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assignments of methyl probes in large proteins
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Methyl-specific isotope labeling is a powerful tool to study the structure, dynamics and

interactions of large proteins and protein complexes by solution-state NMR. However,

widespread applications of this methodology have been limited by challenges in obtaining

confident resonance assignments. Here, we present Methyl Assignments Using Satisfiability

(MAUS), leveraging Nuclear Overhauser Effect cross-peak data, peak residue type classifi-

cation and a known 3D structure or structural model to provide robust resonance assign-

ments consistent with all the experimental inputs. Using data recorded for targets with known

assignments in the 10–45 kDa size range, MAUS outperforms existing methods by up to

25,000 times in speed while maintaining 100% accuracy. We derive de novo assignments for

multiple Cas9 nuclease domains, demonstrating that the methyl resonances of multi-domain

proteins can be assigned accurately in a matter of days, while reducing biases introduced by

manual pre-processing of the raw NOE data. MAUS is available through an online web-

server.
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The use of methyl probes has opened new avenues for the
application of nuclear magnetic resonance (NMR) meth-
ods to study large molecular machines1. The signal

enhancement offered by methyl-transverse relaxation optimized
spectroscopy (TROSY) techniques2 and a suite of experiments for
quantitative characterization of protein dynamics occurring over
a broad range of timescales3 have rendered methyl-based NMR a
formidable tool for detailed mechanistic studies of important
biological systems4. The main bottleneck in applications of
methyl-based NMR is obtaining confident resonance assign-
ments. In the conventional approach, backbone assignments are
first established using triple-resonance experiments5. Then,
methyl resonances are connected to the backbone using either
methyl out-and-back experiments6 or, more commonly, using
15N and 13C edited amide-to-methyl nuclear Overhauser effect
(NOE) measurements7. However, in the absence of previously
established backbone assignments, deriving confident assign-
ments for methyl resonances remains a challenge. Although site-
directed mutagenesis of individual methyl-bearing residues8

provides unambiguous assignments, the laborious, costly, and
time-consuming nature of this approach limits applications to
study larger, multi-domain proteins.

Recently, several automated methyl assignment methods have
been proposed9–12. To circumvent the need for existing backbone
assignments, methyl NOE data and a known structure of the
target protein can be used to derive a set of possible assignments,
by fitting local NOE networks to methyl distances derived from
the three-dimensional (3D) structure. In general, these methods
start from fitting sub-sets of NOE connectivities to local clusters
of methyls in the structure and then expand those to derive self-
consistent assignments for the remaining methyl resonances. The
NOE peak intensities are then used in an optimization process
aiming to further reduce the space of solutions. However, any
method that uses local information is bound to make mistakes
globally and, as a result, most of these methods can miss the
correct (ground truth) assignments from their scope of solutions,
yielding a significant (up to 55%) error rate. An alternative
approach is to perform an exhaustive mapping of the global NOE
network to the target structure. This strategy was first outlined in
the method MAGMA13, which treats methyl assignments as a
maximum subgraph matching problem, and invokes a graph
theory algorithm14 to enumerate all assignments, which satisfy
the maximum number of NOE connectivities. If the input con-
tains only true positive NOE data (i.e., the NOE data graph is a
subgraph of the structure graph), then MAGMA resorts to the
VF2 algorithm15. Alternatively, maximum subgraph matching
provides a reasonable compromise to account for the minimum
number of false-positive NOEs, with the caveat that the ground
truth solution may entail additional misidentified NOEs in the
input. Moreover, MAGMA requires users to provide an anno-
tated data graph, derived through an extensive, manual analysis
of 3D or four-dimensional (4D) NOE spectroscopy (NOESY)
peak data, which introduces an additional processing step, lim-
iting its use by non-experts.

In the present work, we describe an automated system (MAUS:
Methyl Assignments Using Satisfiability), which first formulates a
set of rules, and then provides a compact description of all
assignment possibilities that are consistent with these rules.
Specifically, MAUS generates a structure graph, G, representing
all methyl NOE connectivities present in an input Protein Data
Bank (PDB) structure or structural model of the protein of
interest, and multiple independent data graphs, H, containing all
possible NOE networks, which can be derived from a list of raw
3D or 4D NOESY peaks. The NOE network is supplemented with
residue type, stereospecificity, and geminal methyl connectivity
constraints. Then, MAUS leverages an efficient algorithm to

determine all valid ways of mapping every H into G (termed
subgraph isomorphism), which respects all the experimental
inputs. We test our method on a benchmark set of protein targets
in the 10–45 kDa size range and show that MAUS maintains a
robust performance, providing 100% accurate assignments at
high levels of completeness, while offering a significant perfor-
mance advantage relative to existing methods using the same
inputs. Using MAUS, the methyl resonances of large, multi-
domain proteins can be assigned accurately in a matter of days,
completely bypassing the need for more laborious backbone-
based NMR spectroscopy approaches.

Results and discussion
Methyl assignments as a subgraph isomorphism problem.
Rather than treating the methyl assignments as a maximum
subgraph matching problem13, MAUS models the NOE data as a
sparse sample of all possible connectivities present in the input
structure. MAUS uses the NOE network together with additional
experimental inputs, such as peak residue type information and
geminal methyl resonance connectivities, to build a system of
hard constraints. The constraints outline a subgraph isomorph-
ism problem of fitting a sparse data graph H, into the original
structure graph G (see “Methods” and Fig. 1a).

To fully account for all methyl connectivities consistent with
the input structure and spin diffusion effects16, alternative side-
chain rotamers are modeled using the program Rosetta17 and
maximum distances of 8 and 10 Å are applied to derive a
structure graph, G, containing all possible short- and long-range
NOEs, respectively (Fig. 1b). In addition, MAUS explicitly
considers (i) all possible mappings of 3D NOE cross-peaks to
two-dimensional (2D) reference peaks, or clusters (Fig. 1c), and
(ii) all possible matchings between upper-diagonal and lower-
diagonal NOE cross-peaks, formally analyzed as connected
components of a bipartite symmetrization graph (Fig. 1d). This
approach relieves the user from the burden of interpreting the
raw data (3D or 4D NOE peaks), through an explicit and
exhaustive consideration of all possible data graphs consistent
with the input NOE peaks (Fig. 1e).

MAUS leverages a special-purpose constraint satisfaction
solver (SAT) to enumerate all valid assignments using an iterative
ansatz (see “Methods”). Using 3275 simulations of NOE data and
structure graphs from a non-redundant set of 147 protein
structures, we show that, relative to the VF2 algorithm15, SAT
maintains a robust performance for problems of different sizes,
topologies, and data sparsity levels, delivering accurate assign-
ments in a matter of seconds (Supplementary Fig. 1). Finally,
using the MAGMA benchmark set of eight targets13 with the
identical structure and data graphs provided to both programs,
we find that, although MAGMA is marginally faster than MAUS
for targets, which can be solved relatively quickly by both
methods, MAUS maintains a consistent performance across all
targets, including larger, more complex cases such as the 81.4 kDa
maltose synthase G (Supplementary Table 1, Supplementary
Results).

MAUS workflow and results on targets with known assign-
ments. We tested MAUS using representative data sets recorded
for a benchmark set of four protein targets spanning a range of
sizes, folds and domain complexities: human β2-microglobulin
(Hβ2m; 12 kDa, all-β-fold, single domain), maltose-binding pro-
tein (MBP; 41 kDa, all-α-fold, two-domain), and two major his-
tocompatibility complex class-I (MHC-I) molecules of divergent
heavy-chain sequences (HLA-A01; 45.5 kDa and HLA-A02;
44.8 kDa, mixed α/β-fold, three-domain) (Table 1). The X-ray
structures and ground truth assignments for these targets were
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obtained from the PDB and BMRB, respectively. To obtain a
consistent set of experimental data for all targets, we prepared
13C/1H (MA)ILV-methyl-labeled samples and acquired one 2D
reference 1H-13C heteronuclear multiple quantum coherence
(HMQC) and two 3D 13CM-13CM

1HM NOESY-HMQC spectra,
recorded with short (50 ms) and long (300 ms) mixing times
(Fig. 2, Supplementary Fig. 2, and Supplementary Table 2).
Besides providing supplementary short-range (<6–8 Å) con-
straints, the short mixing time NOEs help reduce complex
components of the symmetrization graph (Fig. 1d) and allow

determination of geminal connectivities for resonances corre-
sponding to 13Cγ1/13Cγ2 and 13Cδ1/13Cδ2 methyls of Val and Leu
residues, respectively. Finally, towards reducing spectral overlap
in the 2D reference spectra of larger (>20 kDa) targets, we pre-
pared proS-labeled samples, stereospecifically defining the reso-
nances of Leu/Val methyls (Fig. 2). Using this information as
input for MAUS, we find that among all possible clustering/
symmetrization alternatives resulting from peak overlap (240-280),
only a tractable number (210-220) can lead to valid assignment
solutions (Supplementary Table 3) and are further explored in

2D HMQC peaks
NOESY peaks

Cluster NOEs

Construct data 
graphs

Sample low-energy 
side chain rotamers

Construct structure
graph

Simplify ambiguous
symmetries

Enumerate all valid
assignments

a

PDB structure
or model

Alternative side 
chain rotamers

Structure graph

Construct 
symmetrization 

graph

Is SAT?

