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Bayesian data analysis reveals no preference
for cardinal Tafel slopes in CO2 reduction
electrocatalysis
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The Tafel slope is a key parameter often quoted to characterize the efficacy of an electro-

chemical catalyst. In this paper, we develop a Bayesian data analysis approach to estimate the

Tafel slope from experimentally-measured current-voltage data. Our approach obviates the

human intervention required by current literature practice for Tafel estimation, and provides

robust, distributional uncertainty estimates. Using synthetic data, we illustrate how data

insufficiency can unknowingly influence current fitting approaches, and how our approach

allays these concerns. We apply our approach to conduct a comprehensive re-analysis of

data from the CO2 reduction literature. This analysis reveals no systematic preference for

Tafel slopes to cluster around certain "cardinal values” (e.g. 60 or 120 mV/decade). We

hypothesize several plausible physical explanations for this observation, and discuss the

implications of our finding for mechanistic analysis in electrochemical kinetic investigations.
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Modern tools in data science provide the capability to
reduce or outright eliminate sources of human bias in
the analysis and interpretation of experimental mea-

surements. Despite the wide availability of these tools, many
communities continue to rely on more primitive and bias-prone
methods of data analysis. The calculation of Tafel slopes through
linear least-squares fitting is one prominent example. Here, we
present a robust Bayesian approach for analyzing electrochemical
current–voltage measurements that (1) eliminates the need to
manually exclude points in limiting-current regimes, and (2)
provides a well-defined measure of uncertainty in the fitting
parameters (e.g., the Tafel slope). By applying this approach to a
large set of literature data, we identify a systematic but unjustified
tendency for the assignment of Tafel slopes to specific “cardinal”
values. This finding highlights the role that modern data science
can play in uncovering and eliminating hidden sources of bias
that exist within various scientific communities.

Current–voltage measurements are a fundamental character-
ization tool for electrochemical systems, as they report on the
propensity for system response when pushed out of equilibrium
by a thermodynamic driving force. In the context of electro-
chemical catalysis, current–voltage behavior is often summarized
by the Tafel slope, a parameter that quantifies the amount of
electrochemical driving force required to produce a logarithmic
increase in the observed current1. Nearly all studies that develop a
novel electrochemical catalyst report a Tafel slope, and it is
considered an important figure of merit when comparing cata-
lysts. In principle, the Tafel slope contains information about the
microscopic mechanism underlying the operation of a catalyst.
The elementary kinetic steps of idealized reaction mechanisms
imply a strong tendency for Tafel slopes to exhibit certain “car-
dinal values”2,3, and these cardinal values are frequently refer-
enced in the kinetic analysis of catalytic materials. However,
several notable studies have reported Tafel slopes that differ
significantly from their predicted cardinal values4,5. Because the
kinetic steps associated with these cardinal values are ubiquitous,
there is a tendency to interpret Tafel slopes with off-cardinal
values as if they represent a truly cardinal value that has been
altered by sources of experimental error, despite relatively
incomplete error quantification6–12. The flaw in this interpretive
strategy is that it relies on the validity of idealizing assumptions
about the underlying kinetic mechanism, and does not account
for the numerous ways in which deviations from ideality can
influence the Tafel slope13.

Despite the scientific and engineering relevance of the Tafel
slope, current literature approaches for estimating this parameter
from measured current–voltage data require subjective human
intervention, and are susceptible to numerous sources of systematic
error. Subjective considerations in the fitting procedure (namely, the
manual demarcation of a linear fit region) make it impossible to
determine, in a truly unbiased manner, the intrinsic distribution of
Tafel slopes, and whether they cluster around cardinal values. In
addition, human interventions in the fitting procedure enable
researcher bias, both inadvertent and intentional, to influence a
quantitative catalyst benchmark. Such biases are difficult to recog-
nize without re-examining primary source data.

To address these concerns, we advance an alternative Bayesian
data analysis method that enables unbiased Tafel slope estima-
tion. This method provides robust, distributional uncertainty
quantification, elucidating the credible range of Tafel slope values
consistent with the measured data. Because our method elim-
inates subjectivity in the fitting process, it enables us to fairly
evaluate the prevalence of cardinal Tafel slopes within reanalyzed
literature data.

In this paper, we begin by describing common literature
practices for assigning Tafel slopes from experimental

current–voltage data. Subsequently, we develop the mathematical
formalism behind our Bayesian approach to Tafel slope estima-
tion, and discuss its associated benefits compared to existing
approaches. Using synthetic data, we illustrate the benefits of our
approach, and show how it can be combined with iterative data
acquisition procedures to systematically reduce uncertainty in
Tafel slope estimates. Finally, we apply our approach to a large set
of CO2 reduction catalyst data from the literature, and compare
our Tafel slope estimates to the reported values. We found that
clustering of reported Tafel slopes around cardinal values is
unjustified, and likely reflects systemic bias across the field. We
conclude by hypothesizing several plausible sources of mechan-
istic nonideality and estimating their ability to modify Tafel
slopes from their cardinal values.

Results
Tafel slopes in electrocatalysis. Electrochemical systems operate
by converting the energy stored in chemical bonds into electrical
work (or vice versa) by means of electron transport through an
external circuit. The electron transport process originates at an
electrochemical interface, where a portion of the external circuit
(an electrode) is contacted with a chemical system (a reactive
electrolyte solution) in the presence of a catalyst. Catalyzed
interfacial electron transfer serves to inextricably link the elec-
trical dynamics of the external circuit to the chemical dynamics of
the electrolyte. Electrochemical characterization techniques
exploit this linkage, using the voltage and current measured in the
external circuit to report on the thermodynamic driving forces
and nonequilibrium currents in the chemical system. The sim-
plest possible electrochemical experiment involves setting the
applied potential at an electrode and measuring the resultant
electrical current (or vice versa), generating a
current–voltage trace.

