeloid, and malignant cells), the expression profiles of
the sub-cluster were contrasted with those of the other sub-clusters using the Seurat
FindAllMarkers function. Differential expression analysis implemented in the
function compared all the genes in the two datasets using the default two-sided
non-parametric Wilcoxon rank sum test. A significant differentially expressed gene
was determined if it had the Bonferroin-adjusted P value lower 0.05 and an average
natural logarithm (ln) fold-change of expression of at least 0.1 and 0.25 for
malignant cells and other cells, respectively. The cluster with multiple well-defined
marker genes of different cell types and an elevated number of UMI was considered
cell contamination and removed in downstream analysis. For each cluster (like C1)
of a major cell type (like CD4+ T cells), we assigned a cluster identifier with a
marker gene (like LEF1) as “CD4_C1_LEF1”. The selection criteria for the marker
gene included (1) with top ranking at the differential gene expression analysis for
the corresponding cell cluster, (2) with strong specificity of gene expression
meaning high expression ratio within the corresponding cell cluster but low in
other clusters, and (3) with literature supports that it’s either a marker gene or
functional relevant to the type of cell.

Collection of public single-cell datasets. To compare the features of tumour
microenvironment including cell compositions between NPC and other types of
cancers, we collected the single-cell data publicly available for multiple cancers,
including NSCLC12 (downloaded from https://gbiomed.kuleuven.be/scRNAseq-
NSCLC), CRC66 (Gene Expression Omnibus; https://www.ncbi.nlm.nih.gov/geo/;
GEO accession number: GSE132465), and PDAC67 (Genome Sequence Achieve;
https://bigd.big.ac.cn/gsa/; GSA accession number: CRA001160), as well as that for
specific cell types, including CD4+ T cells in CRC68 (GEO accession number:
GSE146771), NSCLC11 (GEO accession number: GSE99254) and HCC28 (GEO
accession number: GSE140228) and DCs in NSCLC29 (GEO accession number:
GSE127465) and HCC28 (GEO accession number: GSE140228).

Calculation of functional module scores. To evaluate the potential functions of a
cell cluster of interest, we calculated the scores of functional modules for the cell
cluster, using the AddModuleScore function in Seurat at single cell level. The
average expression levels of the corresponding cluster were subtracted by the
aggregated expression of control feature sets. All analysed genes were binned based
on averaged expression, and the control features were randomly selected from each
bin69. The functional modules including proliferation score for T and malignant
cells, cytotoxicity and exhausted scores for CD8+ T cells, IL2R, inhibitory, and co-
stimulatory scores for Treg cells, as well as maturation, activation, migration,
differentiation, apoptosis, antigen presentation, and immune regulatory scores for
dendritic cells. The involved genes were listed in the supplementary material
(Supplementary Data 3).

Pathway enrichment analysis. To gain functional and mechanistic insights of a
cell cluster, we performed Gene Ontology (GO) and KEGG Pathway enrichment
analyses using Metascape (http://metascape.org/) to identify biological pathways
that were enriched in a certain gene list more than that would be expected by
chance. For malignant cells, the gene list imported to Metascape included the top
100 differentially expressed genes (DEGs) with a natural logarithm of fold changes
of expression (lnFC) > 0.1 in clusters. For non-malignant cells, the gene list
included the top 100 DEGs with lnFC > 0.25 in clusters. P value <0.05 was con-
sidered to be a significant enrichment. To compare the difference of signalling
pathway enrichment between two clusters (Treg_C2_HSPA1A versus
Treg_C4_TNFRSF4 and DC_C2_CD1C versus DC_C3_LAMP3), we performed
the gene set enrichment analysis (GSEA; version 3.0) using the selected molecular
signatures database v7.070. To explore the heterogeneous expression of malignant
cells, we performed gene set variation analysis (GSVA, version 1.34.0), using 18
hallmark pathways described in the molecular signature database.

Developmental trajectory inference. To characterise the potential process of
immune cell functional changes and determine the potential lineage differentiation
among diverse immune cells, we performed trajectories analyses for Treg, CD8+ T,
and dendritic cells, using Monocle2 (version 2.8.0; http://cole-trapnell-lab.github.io/
monocle-release/monocle2/). The data of the indicated clusters calculated in Seurat
was fed directly into Monocle2. Next, we carried out density peak clustering
(Monocle2 dpFeature procedure) to order cells based on the genes with differential
expression between clusters, using the differentialGeneTest function in Monocle2.
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The top 1,000–2,000 significant genes (ordered by q value) were used for ordering in
all instances. Then the immune cell differentiation trajectory was inferred after
dimension reduction and cell ordering with the default parameters of Monocle2.