Simple 
components 

PDB structure/s

Yes

Exit
No

NOE symmetrization graph

CCH CCH

Upper 
diagonal
(C1 > C2)

Lower 
diagonal
(C2 > C1)

G

Structure graph

c

b

Data graphs

........ ...
.

H1

H2

H3

Hn

Clustering/Symmetrization
alternatives

1H (ppm)

31
)

mpp( 
C

1H (ppm)

CCH

31
)

mpp( 
C

1H (ppm)

CCH

NOE clustering

2D HMQC

NOESY

P1

P2

P3 P4 P5

P6P7

31
)

mpp( 
C

1H (ppm)

CCH
P8

millisecond
computation

d

e

{

NS

CC4

CCn

Constraints  +  MMs of CC4

Satisfiable
(keep edges)

Unsatisfiable

Round-1

(i)

(ii)

Short-range NOEsLong-range NOEs

Next 
CC

(~50 - 150 methyls)

(~230 possibilities) 

G

Subgraph
isomorphism

(~2100 possible mappings)

Reduced graph

... ...

O
ve

rla
pp

in
g 

pe
ak

s

31
)

mpp( 
C

(~214 possibilities) 

Long-range
Short-range
Geminal connectivities (230 x 214 possibilities) 

cannot 
simplify

Fig. 1 Exhaustive enumeration of methyl assignments from raw NOE peaks. a Iterative workflow of the MAUS system. b Description of a structure graph,
G with (~50–150) methyls as nodes. The edges of G correspond to all possible short-range (blue; up to 6–8 Å), long-range (black; from 6 up to 10 Å), and
geminal methyl connectivities (green). c The 2D projections of 3D or 4D NOESY peaks are clustered (within tolerances; gray circles) to 2D HMQC
reference peak positions (P1…P8). A NOESY peak can be clustered uniquely (red) or ambiguously (green and blue; overlapping peaks), leading to ~230

clustering combinations for typical 3D CM-CMHM NOESY data. d The observed chemical shift coordinates (C1,C2,H2) of all NOE peaks are used to
construct a symmetrization graph, S, with partitions representing upper (C1 > C2) and lower (C2 > C1) diagonal cross-peaks. S has nodes represented by
short-range (blue) and long-range (black) NOEs, and edges connecting potentially symmetric NOE peaks. S has components of sizes 1 (no symmetry or
NS), 2 and 3 (simple), and >3 (complex, CC), producing ~214 possibilities in the case of data recorded for maltose-binding protein, MBP. Simple
components are used as constraints whereas complex components are reduced using an iterative process within MAUS: the maximum matchings (MMs)
of each complex component are tested for satisfiability; satisfiable edges are retained in S. e A N-ary tree showing data graphs (H1,H2,H3,…,Hn) generated
from all clustering and symmetrization alternatives (~244 possibilities); a majority of these data graphs do not lead to satisfying assignments and are
eliminated by MAUS (red circles). Each remaining H can be mapped in ~2100 possible ways onto G; all valid methyl resonance assignments are enumerated
and presented to the user in a compact form.
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exhaustive subgraph isomorphism (H into G) enumerations using
the SAT algorithm (Fig. 1e). Given the sparsity of experimental
NOE data sets and our definition of a valid solution, each sub-
graph isomorphism instance has up to 2100 valid solutions for a
typical 100-methyl protein. However, the solution space is not
uniformly distributed among methyl peaks; remarkably, results for
all targets in our set show that the NOE network, residue type and
stereospecificity constraints are sufficient to provide unambiguous
assignments for a large fraction (64–89%) and low-ambiguity (two
to three) options for the majority (11–30%) of remaining methyl
resonances (Tables 1 and 2, and Supplementary Fig. 3).

Robustness of MAUS to missing experimental inputs. For
optimal results, MAUS normally requires an NOE network with
degree connectivity of 3.5 or greater (corresponding to an average of
1.75 experimentally observed NOE peaks per methyl). In order to
unambiguously define the resonances of Leu and Val methyls and
apply these as constraints to MAUS, we recommend the use of a
homonuclear decoupling method18 (Supplementary Fig. 4c, d).
However, to account for cases where peak residue type information
is not available experimentally, we also tested MAUS on all targets
by either (i) defining resonances in the Leu/Val region as either Leu
or Val, or (ii) engaging a chemical shift-based classifier, within

Table 1 MAUS methyl resonance assignment statistics.

Target MW (kDa) PDB ID Origin/resolution (Å) Number of
methyls

Labeling
scheme

Short-range NOE
distance

% Unique
assignments

% Options≤ 3
and >1

Hβ2ma 11.9 1JNJ NMR 35 AILV 6.5 89 11
HLA-A01 45.5 6AT9 X-ray/2.9 87 AILV 7.2 64 30
HLA-A02 44.8 1DUZ X-ray/1.8 94 AILV 6.0 70 15
MBP 40.7 1DMB X-ray/1.8 76 MILVproS 6.0 75 21
IL-2 15.4 1M47 X-ray/1.9 61 ILV 6.5 74 23
HNHb 15.7 6O56 NMR/1.9 53 ILV 8.0 89 11
REC2 15.6 4CMP X-ray/2.6 69 ILV 6.5 59 12
REC3 24.5 4ZT0 X-ray/2.9 85 ILV 8.0 67 28

aNon-stereospecific.
bUsed symmetrization and clustering tolerances of 0.1 ppm for 13C.
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Fig. 2 Sample preparation, data collection, and methyl assignment workflow. Two separate protein samples are recommended for generating the
standard inputs of MAUS. Sample 1 uses non-stereospecific methyl labeling with either (i) 13C/1H labeling only at the methyls of Met, Ala, Leu, Val, and Ile
residues, on a 12C/2H background or (ii) 13C/1H labeling at the methyls and 13C/2H at the sidechains of methyl-bearing residues on a 12C/2H background,
creating linearized spin systems43, which can be used to unambiguously distinguish Leu/Val methyl resonances18 (Supplementary Figs. 4–6). When
sample i is used, resonances of Leu/Val peaks can be partially distinguished using an automated chemical shift-based classifier within MAUS (“Methods”).
Both samples can be used to define reference methyl chemical shifts using real-time (sample i) or constant-time (sample ii) 2D methyl-HMQC
experiments. Long-range (up to 10 Å) NOEs are recorded using a 3D CM-CMHM SOFAST NOESY experiment (300ms mixing time). A complementary
NOESY experiment recorded with a short (typically 50ms) mixing time is used to identify short-range NOEs, including between the geminal methyl
resonances of Leu and Val residues. An additional protein sample 2 is prepared with stereospecific labeling (proS or proR) of Leu and Val methyls, which
resolves spectral overlap in the 2D reference HMQC spectrum, and, together with sample 1, allows unambiguous determination of geminal methyl pairs for
Leu/Val. 13C nuclei are displayed in red. Steps of NMR data analysis are colored green, with the resulting data set illustrated as a red rectangle. The
standard input files for MAUS (blue) are the primary sequence, the PDB coordinate file or model structure, the 2D 1H-13C HMQC peak list, and two 3D
CM-CMHM SOFAST NOESY peak lists (recorded with short and long mixing time). MAUS also accepts partial assignments that could be included in the
user-annotated 2D 1H-13C HMQC list, together with a specification of allowed residue types, stereospecificity, and geminal methyl connectivities (if
present) for each 2D reference peak. The output includes methyl assignment statistics, residue type classification, NOE assignments, and final lists of
assignment options. Although MAUS does not consider the NOE peak intensities, this information can be evaluated by the user toward further reducing
assignment ambiguities in the output lists.
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MAUS (see “Methods”). Removing Leu/Val residue type informa-
tion has a significant impact on MAUS performance, resulting in an
average of 27% decrease in assignment completeness across our
benchmark set (Table 2, columns 3 and 4). Here, the use of the
MAUS classifier to distinguish between confident Leu and Val
methyl resonances led to an improved average of 18% less uniquely

assigned peaks. Nonetheless, the accuracy of all assignments
remained 100% and the ground truth solution was valid across all
targets (Table 2 and Supplementary Table 4). For example, for
MBP, MAUS assigned 71% of resonances uniquely and an addi-
tional 17% with two or three options while maintaining 100%
accuracy, despite the absence of experimental residue type

Table 2 Performance comparison of different methyl assignment programs.

Target (labeling
scheme)

No. of
methyls

MAUS all
defined

MAUS LV
ambiguous

MAGIC all
defined

MAGIC LV
ambiguous

FLAMEnGO 2.4 MAP-XSII MethylFLYA

Hβ2m (AILV) 35 31/0 21/0 27/4 16/8 17/1 30/5 NDa

4/0 14/0 2/0 5/3 8/0 0/0
0/0 0/0 0/0 0/0 0/0 0/0
0 0 2 3 9 0
0% 0% 12% 34% 4% 14%
7 7 29 147 6 5

HLA-A01 (AILV) 87 56/0 48/0 58/4 50/11 56/3 79/8 64/0
26/0 30/0 17/1 11/0 1/0 0/0 0/0
5/0 9/0 3/0 2/4 0/0 0/0 0/0
0 0 4 9 27 0 0
0% 0% 6% 15% 5% 9% 0%
15 18 296 422 23 12 704

HLA-A02 (AILV) 94 66/0 45/0 57/5 NDb 64/3 78/16 77/0
14/0 14/0 24/0 0/0 0/0 0/0
14/0 35/0 3/0 0/0 0/0 0/0
0 0 5 27 0 0
0% 0% 6% 4% 17% 0%
17 18 203 31 15 1024

MBP (MILVproS) 76 57/0 46/0 49/5 NDb NDb 66/10 52/0
16/0 20/0 10/1 0/0 0/0
3/0 10/0 5/0 0/0 0/0
0 0 6 0 0
0% 0% 9% 13% 0%
19 21 100 17 853

IL-2 (ILV) 61 45/0 6/0 23/23 NDb 21/4 36/25 23/2
14/0 32/0 5/1 0/0 0/0 0/0
2/0 23/0 2/0 0/0 0/0 0/0
0 0 7 36 0 0
0% 0% 46% 16% 41% 9%
5 9 451 30 13 2553

HNH (ILV) 53 47/0 27/0 39/0 38/0 29/2 38/15 44/0
6/0 18/0 12/2 3/2 4/0 0/0 0/0
0/0 8/0 0/0 6/4 0/0 0/0 0/0
0 0 0 0 18 0 0
0% 0% 4% 5% 6% 28% 0%
4 4 50 79 15 12 814

REC2 (ILV) 69 41/0 37/0 21/3 26/7 23/4 28/35 7/2
8/0 12/0 20/4 14/5 0/0 0/0 0/0
20/0 20/0 6/3 3/1 0/0 0/0 0/0
0 0 12 13 42 6 0
0% 0% 15% 23% 15% 56% 29%
5 5 87 218 35 7 814

REC3 (ILV) 85 57/0 28/0 58/0 54/2 47/3 61/24
24/0 28/0 19/0 19/3 8/0 0/0 NDa

4/0 29/0 7/0 6/0 0/0 0/0
0 0 1 1 27 0
0% 0% 0% 6% 5% 39%
14 14 58 131 51 16

ND not determined.
For results using a chemical shift-based classifier of Leu/Val resonances, see Supplementary Table 4.
First row: number of methyls with one option correct/wrong.
Second row: number of methyls with 2–3 options correct/wrong.
Third row: number of methyls with >3 options correct/wrong.
Fourth row: number of unassigned methyls.
Fifth row: error rate (in %).
Sixth row: run time in minutes.
aMethylFLYA returned an error.
bThe simulations were allowed to run for at least 96 h but did not complete.
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information. In addition, if users cannot provide any annotations of
the 2D reference peaks in the input, then MAUS inherently loses
geminal connectivity constraints for all methyl resonances corre-
sponding to Leu and Val residues, in addition to the residue type. It
is therefore recommended, when using data sets where both gem-
inal methyls are labeled, that MAUS is run using either missing
geminal connectivity or Leu/Val residue type information, but
not both.

Performance of MAUS using simulated NOE networks from
PDB structures. Although results using our benchmark set of
four targets with known assignments and recently recorded data
highlight the utility of our method for proteins of sizes up to
~46 kDa, methyl-based NMR can be applied on much higher-
molecular weight proteins. To test the size limit supported by
MAUS, we expanded our simulation benchmark set to include 63
PDB structures with structure graphs containing more than 100
methyls from Ile, Leu and Val residues (corresponding to system
sizes of up to 116 kDa) (Fig. 3). We chose to simulate assignment
cases corresponding to the Isoleucine-Leucine-Valine (ILV), as
opposed to the Alanine-Isoleucine-Leucine-Valine (AILV) label-
ing scheme, as a large fraction of the resonances corresponding to
Ala methyls are missing from the spectra of larger proteins. For
each target, a data graph was simulated by removing edges from
the corresponding structure graph (defined as all methyl con-
nectivities up to 10 Å present in the 3D structure) until a degree
connectivity (defined as 2 × number of edges/number of nodes) of
3.5 or higher was reached. This value was chosen to represent
experimental cases with 1.75–2.1 observed NOEs/methyl reso-
nance, which are characteristic of real-life data sets. We find that,
as long as this requirement is satisfied, MAUS can efficiently
tackle the computational complexity of the graph-matching
problem and provide meaningful assignments in a reasonable
time (up to 4 h on a single central processing unit, CPU), even for
larger targets. Specifically, our simulation results show that
we can obtain a high coverage (60–80%) of methyl groups with
1–3 residue assignment options for targets up to 352 methyls.
Moreover, MAUS can address proteins of up to 716 methyls/
200 kDa (as exemplified by the Teneurin 2 partial extracellular

domain, PDB ID: 6FB3), albeit in a longer time (11 h on a single
CPU), which is still feasible from a computational standpoint.

De novo resonance assignments of Cas9 nuclease domains. We
further evaluated the performance of MAUS on deriving de novo,
blind assignments for four representative targets; three domains
of the Cas9 nuclease and the therapeutic cytokine interleukin-2
(IL-2) (15.4 kDa) (Fig. 4 and Supplementary Figs. 5–7). These
comprise biomedically relevant proteins of mostly α-helical folds,
leading to a high degree of spectral overlap, which challenges
automated assignment methods. Cas9 is a 160 kDa RNA-guided
endonuclease, which introduces DNA double-strand breaks upon
site-specific recognition of a short nucleotide Protospacer Adja-
cent Motif, preceding the cleavage site19. The Cas9 enzyme
comprises of a recognition lobe (REC) that forms an RNA:DNA
hybrid through three subdomains (REC1–3), and a nuclease lobe
with HNH and RuvC domains, which cleave the DNA strand
that is complementary and non-complementary to the guide
RNA, respectively (Fig. 4a, b). Towards establishing methy-
l assignments, we designed optimized constructs of individual
Cas9 domains, HNH (15.7 kDa), REC2 (15.6 kDa), and REC3
(24.5 kDa), showing well-dispersed methyl NMR spectra (Fig. 4c).
For these three domains, MAUS assigned 89%, 59%, and 67% of
methyl resonances uniquely, and further provided assignment
lists with two to three options for 11%, 12%, and 28%, respec-
tively, while always maintaining 100% accuracy, relative to the
ground truth assignments (Fig. 4d, Table 1, and “Methods”). We
applied a selective-decoupling experiment to distinguish Leu/Val
resonances18 (Supplementary Figs. 6 and 7) and used conven-
tional methods to obtain reference backbone and methyl
assignments for validating the MAUS results (Supplementary
Results). Concurrently with the development of the present work,
the backbone and side-chain assignments for the HNH domain
were obtained using a conventional backbone-based approach
and released in the Biological Magnetic Resonance Data Bank
(BMRB, entry 27949)20,21. The MAUS-derived methyl assign-
ments were in full agreement with the published results, which
further highlights the practical utility of our method in saving
machine time and manual effort spent.