TCR repertoire analysis. The outputs of CellRanger vdj included the assembled
nucleotide sequences for both α and β chains, the coding potential of the nucleotide
sequences (that is productive or not), the translated amino acid sequence, the
CDR3 sequences, and the estimated UMI value of α or β chains. Only cells with
UMI values larger than 1 for α and β chains were kept. The dominant TCR of a
single cell was defined based on an in-frame TCR α-β pair. If one clonotype defined
as a unique in-frame TCR α-β pair was present in at least two cells, this clonotype
would be considered clonal, and the number of cells with such dominant α-β pair
indicated the degree of clonality of the clonotype.

R package STARTRAC (version 0.1.0) was used to assess the enrichment of
TCR in various T cell clusters. The degree of clonal expansion, tissue migration,
and state transition of T cell clusters upon TCR tracking were determined using
three STARTRAC indices, STARTRAC-expa, STARTRAC-migr, and STARTRAC-
tran, respectively. For detailed pipeline, please referred to the website (https://
github.com/Japrin/STARTRAC).

Bulk RNA sequencing and data analysis. To identify the genes responsible for
EBV infection and carcinogenesis, we compared the expression profiles between
NPC and non-cancerous control cohorts. The data for the NPC cohort was retrieved
from the public GEO database (Accession number: GSE102349), including 113 NPC
tissue samples profiled by RNA-seq71. The control cohort was in-house RNA-seq
data of 10 rhinitis samples that had been published recently72. For data analysis,
pair-end reads with high quality were aligned to ribosome RNAs using Bowtie273,
and reads after removal of those being aligned as ribosome RNAs were realigned to
the human genome (GRCh38) and EBV (Akata) reference sequence using HISAT2
with default settings74. HTseq was used to quantitate the read counts of each gene75.
The expression levels of genes were normalised as Transcripts Per Kilobase Million
(TPM), to minimise the potential effect of tumour purity.

We next assessed the associations of the immune signatures and the survival of
NPC. Receiver operating characteristic (ROC) was used to determine the optimal
cut-off value of gene expression for patient stratification. Kaplan-Meier analysis
was conducted to reveal the prognostic ability of normalised mRNA ratio of
CCR8/FOXP3 in 88 NPC samples with prognostic information from the public
cohort, and a log-rank test was performed to compare the survival between high
and low normalised mRNA ratios of CCR8/FOXP3. For the correlation analyses of
the expression of immune signatures genes among LAMP3+ DC
(DC_C3_LAMP3), Treg cell, and exhausted CD8+ T cell (CD8_C11_PDCD1), we
first selected the signature genes based on the top 200 differentially expressed genes
among all cell subsets (Supplementary Data 7) and then calculated the mean of the
expression (TPM) for signature genes as signature scores. Pearson correlation
between signatures was calculated by cor() function in R programme.

Assembly of context specific regulatory models and master regulator analysis
of LAMP3+ dendritic cell (DC). A LAMP3+ DC context-specific network model
of transcriptional regulation was assembled with the ARACNe76 (https://github.
com/califano-lab/ARACNe-AP), based on 357 LAMP3+ DC (DC_C3_LAMP3)
single cell RNA-sequencing expression profiles. ARACNe was run with 100
bootstraps, a P value threshold of 10−8, and 0 data processing inequality (DPI)
tolerance, generating a network of 38 TFs associated with 2,495 target genes by
10,759 interactions. Pearson correlation between TFs and target genes was calcu-
lated by cor() function in R. We considered the correlation coefficient between TF
and downstream target genes greater than 0 as positive regulation, otherwise
negative regulation.

inferCNV analysis. To identify malignant cells, we identified evidence for somatic
alterations of large-scale chromosomal copy number variants, either gains or losses,
in a single cell using inferCNV (https://github.com/broadinstitute/inferCNV), in
addition to the expression of EPCAM. The raw single-cell gene expression data was
extracted from the Seurat object according to the software recommendation. A
public single-cell data derived from normal epithelium cells was included as a
control reference32 (GEO accession number: GSE121600). We preformed
inferCNV analysis with the default parameters.

Cellular communication analysis. To investigate the potential cell-cell commu-
nications between any two different cell types in NPC, we performed ligand-
receptor analyses using CellPhoneDB software (version 2.0.6; https://github.com/
Teichlab/cellphonedb). CellPhoneDB applies an algorithm that considers only
receptors and ligands with broad expression among the tested cell types, followed
by calculating the likelihood of cell-type specificity of a given receptor-ligand
complex with a sufficient number of permutations. The gene expression matrixes of
CD8+ T, CD4+ T, NK, B, myeloid, and malignant cells were selected as input for
the CellPhoneDB analysis. We identified the most relevant cell-type specific ligand-
receptor interactions and considered only ligands and receptors with expression in
more than 20% of the cells in the corresponding sub-clusters. Moreover, we per-
muted the change of cell type label for each cell at 1000 times to calculate the

significance of each pair. The P value was calculated using the proportion of the
mean value for specific receptor–ligand pairs compared to a randomly permuted
mean distribution. Finally, we prioritised the interactions with a P-value greater
than 0.05 and selected the interaction pairs with biologically relevance.