Degree connectivity

N
um

be
r 

of
 c

as
es

3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2
0

20

30

0.0

0.1

0.2

0.3

D
en

si
ty

100 200 300 400
Target size (Number of methyls)

Ti
m

e 
(in

 m
in

ut
es

)

A
ss

ig
nm

en
ts

 w
ith

 1
-3

 o
pt

io
ns

 (
%

)

80

70

60

0

500

1000

1500

a b

100 200 300 400
Target size (Number of methyls)

90

10

Fig. 3 Performance of MAUS on simulated ILV data graphs from larger proteins. a Top: target size distribution (in terms of number of methyl groups
from Ile, Leu, and Val residues) of 63 proteins with high-resolution PDB structures of sizes up to 116 kDa (352 methyls; PDB ID: 5WTI) (top). For each
target, a data graph H was simulated by removing edges from the corresponding structure graph G (defined as all methyl connectivities up to 10 Å present
in the 3D structure) until a degree connectivity (defined as 2 × number of edges/number of nodes) in the range of 3.5–4.2 was reached, corresponding to
1.75–2.1 simulated NOEs/methyl. Bottom: bar plot showing the distribution of degree connectivities among all simulated data graphs. b Scatter plot
showing run time (in minutes) taken by MAUS to perform exhaustive enumeration of the possible methyl assignment options for each H into G mapping
case. Colors indicate % of methyls with up to three assignment options, according to the scale on the right.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-20984-0

6 NATURE COMMUNICATIONS |          (2021) 12:691 | https://doi.org/10.1038/s41467-021-20984-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


For IL-2, MAUS identified unique assignments for 74% and
provided a short list (two to three) of confident options for an
additional 23% of all methyl resonances (Table 1 and Supple-
mentary Fig. 3). With the MAUS lists in hand, we manually
considered the NOE peak intensities to reach complete (>95%)
assignments for all targets in a matter of hours. Our results show
that, together with the quality of the NMR sample, the protein
fold and methyl chemical shift dispersion is equally important for
obtaining complete assignments. Notably, the amide 15N-1H
TROSY spectrum of the Cas9 REC3 domain exhibits a significant
fraction of missing backbone amide resonances (~55%, residues
660–712), likely due to conformational exchange-induced line
broadening. Thus, methyl-based NMR supported by MAUS, is a

practically useful tool to study not only larger systems with
intractable backbone amide spectra, but also enabling routine
applications for the study of medium-sized targets.

Comparison with previous methods. When compared with
other methyl assignment tools (MAGIC/FLAMEnGO2.4/MAP-
XSII) using the same inputs for all targets with known assign-
ments in our benchmark set, MAUS produces 100% accurate
results, while the previous methods show error rates of up to
(34/16/56%), and significantly lower assignment completeness
rates (Table 2 and Supplementary Table 5). Consistently with the
results obtained for our benchmark set, MAUS maintains an
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improved performance on the 4 blind targets in our set (IL-2,
REC2, HNH, and REC3), in terms of both unambiguous
assignments and error rate (Table 2).

A recent commercially available method, MethylFLYA12,
outperforms the existing publicly available methyl assignment
tools. We carried out a detailed comparison of MAUS (also
readily available to users via an online interface) with Methyl-
FLYA on the eight targets used in our study, by providing the
identical inputs to both methods. Upon comparison of the
number of resonances assigned uniquely by MAUS and with high
confidence by MethylFLYA, we find that MAUS outperforms
MethyFLYA for 6/8 targets in our set (Hβ2m, MBP, IL-2, HNH,
REC2, and REC3). Specifically, (i) for IL-2 and REC2, Methyl-
FLYA reports a significantly lower number of confident assign-
ments (38% and 10%) relative to MAUS (74% and 60%), while
also producing two incorrect assignments for each target, (ii) for
HNH and MBP, it produces confident assignments at lower
completeness levels, and (iii) for Hβ2m and REC3, MethylFLYA
crashes (segmentation fault), producing no results. Although
MethylFLYA assigns a higher fraction of methyl resonances for
the two larger targets in our set (HLA-A01 and HLA-A02), it
requires a prohibitively longer computation time on a single CPU
and, in general, it is less efficient than MAUS by two to three
orders of magnitude (Table 2). Finally, although MethylFLYA
provides low-confidence options for some of the unassigned
methyl resonances, MAUS provides a list of valid options for each
2D reference peak, which contains the correct assignment,
owning to the fact that it applies a satisfiability-based enumera-
tion process that is both exact, and exhaustive.

Consistent methyl assignments guided by sequence-based
models. The structures of targets which lack a representative
template in the PDB can be modeled using homology-based
methods22 or, in cases with no identifiable sequence homologs in
the PDB, sequence co-evolution approaches23,24. To examine the
latter, more challenging case, we used trRosetta (transform-
restrained Rosetta)25, which has demonstrated high accuracy for
complex Critical Assessment of Structure Prediction26 targets.
We derived a set of models for a representative case in our
benchmark set, MBP using the trRosetta web-server, and used
this together with our experimental NOE data recorded on a
MILVproS sample (Supplementary Table 2) to run MAUS. The
models showed a 3.3 Å average all-atom root-mean-square
deviation (RMSD) from the X-ray structure, nonetheless,
MAUS still provided unique and low-ambiguity (two to three
options) assignments for 68% of resonances (relative to 96%
using the X-ray structure), while maintaining 100% accuracy
(Fig. 5a).

As structure prediction methods may also lead to globally
incorrect models, we examined whether MAUS can distinguish
between two closely related structures of the same protein
sequence directly from unprocessed 3D NOE peaks (picked
directly from 3D NOESY data using a signal-to-noise (S/N)
ratio ≥ 5). To test this, we used a designed homotrimeric protein
(XAA) consisting of a multi-layer, three-helix bundle with
modular termini that may adopt two divergent structures
corresponding to an open (observed by X-ray) and a closed
state, which corresponds to the solution structure determined
using manual NOE assignments by our group27. Starting from the
unassigned NOE peaks, we ran MAUS using both models as
inputs including both intra- and inter-chain connectivities in the
structure graph G, and found that only the closed state led to
assignments which satisfy the global NOE network within our
default 10 Å upper limit. MAUS finds that the data graph is not
isomorphic to the structure graph derived from the open state,

due to a subset of NOE constraints that are violated by more than
25 Å (Fig. 5b). This result justifies our choice of an exact subgraph
isomorphism approach, since any attempt to arbitrarily remove
NOEs (i.e., edges of H) not explained by the input structure (i.e.,
edges of G) could lead to a cascade effect, resulting to global
changes in the space of solutions.

In summary, we demonstrate that a satisfiability-based
approach can deliver reliable assignments for a range of targets
amenable to solution-state NMR, using unprocessed NOE peak
data (3D or 4D peak lists) and an existing structural model with
the correct overall fold. Our results using NOESY spectra
recorded for proteins with known assignments as well as for
several blind targets show that, unlike previous methods, MAUS
provides 100% accurate solutions for a large fraction (60–80%) of
methyl groups, thereby reducing manual effort, costs, and errors
introduced due to manual pre-processing and validation of the
data. We further demonstrate that, in the absence of high-
resolution structures or structural homologs in the PDB, sequence
co-evolution-based models can be used by MAUS, without
compromising the correctness of produced assignments. Alter-
natively, for larger, multi-domain proteins with complex methyl
spectra, a user may apply a divide-and-conquer strategy,
supported by MAUS. Using our online web-server, users can
now assign the methyl spectra of large, multi-domain proteins in
a matter of a few days, also considering the time it takes to record
the NMR data. Our method opens new possibilities for studying
challenging, complex molecular machines, as illustrated here for
the Cas9 nuclease.

Methods
Protein expression and purification of benchmark targets. DNA corresponding
to the luminal domains of Hβ2m, HLA-A*01:01, and HLA-A*02:01 expressed in
Escherichia coli BL21 (DE3) cells, refolded and purified as described27,28. Briefly,
Hβ2m, HLA-A*01:01, and HLA-A*02:01 induced with 1 mM isopropyl β-D-1-
thiogalactopyranoside (IPTG) at an OD600 of 0.7 at 37 °C for 4 h, isolated from
inclusion bodies and refolded in vitro. Inclusion bodies were isolated from E. coli
cell pellets by sonication, following by a wash with 100 mM Tris pH 8, 2 mM
EDTA, 0.1% (v/v) deoxycholate, and solubilization in 5.5 M guanidine hydro-
chloride under reducing conditions. For in vitro refolding of Hβ2m, 100 mg protein
was slowly diluted dropwise over 24 h into refolding buffer (0.4 M arginine-HCl,
2 mM EDTA, 4.9 mM reduced L-glutathione, 0.57 mM oxidized L-glutathione,
100 mM Tris pH 8.0) at 4 °C while stirring. For in vitro refolding of HLA-A*01:01
and HLA-A*02:01, 10 mg of peptide (ILDTAGKEEY for HLA-A*01:01 and
LLFGYPVYV for HLA-A*02:01), and 100 mg heavy chain and 100 mg Hβ2m were
slowly diluted dropwise over 24 h into refolding buffer (0.4 M arginine-HCl, 2 mM
EDTA, 4.9 mM reduced L-glutathione, 0.57 mM oxidized L-glutathione, 100 mM
Tris pH 8.0) at 4 °C while stirring. All refolding proceeded for 4 days at 4 °C
without stirring. Purification of Hβ2m, HLA-A*01:01, and HLA-A*02:01 was
performed by size-exclusion chromatography (SEC) with a HiLoad 16/600
Superdex 75 pg column at 1 mL/min with running buffer (150 mM NaCl, 25 mM
Tris pH 8).

XAA was expressed in E. coli BL21 Star (DE3) cells and purified as described26.
Briefly, XAA was induced with 0.1 mM IPTG at an OD600 of 0.6 and expressed at
18 °C for 17 h. Cells were resuspended in lysis buffer (25 mM Tris pH 8, 300 mM
NaCl, 20 mM imidazole) and lysed by sonication. Supernatant was applied to
nickel-nitrilotriacetic acid (Ni-NTA) resin pre-equilibrated with lysis buffer. The
column was rinsed with ten column volumes of wash buffer (25 mM Tris pH 8,
300 mM NaCl, 20 mM imidazole). XAA was eluted using two column volumes
elution buffer (25 mM Tris pH 8, 300 mM NaCl, 250 mM imidazole). The
hexahistidine tag was removed via thrombin cleavage by incubating with 1 : 5000
thrombin (EMD, Millipore) for 15 h at 25 °C. Cleaved XAA was purified by SEC
using a Superdex 75 10/300 GL column (GE Healthcare) at 1 mL/min with running
buffer (150 mM NaCl, 25 mM Tris pH 8).

The MBP-cyclodextrin complex was prepared as described previously29. Briefly,
MBP was expressed in E. coli strain BL21(DE3) cells, induced with 1 mM IPTG at
an OD600 of 0.7 and expressed at 37 °C for 5 h. Purification of MBP-cyclodextrin
was achieved as follows. First, MBP was bound to an amylose affinity column in the
presence of binding buffer (150 mM NaCl, 25 mM Tris pH 8, 1 mM EDTA) and
then eluted using eluted buffer (150 mM NaCl, 25 mM Tris pH 8, 1 mM EDTA,
10 mM maltose). Second, MBP was further purified by SEC with a HiLoad 16/600
Superdex 75 pg column at 1 mL/min with running buffer (150 mM NaCl, 25 mM
Tris pH 8). MBP was then partially unfolded for 3 h at 25 °C in 150 mM NaCl,
25 mM Tris pH 8, 2.5 M guanidinium hydrochloride, and refolded by dilution into
GuHCl-free buffer containing 2 mM β-cyclodextrin. Following purification all
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proteins were exhaustively buffer exchanged in their respective buffers (see section
“Stereospecific isotopic labeling”).

Streptococcus pyogenes Cas9 domain constructs. The coding sequences for Cas9
HNH (residues 776–908) and REC2 domains (residues 167–307) were synthesized,
codon optimized for expression in E. coli, and subcloned into a His10-MBP
expression vector (Genscript) (Supplementary Table 6). pSHS325 bacterial
expression plasmid for SpCas9 REC3 domain was a gift from Jennifer Doudna &
Keith Joung (Addgene plasmid #101205)30. Each protein was expressed in E. coli
BL21 (DE3) containing chaperone plasmid pG-KJE8 (TAKARA, 3340) to enhance
protein folding31 and purified as described below32. Briefly, when cells reached an
OD600 of ~0.6, IPTG was added to a final concentration of 0.5 mM to induce
protein expression. Cells were then grown for an additional 18 h at 23 °C. Collected
cells were resuspended in lysis buffer (50 mM Tris pH 7.5, 500 mM NaCl, 5% (v/v)
glycerol, and 1 mM Tris(2-carboxy-ethyl) phosphine (TCEP) containing an EDTA-
free protease inhibitor tablet (Roche). The cell suspension was sonicated on ice and
clarified by centrifugation at 27,000 × g for 15 min. The soluble lysate fraction was
bound in batch to Ni-NTA agarose (Qiagen). The resin was washed extensively
with 20 mM Tris pH 7.5, 500 mM NaCl, 1 mM TCEP, 10 mM imidazole, and 5%
(vol/vol) glycerol, and the bound protein was eluted in 20 mM Tris pH 7.5,
500 mM NaCl, 1 mM TCEP, 300 mM imidazole, and 5% (vol/vol) glycerol. The
His10-MBP affinity tag was removed with His10-tagged TEV protease during
overnight dialysis against 20 mM Tris pH 7.5, 500 mM NaCl, 1 mM TCEP, and 5%
(vol/vol) glycerol. The protein was then flowed over Ni-NTA agarose to remove

TEV (Tobacco Etch Virus) protease and the cleaved affinity tag, and further
purified by SEC on a Superdex 200 16/60 column (GE Healthcare) in 20 mM Tris
pH 7.5, 200 mM KCl, 1 mM TCEP, and 5% (vol/vol) glycerol.

Human IL-2 expression, refolding, and purification. Codon optimized DNA
encoding the human IL-2 (amino acids 1–133) with a site-specific mutation
(C140S) (Supplementary Table 6) was expressed in BL21 (DE3) E. coli cells as
inclusion bodies. Protein expression was achieved by induction with 1 mM IPTG at
an OD600 of 0.6 followed by cell growth at 37 °C for 5 h at 200 r.p.m. For in vitro
refolding, ~30 mg of inclusion bodies was dropped diluted into 200 mL of refolding
buffer (1.1 M guanidine, 6.5 mM cysteamine, 0.65 mM cystamine, 110 mM Tris pH
8.0) at 4 °C while stirring. Refolding proceeded overnight at 4 °C without stirring.
The solution was dialyzed into a buffer of 20 mM MES pH 6.0, 25 mM sodium
chloride. Purification of refolded IL-2 was performed by cation exchange chro-
matography with a CAPTO-SP column using a 25 mM to 1M NaCl gradient in a
buffer with 25 mM MES pH 6.0 followed by SEC with a Superdex 75 column (GE)
at 0.5 mL/min with running buffer (50 mM NaCl, 20 mM sodium phosphate pH
6.0). Protein concentrations were determined using A280 measurements on a
NanoDrop with extinction coefficients estimated with the ExPASy ProtParam tool.

Preparation of NMR samples, backbone, and methyl assignments. All proteins
were overexpressed in M9 medium in 2H2O containing 2 g l−1 2H13C glucose
(Sigma #552151) and 1 g l−1 15NH4Cl. Selective methyl labeling, referred to as
ILV*, was achieved by the addition of appropriate precursors (ISOTEC Stable
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Isotope Products (Sigma-Aldrich) as detailed previously28,33. ILV-methyl (Ile
13Cδ1; Leu 13Cδ1/13Cδ2; Val 13Cγ1/13Cγ2) U-[15N, 2H]-labeled proteins were
prepared in M9 medium in 2H2O, supplemented with 2 g l−1 2H12C glucose (Sigma
#552003) and 1 g l−1 15NH4Cl. De novo stereospecific methyl assignments were
achieved by utilizing three independently prepared isotopically labeled samples:
AILV or ILV (Ala 13Cβ; Ile 13Cδ1; Leu 13Cδ1/13Cδ2; Val 13Cγ1/13Cγ2 in an
otherwise U-[15N, 12C, 2H] background), ILVproS (Ile 13Cδ1; Leu 13Cδ2; Val 13Cγ2
in an otherwise U-[15N, 12C, 2H] background), and ILV* (Ile 13Cδ1 only; Leu
13Cδ1/13Cδ2; Val 13Cγ1/13Cγ2 in an otherwise U-[15N, 13C, 2H] background). We
employed a multipronged approach where backbone assignments are used to aid
the assignment of side-chain methyl groups. Specifically, we first obtained back-
bone assignments using TROSY-based 3D HNCA, HN(CA)CB, and HNCO
experiments recorded with the ILV*-labeled samples. Acquisition times of 30 ms
(15N), 14 ms (13CO), and 10/5 ms (13Cα /13Cβ) in the indirect dimension were
used. Backbone amide assignments were confirmed using amide-to-amide NOEs
obtained from 3D HM-NHN and 3D N-NHN SOFAST NOESY-HMQC experi-
ments7. Final backbone assignments were further validated using TALOS-N. Next,
Ala, Ile, Leu, and Val methyl assignments were achieved using methyl-to-methyl
NOEs observed in 3D HM-CMHM and 3D CM-CMHM SOFAST NOESY-HMQC in
addition to methyl-to-amide NOEs observed in 3D HN-CMHM and 3D CM-NHN

SOFAST NOESY-HMQC experiments7 recorded on the AILV- or ILV-labeled
samples. For the 3D HN-CMHM SOFAST NOESY, the acquisition parameters were
64, 48, and 1280 complex points in the 1HN, 13CM, and 1HM dimensions with
corresponding acquisition times of 14.5, 10.8, and 79 ms with eight scans/FID. For
the 3D N-CMHM SOFAST NOESY, the acquisition parameters were 48, 40, and
1280 complex points in the 15N, 13CM, and 1HM dimensions with corresponding
acquisition times of 26, 9, and 79 ms with eight scans/FID (free induction decay),
respectively.