Immunostaining assays. For tissue sample stored in the formalin, dehydration
and embedding in paraffin were performed according to routine methods. The
paraffin blocks were cut into 5 µm slides and adhered on the glass slides. The
paraffin-embedded sections were dewaxed, rehydrated, subjected to the blockade of
endogenous peroxidase activity, and antigen retrieval at high-temperature. Subse-
quently, the sections were processed further for either multiplex immuno-
fluorescence (IF) or immunohistochemistry (IHC) staining assays.

Multiplex IF staining assays were conducted to determine the presence of EBV+

and EBV− NPC cells. The sections were permeabilized in PBS with 0.5% Triton X-
100 (Sigma-Aldrich; Cat. no. T8787) and incubated for overnight at 4 °C with the
following primary antibodies: anti-EPCAM (rabbit; Abcam, USA; Cat. no. ab71916;
1:100) and anti-LMP1 (mouse; Abcam; Cat. no. ab78113; 1:500). Subsequently, the
sections were incubated with Cy3 conjugated Goat Anti-Rabbit IgG and FITC
conjugated Goat Anti-Mouse IgG secondary antibodies (Servicebio, China; Cat. no.
GB21303/GB22301; 1:300). Nuclei were counterstained with 4’-6’-diamidino-2-
phenylindole (DAPI; Sigma-Aldrich; Cat. no. D9542). Images were captured using
a confocal laser-scanning microscope (LSM880; Zeiss, Germany).

To determine the spatial contact of LAMP3+ DCs, Treg cells, and CD8+ T cells,
we performed multiplex IHC staining assays using the PANO 7-plex IHC kit
(Panovue, China) according to the manufacturer’s instructions. The slides were
incubated with blocking antibody diluent at room temperature for 10min, and then
incubated overnight at 4 °C with primary antibodies. The slides were then incubated
with the secondary antibody (HRP polymer, anti-mouse/rabbit IgG) at room
temperature for 10 min. Subsequently, fluorophore (tyramide signal amplification or
TSA plus working solution) was applied to the sections, followed by heat-treatment
with microwave. The primary antibodies were applied sequentially, followed by
incubation with the secondary antibody and TSA treatment. Nuclei were stained
with DAPI after all the antigens had been labelled. Multispectral images for each
stained slide were captured using the Mantra System (PerkinElmer, USA). Primary
antibodies included anti-CD3 (rabbit; Abcam; Cat. no. ab135372; 1:50), anti-CD4
(rabbit; Abcam; Cat. no. ab133616; 1:100), anti-CD8A (mouse; CST, USA; Cat. no.
CST7030; 1:100), anti-FOXP3 (mouse; Abcam; Cat. no. ab22510; 1:100), anti-CD80
(mouse; R&D Systems, USA; Cat. no. MAB140; 1:80), anti-PD1 (mouse; CST; Cat.
no. CST43248; 1:50), anti-PD-L1 (rabbit; CST; Cat. no. CST13684; 1:50), and anti-
CTLA4 (rabbit; Abcam; Cat. no. ab237712; 1:100).

Statistics analysis. All statistical analyses were performed using R (http://www.r-
project.org), including two-sided paired student t-test, two-sided Wilcoxon test,
two-sided Pearson correlation test, and two-sided Kruskal–Wallis test. P < 0.05 was
considered as statistical significance. Multiplex IF and IHC staining assays were
confirmed in at least three biological replicates.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequence data reported in this study have been deposited in the Genome
Sequence Archive (Genomics, Proteomics & Bioinformatics 2017) in the National
Genomics Data Center (Nucleic Acids Res 2020), Beijing Institute of Genomics (China
National Center for Bioinformation), Chinese Academy of Sciences, under accession
number HRA000159 (accessible at http://bigd.big.ac.cn/gsa-human) and GEO dataset
under the accession number GSE162025. The key data in this study has also been
deposited in the Research Data Deposit (RDDB2020000980; http://www.researchdata.
org.cn/). Other datasets described in the Methods could be downloaded from NCBI GEO
under the accession numbers GSE13246566, GSE14677168, GSE9925411, GSE14022828,
GSE12746529, GSE10234971, and GSE12160032, Genome Sequence Achieve under the
accession numbers CRA00116067, and the URL https://gbiomed.kuleuven.be/scRNAseq-
NSCLC12. The remaining data are available within the Article, Supplementary
Information or available from the authors upon request.

Code availability
The scripts are available at https://github.com/bei-lab/scRNA-of-NPC77.
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