Leu/Val geminal pairs were determined by comparing NOE strips in 3D
CM-CMHM SOFAST NOESY experiments recorded using short (50 ms) and long
(300 ms) mixing times. The acquisition parameters for the 3D HM-CMHM SOFAST
NOESY and 3D CM-CMHM SOFAST NOESY are provided in Supplementary
Table 2. Ile δ1 methyl types were identified by their characteristic upfield chemical
shifts. Leu and Val methyl types were identified using phase-sensitive 2D 1H-13C
HMQC experiments recorded on the ILV*-labeled sample18. Alanine methyl types
were identified by comparing 2D 1H-13C HMQC spectra of AILV and ILVproS

samples, and by comparing Ala Cβ chemical shifts from HN(CA)CB experiments.
Finally, stereospecific Leu δ2 and Val γ2 methyl assignments were obtained by
comparison of 2D 1H-13C HMQC spectra of AILV- and ILVproS-labeled samples.
All the data were recorded at a 1H field of 750 or 800MHz at 25 °C. The 3D
SOFAST NOESY experiments were recorded at 800MHz, 25 °C using a recycle
delay of 0.2 s, and NOE mixing time of 50 ms and 300 ms. Typical data acquisition
times were 1 h for the 2D HMQC, 8–10 h for the 50 ms, and 12–14 h for the 200 ms
3D SOFAST NOESY-HMQC experiments. All spectra were acquired using
Topspin 3 acquisition software from Bruker. The data were processed in
NMRPipe34 and analyzed in NMRFAM-SPARKY35 and CcpNMR36 programs.

Stereospecific isotopic labeling. A specifically methyl-labeled acetolactate pre-
cursor (2-[13CH3], 4-[2H3] acetolactate) was obtained through deprotection and
exchange of the protons of the methyl group in position four of ethyl 2-hydroxy-2-
(13C)methyl-3-oxobutanoate (FB reagents) achieved in D2O at pH 1337. Typically,
300 mg of ethyl 2-hydroxy-2-(13C)methyl-3-oxobutanoate was added to 24 mL of a
0.1 M NaOD/D2O solution. After 30 min, the solution was adjusted to neutral pH
with DCl and 2 mL of 1M Tris pH 8.0 in D2O was added. For the production of
highly deuterated [U-2H], I-[13CH3]δ1, L-[13CH3]proS, V-[13CH3]proS samples,
300 mg/L of 2-[13CH3], 4-[2H3] acetolactate, prepared as described above, was
added 1 h prior to induction (OD600 ≈ 0.55). Forty minutes later (i.e., 20 min prior
to induction), 3,3-[2H2],4-[13C]-2-ketobutyrate (SIGMA #589276) was added to a
final concentration of 60 mg/L. Each protein was induced as described above.

For each labeled protein sample, the concentration and buffer composition was
as follows:

- 0.5 mM HLA-A01 in 20 mM sodium phosphate (pH 7.2), 50 mM NaCl, 5%
D2O.

- 0.5 mM HLA-A02 in 20 mM sodium phosphate (pH 7.2), 50 mM NaCl, 5%
D2O.

- 1.3 mM Hβ2m in 20 mM sodium phosphate (pH 7.2), 50 mM NaCl, 5% D2O.
- 0.5 mM XAA domain in 20 mM sodium phosphate (pH 6.2), 100 mM NaCl,

5% D2O.
- 0.8 mM MBP domain in 20 mM sodium phosphate (pH 7.2), 50 mM NaCl,

5% D2O.
- 2.0 mM HNH domain in 20 mM HEPES (pH 7.5), 80 mM KCl, 5% D2O.
- 0.5 mM REC2 domain in 20 mM sodium phosphate (pH 7.2), 50 mM NaCl,

5% D2O.
- 0.7 mM REC3 domain in 20 mM HEPES (pH 7.5), 200 mM KCl, 5%

deuterated glycerol-d8, 1 mM TCEP, 0.01% NaN3, 5% D2O.
- 0.4 mM IL-2 in 20 mM sodium phosphate (pH 6.0), 50 mM NaCl, 5% D2O.

Generating a structure graph G in MAUS system. The input PDB structure is
utilized by MAUS to construct an undirected graph G (Fig. 1b). First, for all pairs of
methyls in the input structure, we compute the following function of the average

distance between all pairs of protons from the two methyl groups (Eq. (1)):

Δs p; qð Þ ¼ 1
9

X3

i¼1

X3

j¼1

d pi; qj
� ��6

 !�1
6

ð1Þ

Where p and q are methyl groups and pi and qj represent protons of each methyl
group in an input structure s, and d denotes the Euclidean distance. When cal-
culating an effective distance between the nine pairs of methyl protons, the average
value of the distances (i.e., multiplicity correction) used here results in a minor
increase in upper distance bounds relative to more commonly used r−6 summa-
tion. For instance, if we have three distance measures 4 Å, 5.5 Å, and 7 Å, the
regular r−6 summation results in a value of 3.9 Å, whereas the average value is
4.7 Å, which remains within the range of the observed interproton distances. Due
to the fact that MAUS explicitly considers different side-chain rotamers in addition
to applying relatively large upper distance thresholds, the exact choice of distance
averaging does not influence our results significantly (as opposed to a more precise
estimate of upper bounds that is required for NMR structure determination
applications).

To account for alternative side-chain rotamers, the input structure is subjected
to n (quick: 10 or thorough: 100) independent relaxations using the FastRelax38

protocol in Rosetta. Therefore, the element of the adjacency matrix Δ(p, q) is
defined by taking the minimum of the distance functions observed among all
sampled conformations (Eq. (2)):

Δ p; qð Þ ¼ mins2SΔs p; qð Þ ð2Þ
We call an edge of the structure graph, G (i) geminal, if it corresponds to a

connectivity between the γ1/γ2 and δ1/δ2 methyls of Leu and Val residues, (ii) long-
range if 6 Å < Δ(p, q) ≤ 10 Å, and (iii) short-range if Δ(p, q) ≤ 6 Å.

Deriving all possible data graphs, H, from the input NOE data. The two 3D
NOESY spectra (recorded with short and long mixing times) are picked at a typical
S/N level of 5 or higher and provided as an input list of (C1, C2, H2) coordinates.
In addition, a high-resolution 2D reference methyl-HMQC spectrum is picked to
identify all reference (C, H) methyl resonances. For larger (>20 kDa) protein tar-
gets, simultaneous consideration of the 2D spectrum from a separate, stereo-
specifically labeled proS sample helps resolve overlap, to identify the exact 13C and
1H chemical shifts corresponding to each observable methyl in the NMR sample.
The 2D reference and two 3D NOESY peak lists are provided as inputs to MAUS.

We model all alternative NOE connectivities resulting from overlap in the input
2D and 3D spectra, to allow an explicit consideration of all possible data graphs, H,
which are consistent with the input data. First, a 3D NOESY cross-peak can be
projected to one or several 2D reference peaks (Fig. 1c). In particular, a 3D
maximum (C1, C2, H2) can be projected to a 2D maximum (C, H) if and only if
the following holds true (Eqs. (3) and (4)):

C2 � Cj j<Ccluster
tol ð3Þ

H2 � Hj j< Hcluster
tol ð4Þ

The tolerance values are set, by default, to 0.15 p.p.m. for 13C and 0.02 p.p.m.
for 1H chemical shifts. NOE peaks with no identifiable projection, as well as
diagonal NOEs are eliminated. This process yields clusters of tentative NOE
connectivities for each peak in the 2D reference set.

Second, each valid (true positive) connectivity present in the input data must
arise from one upper-diagonal NOE cross-peak with one corresponding,
symmetry-related lower-diagonal counterpart. However, identifying unique
symmetry relations between pairs of 3D NOE cross-peaks can be challenging due
to spectral overlap. Specifically, two 3D NOE peaks (C1, C2, H2) and (C1′, C2′,
H2′) are potentially symmetric (Eqs. (5) and (6)) if and only if

C2 � C10j j<Csym
tol ð5Þ

C1 � C20j j< Csym
tol ð6Þ

To explore all possible symmetry relations present in the input data, we
construct a bipartite symmetrization graph connecting upper-diagonal to lower-
diagonal NOE cross-peaks (Fig. 1d). An edge appears between all pairs of peaks
that are potentially symmetric. For typical NOE data sets, the bipartite
symmetrization graph consists of several connected components (Fig. 1d). Isolated
peaks are eliminated. Components of sizes 2 and 3, termed simple, provide edges of
the data graph, H. Larger, complex components are iteratively reduced to smaller
ones using explicit satisfiability, eliminating edges that do not yield satisfying
assignments in exhaustive enumerations, as outlined in detail below (Fig. 1d).

Reducing subgraph isomorphism to satisfiability. A boolean function ƒ on a set
of boolean variables x ¼ fx1; x2; x3 :::; xng is said to be satisfiable if there exists
an assignment x 2 f0; 1gn such that ƒ(x) evaluates to 1. The question of whether a
function f is satisfiable is known as the satisfiability (SAT) problem in computer
science. A boolean function ƒ is in conjunctive normal form (CNF) if it is a
conjunction of one or more clauses, where a clause is a disjunction of literals; in
other words, it is an AND of ORs. Although satisfiability is NP-complete, i.e.,
theory suggests that no polynomial-time algorithm exists, in practice, efficient
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satisfiability solvers have been developed, solving formulas with millions of vari-
ables and clauses from milliseconds to a few seconds39.

The resonance assignment problem is a subgraph isomorphism problem, which
is also NP-complete13. MAUS reduces resonance assignment to a boolean
satisfiability problem, exploiting the power of satisfiability solvers to explore the
space of all possible assignment solutions exhaustively. Specifically, given an
instance of a resonance assignment problem, we construct a boolean formula
introducing the following variables:

1. X(i, j): a boolean variable declaring whether 2D peak i is assigned to methyl j
in the input structure.

2. Y(k, l): a boolean variable declaring whether NOE peak k is clustered to 2D
peak l.

3. Z(k, k′): a boolean variable declaring whether NOE peaks k and k′ are truly
symmetric.

Next, MAUS combines these variables into a CNF formula imposing the
following hard constraints:

1. For every 2D peak, exactly one X(i, j) is true.
2. For every methyl in the structure, at most one X(i, j) is true.
3. For every NOE, exactly one Y(k, l) is true.
4. If Z(k, k′) is true, then in the symmetrization graph k and k' must be

matched in a maximum matching (MM; outlined below).
5. If Z(k, k′) is true, then the methyl assignments of the 2D projections of NOE

peaks k and k′ must be connected by an appropriate edge in the structure
graph, G.

In summary, MAUS casts the methyl assignment subgraph isomorphism
problem as a system of Boolean constraints captured by a CNF formula and uses
CryptoMiniSAT39, a general-purpose solver that provides either (i) a single graph-
matching solution at a millisecond timescale on a single CPU or (ii) a mathematical
proof that the formula is unsatisfiable. As there can be multiple mappings
consistent with the input constraints, MAUS utilizes the solver recursively to
enumerate all valid solutions (see below). In particular, MAUS truncates the
solution space of the formula, imposing further restrictions on the range of a node,
and then recursively checking for novel solutions in the restricted formula. Due to
the fact that it uses a custom-built CNF formula, MAUS has the flexibility to add or
remove constraints from the formula and perform 1000s of calculations of the
subgraph isomorphism problem in a feasible time frame.

Using these two principles of (1) employing a custom-based formula encoding
our system of hard constraints and (2) leveraging a fast and efficient solver, MAUS
can perform an exhaustive enumeration of the space of solutions, despite the NP-
completeness of the problem, using the following iterative ansatz:

(i) Obtain a single valid mapping of peaks into methyls (validity is imposed by
the hard constraints) from the solver.

(ii) Starting from this valid mapping, consider an arbitrary peak (p1) that has
been assigned to a particular methyl (m1) in (i) and add a temporary clause
to the propositional CNF formula that p1 cannot be assigned to m1.

(iii) Invoke the satisfiability solver a second time to see if it can return an
alternative solution for that peak. If it can, then the CNF formula is modified
again to include the new solution to the list of excluded assignments and this
process is repeated until the solver reaches unsatisfiability (i.e., there are no
more assignments of p1 that can lead to a mapping, which satisfies the CNF
formula).

(iv) Add hard constraints imposing that p1 can only be assigned to exactly one
of the valid options and repeat steps (i) through (iii) to enumerate the
assignment options for a different peak, until all peaks have been
considered.

(v) Repeat step (iv) until all peaks have been considered.

Through this iterative process, MAUS achieves full enumeration of the peak support
sets (containing all valid methyl assignments) in a time that is proportional to the sum
of the support set sizes, without resolving to the use of heuristics. If no solutions exist,
MAUS must return a proof that all possible assignments have been considered. This
method is akin to the celebrated Davis–Putnam–Logemann–Loveland procedure for the
satisfiability problem40,41.

Reducing complex components of the symmetrization graph. MAUS reduces
the ambiguity arising from spectral overlap in the NOESY data, which is formally
described in the form of a bipartite symmetrization graph, allowing it to consider
all possible NOE connectivities that can be derived from the raw NOE peaks
without any manual effort by the user (Fig. 1d). Simple components of the graph,
containing up to two edges, directly impose satisfiability constraints. For each
complex component (i.e., a set of nodes containing at least three edges), MAUS
first generates all possible MMs using a O(N3) algorithm efficiently42. Every MM is
iteratively examined, introducing additional clauses to the CNF formula and
running the satisfiability solver. If MAUS encounters an edge, which causes the
formula to become unsatisfiable, then this edge is eliminated from all MMs,
repeating until no further edges can be eliminated. Thus, the bipartite graph-
matching process is iterated many times as an “outer loop”, providing possible
constraints to the CNF solver, which serves to eliminate some of the possible

matchings. This allows us to identify a maximal, self-consistent set of upper/lower-
diagonal NOEs, which is used to provide the final constraints to the solver,
completely removing this burden from the user. During this process, complex
components decompose into simple components, recovering additional NOE
connectivities into H (Supplementary Table 7). The small fraction of NOE peaks,
which remain within complex components, are not used by MAUS.

Chemical shift-based residue type classifier. To predict the residue type of a
given 2D reference peak when this information is not available from additional
experiments, we have analyzed assigned chemical shift data in the BMRB. In
particular, we have derived correlated 13C, 1H chemical shift distributions for each
methyl atom belonging to Met, Ala, Leu, Val, and Ile, using all assigned resonances
in the database. We then constructed a table associating 13C and 1H pairs with the
frequency of each residue type, ranked in decreasing order. A 2D peak can be
tentatively assigned to a minimum set of residues, such that their cumulative
frequency is ≥99%. Using our benchmark targets, we have evaluated the perfor-
mance of the classifier for Leu and Val residues, as the resonances of all other
residues can be unambiguously determined from their position on two 2D spectra
recorded using complementary (MA)ILV and ILVproS samples (Supplementary
Table 4).

Inputs to MAUS. MAUS accepts as inputs, a user-annotated 2D HMQC list, two
3D NOESY lists recorded using long (300 ms) and short (50 ms) mixing times or a
4D NOESY list recorded using long mixing time (300 ms) and a PDB file. In this
work, the experimental peak lists were picked manually using a S/N threshold of 5
and guided by the 2D reference spectrum. When two different users in our group
picked the same data sets, they arrived at exactly the same assignment result using
MAUS, suggesting that this approach is robust to any biases introduced by the user.
This simple process allows us to construct NOE peak tables for each target in
under 1 h.

The user can input a crystal structure, an NMR ensemble or an ensemble of
models computed using structure prediction methods. MAUS also supports
oligomeric systems with regular symmetry, by considering subunit interfaces
between different chains in the input PDB file, as specified by the user. Each 2D
HMQC peak in the input must be provided in a custom format which specifies
residue type(s), a unique number representing the peak, geminal connectivity and
stereospecificity information (for peaks corresponding to Leu and Val). To ensure
consistency, the user must provide the NMR construct sequence (used to confirm
that all methyls present in the NMR samples are also present in the input PDB file)
and the labeling scheme used to prepare the NMR sample. The choice of methyl
labeling scheme is target-specific and should be optimized such as to achieve the
maximum number of probes, while retaining a well-resolved 2D methyl spectrum.
Although our manuscript focuses on the most commonly used ILV scheme, MAUS
also supports the methyl-bearing side chains of Ala and Met. The user may instruct
MAUS to use custom radii (upper limits) for short and long mixing time NOEs
(see Table 1 and “Methods” for parameters used for our benchmark targets). The
radii must be chosen within recommended ranges (6–8 Å for short-range and
10–12 Å for long-range NOEs). In practice, the smallest possible distance threshold
that defines a structure graph that is subgraph isomorphic to the data graph is the
optimal distance threshold to run MAUS. A rational approach for choosing this
distance is outlined here as follows: (i) we first run MAUS using a standard 8 Å
distance threshold for the 50 ms NOESY data, which we assume to be the
maximum possible 50 ms NOE distance. This assumption holds for all targets used
in this study, also considering that the structure graph already takes into account
alternative side-chain rotamers and other local variations of the structure. (ii) We
then reduce the threshold by steps of 0.1 until MAUS can no longer fit the NOE
network into the structure graph. (iii) The final distance threshold is either the
minimum distance identified in ii augmented by 0.5 or 8 Å (we select the smaller
value). We find that, for all targets, a threshold in the range 6–8 Å gives optimum
results, while always retaining the ground truth within the solution range. This
strategy for finding the optimal threshold is carried out manually using a series of
short preliminary MAUS runs on our online web-server (in cases where MAUS
cannot fit the NOE network, a descriptive message is returned to the user
immediately). Running all targets using a conservative 8 Å threshold for the 50 ms
NOE data still provides valid and meaningful results, with assignment
completeness levels (measured in terms of 1–3 assignment options) that decrease
by 3% for HLA-A02, 6% for MBP, 40% for IL-2, and 26% for REC2 targets in our
benchmark set, relative to the user-optimized thresholds (Supplementary Table 8).
MAUS also employs tunable tolerance parameters, for diagonal NOEs, clustering,
and symmetrization, which are set to default values mentioned in previous sections.
Detailed instructions for submitting jobs and creating input files in the required
format for MAUS are outlined on the help page of our website.

Inconsistencies in peak residue-type information or geminal methyl
connectivities in the inputs provided by the user (such as misidentification of a Leu
peak as a Val or misidentification of geminal methyls) will, in most cases, lead to an
unsatisfiable system of constraints due to inconsistency with the global NOE
network. To avoid this and guide the user towards obtaining confident
assignments, in the MAUS input page we recommend that the user should only
provide residue type and geminal information if they have 100% confidence and
are guided by conclusive evidence from a range of additional experimental inputs
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(Fig. 2) (residue type and proS-selective labeling, 2D experiments that achieve
selective inversion of Leu peaks further assisted by the observation of strong
geminal NOEs). We find that, when provided with this information, determination
of geminal methyls and residue types can be achieved with 100% confidence by the
user as shown by our results on eight benchmark and blind targets. Alternatively, if
the user is not confident in the residue type and geminal connectivities, our online
interface fully supports a mixed input, where for some methyls this information is
either not given or a list of options is provided (e.g., Leu or Val). Finally, the user
also has the option to engage the MAUS residue type and geminal methyl classifier,
which provides 99% accurate results. Together, these options effectively address
any possible inconsistencies in the residue type/geminal methyl user inputs.

Inconsistencies in the input NOE peak lists, due to spectral artifacts, errors in
peak picking, which may also include incorrectly identified peak centers. To
address this type of data discrepancy, we recommend that users pick 3D or 4D
NOESY data at sufficiently high S/N > 5 and remove spectral artifacts manually.
However, the most critical form of proactively removing inconsistent data points is
provided by our rigorous clustering and symmetrization procedures, which
requires that every valid NOE constraint: (i) corresponds to a single methyl group
on the 2D 13C/1H reference HMQC spectrum, through the explicit consideration
of all possible clustering scenarios, and (ii) arises from two exclusively symmetry-
related cross-peaks, through the construction of an explicit bipartite graph between
upper- and lower-diagonal NOEs (Fig. 1c, d). The information of which NOE
peaks were not considered due to violating either 1 or 2 is provided back to the user
in a comprehensive table.

MAUS output. MAUS provides a detailed output file with all valid resonance
assignment options for each methyl resonance, together with an explanation of
how each NOE cross-peak was used by the method. The output file provides
information about all non-diagonal NOEs: the 2D peak(s) to which each NOE peak
was clustered and its symmetry-related peak. If the NOE peak is not used as a
constraint either due to no identifiable symmetric peaks or because it is part of a
complex component, which cannot be reduced further, it is indicated in the output
file so that the user can revisit the data. In addition, all NOEs corresponding to
geminal methyl connectivities are indicated in the output file. This classification
summarizes how the NMR data was utilized by MAUS (see Supplementary Table 7
for all benchmark targets used in this study). In the final section, all the resonance
assignment options are listed together with a summary of assignment statistics. The
total % of resonance assignments for all targets reported here is computed by
taking the sum of unambiguous and ambiguous (one to three options) options. If
MAUS cannot find a satisfying assignment due to erroneous input data, it provides
helpful diagnostic information for the user to troubleshoot their inputs. The input
files for all targets in our benchmark set together with detailed description are
provided as tutorials in the help page of the MAUS website. MAUS’ exhaustive
enumeration process, by definition, does not include methyls that are uniquely
assigned to one resonance as options in the assignments lists of any other groups
with more than one options, due to the use of explicit constraints in the CNF
formula, which prevent this from happening. When a single resonance assignment
option is provided to the user, this means that MAUS has explored all possible
solutions of the graph-matching problem globally and has found that this is the
only option that is consistent with the input NOE data graph and any other
constraints supplied by the user. This principle provides a powerful tool for
deriving highly complete and 100% accurate assignments as follows. For cases with
two or three options, the user can manually resolve the correct assignment aided by
intensity considerations through inspection of interproton distances in the X-ray or
NMR structure (intensities are not considered by MAUS). Here, the user can also
consider NOEs that have been ignored by MAUS due to high peak overlap or
unclear symmetry, as marked on the annotated output peak table. Methyls for
which the correct assignment can be confidently determined by the user can be
then fixed in the MAUS input, to trigger a next round of automated assignments.
We find that this iterative procedure “propagates” constraints through the data
graph, leading to resolution of all assignments in a matter of a few hours while
requiring minimal intervention by the user, even for systems with highly complex
spectra.

Transform-restrained Rosetta. We used the trRosetta protocol, which makes use
of the orientation restraints predicted using deep residual neural networks, together
with distance restraints from co-evolution information to model structures at a
high resolution in the Rosetta force field25. We provided as input the sequence of
MBP to trRosetta using a web-server available at https://yanglab.nankai.edu.cn/
trRosetta/. An ensemble of five models output by trRosetta was supplied to MAUS
together with our 2D and 3D NMR data, to obtain the resonance assignments.

Comparison with publicly available assignment algorithms using NOE peak
lists. Protons were added to X-ray structures using the NIH PDB Utility Server
(https://spin.niddk.nih.gov/bax/nmrserver/pdbutil/sa.html). In all simulations, the
symmetrization tolerance was set to 0.15, 0.15, and 0.02 p.p.m. for the 13CNOE,
13Cindirect, and 1Hdirect dimensions, respectively, except Cas9 HNH domain, for
which 0.1 p.p.m. was used for 13CNOE and 13Cindirect. In all simulations, the long
mixing time NOE distance threshold was set to 10 Å, whereas the short mixing

time NOE distance threshold was optimized for different targets in the 6–8 Å range
(see Table 1).

MAGIC. The 2D input lists for MAGIC were generated from the NMRFAM-
SPARKY-exported 2D 1H-13C HMQC list and the 50 ms 3D CM-CM-HM NOESY
list (used to automatically determine geminal pairing). The resulting 2D list was
curated for accuracy regarding both methyl residue type and geminal pairing.

FLAMEnGO. The experimental chemical shift file (methyl.exp) was generated from
the NMRFAM-SPARKY-exported 2D 1H-13C HMQC list using an in-house script.
Predicted chemical shifts (methyl.pre) were determined using CH3Shift. Line-
widths in the 300 ms 3D CM-CM-HM NOESY data were determined using
NMRFAM-SPARKY or CcpNmr. FLAMEnGO v2.4 was used. A total of 100,000
Monte Carlo rounds were performed for each calculation. The final result was
taken as the summary of 10 independent runs.

MAP-XSII. The experimental chemical shift file (methyl.exp) was generated from
the NMRFAM-SPARKY-exported 2D 1H-13C HMQC list using an in-house script.
Predicted chemical shifts (methyl.pre) were determined using CH3Shift. The
weight of chemical shift to NOE was kept as 0.2 (the default). The final result was
taken as the summary of ten independent runs.

MethylFLYA. The 2D and 3D input peak lists were picked manually in NMRFAM-
SPARKY and were used to generate inputs for MethylFLYA12. For every target, we
carried out 100 independent calculations using three different distance cutoff
values (4.5, 5.0, and 5.5 Å) on a single processor to generate expected NOESY peaks
from the input structure. Consistent with the parameters used to run all methods,
we used 13C and 1H chemical shift tolerance values of 0.15 and 0.02 p.p.m.,
respectively, for all targets with the exception of HNH, where a 13C tolerance of 0.1
p.p.m. was used. Consensus results from all runs for assignments classified as
strong by MethylFLYA (considered reliable) are reported in Table 2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Nuclear Magnetic Resonance assignments for IL-2, REC2, HNH, and REC3, used as
blind targets, have been deposited in the BMRB under accession numbers 28104, 28105,
28106, and 28110, respectively. The unprocessed and processed NMR data along with the
structural ensembles and input parameters used to run MAUS are provided for all targets
in the help page of the MAUS website. Other data are available from the corresponding
author upon reasonable request.

Code availability
The MAUS server is available at https://methylassignment.chemistry.ucsc.edu.
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