Several phenomena can influence the shape of current–voltage
traces. For example, the electronic properties of the electrode, the
chemical identity of the catalyst material, the transport
characteristics of reactive species in the electrolyte, and myriad
other factors all play an important role in structuring
current–voltage behavior14. When characterizing the perfor-
mance of a catalyst material, we are most interested in the
kinetic control regime of a current–voltage trace, where the
measured current reports directly on the intrinsic rate of a
chemical reaction at the interface. Under kinetic control, the
current is generally expected to follow an exponential asymptotic
dependence on the overpotential η, which quantifies the
difference between the applied electrode potential and the
equilibrium potential for the chemical reaction1. In the high ∣η∣
limit (specifically, ∣η∣ ≫ kBT/e, the thermal voltage), the logarithm
of the kinetic current, ikin, should depend linearly on the applied
potential. The (inverse) slope of this relationship is termed the
Tafel slope,

Tafel slope � dη
dlog 10ikin

����
jηj�kBT=e

; ð1Þ

and is generally reported in units of mV/decade.
The Tafel slope is an important parameter to judge the

performance of a catalyst because it quantifies the amount of
additional applied potential required to observe a logarithmic
increase in the measured current. Hence, studies that develop a
novel electrocatalytic material often measure current–voltage data
in the kinetic control regime, and then use these data to estimate
a Tafel slope for their catalytic system. Experimental limitations
impose a number of practical constraints on the Tafel slope
estimation procedure. First, for several electrochemical reactions
(CO2 reduction, N2 reduction, organic electrosynthesis, etc.),
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accurately determining a kinetic current for a specific reaction
requires product quantification after a constant potential/current
hold. Due to throughput limitations for quantification techniques,
the Tafel slope often must be estimated from just a handful of
data points (roughly, 3–10). Another important practical
constraint arises from limiting-current phenomena observed in
many electrocatalytic systems. At sufficiently high overpotentials,
the reaction rate exceeds the rate of another physical process
required for the reaction to proceed. In this regime, the system is
no longer under kinetic control, and the measured current
plateaus to a limiting current, becoming independent of the
applied voltage15. Most commonly, limiting currents in CO2

reduction systems arise from diffusive transport limitations in the
electrolyte, although several other physical reasons for plateau
currents have been hypothesized and investigated in the
literature16–20. Consequently, experimentally measured Tafel data
usually starts out linear, but curves sublinearly at sufficiently high
overpotentials.

In the face of these practical limitations, studies in the literature
use a relatively standard protocol for estimating the Tafel slope,
depicted schematically in the upper half of Fig. 1. First, a
researcher must manually identify an ad hoc cutoff between a
linear, kinetically controlled regime (the Tafel regime) and a
limiting-current (plateau) regime21. All data points in the plateau
regime are subsequently discarded, and a Tafel slope is fitted by
ordinary least-squares (OLS) linear regression to the data in the
Tafel regime. The OLS procedure offers a prescription for
extracting the standard error of the Tafel slope; this standard
error is sometimes used to construct a confidence interval for the
Tafel slope estimate22,23.

We believe the current standard literature practice bears several
drawbacks. First and foremost, manual identification of a cutoff

between the kinetic and limiting-current regimes introduces
subjectivity into Tafel slope estimation, potentially incorporating
undesirable human influence into the quantification of an
important metric for electrocatalyst performance. Second,
reporting the error associated with a linear fit to a manually
selected set of data points systematically underestimates the actual
error associated with estimating a Tafel slope from a small
number of data points. The OLS slope standard error quantifies
the uncertainty associated with the linear fit to a given set of data,
but there is an additional unquantified error associated with
selection of the linear regime. Third and finally, ad hoc selection
of a regime cutoff can introduce a systematic bias in the Tafel
slope, since the final few points of the kinetic regime will suffer at
least some effects from limiting-current curvature, causing the
current at these points to deviate slightly from the true kinetic
current.

Bayesian data analysis algorithm. Our approach for Tafel slope
estimation seeks to obviate manual demarcation between the
linear and plateau regions in current–voltage data. To this end,
we choose to fit all current–voltage data measured in a Tafel
experiment to a phenomenological model that smoothly inter-
polates between the kinetic control and plateau regimes. The
model reads,

1
iðηÞ ¼

1
ilim

þ 1

i0 exp m�1
T jηj� � ; ð2Þ

where i(η) is the measured current density as a function of
overpotential. The unknown parameters in the model are ilim, the
limiting-current density, i0, the exchange current density, and
m�1

T , the inverse Tafel slope. The mathematical structure of

Fig. 1 Schematic comparison of the traditional approach to Tafel fitting and the new approach we describe in this paper. Starting from raw
current–voltage data on the left, the current literature approach begins with manual identification of a linear Tafel region on the plot. The rest of the data is
discarded, and a linear fit to the Tafel region yields a Tafel slope, with an associated uncertainty corresponding to the standard error of the ordinary least-
squares (OLS) estimator. In addition to this quantified uncertainty, an additional unquantified source of uncertainty arises from the manual selection of a
Tafel region on the plot. The new approach described here considers all of the data in the context of a nonlinear model that smoothly interpolates between
the traditional Tafel region and a plateaued region (e.g., due to mass transport limitations). Our approach uses a Monte Carlo method to sample from the
Bayes posterior distribution over the parameters of the model, yielding a probabilistic distribution over Tafel slopes that are consistent with the
measured data.
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Eq. (2) can be shown to arise, for example, when the surface
concentration of a redox-active species changes with applied
overpotential due to diffusive transport effects. Alternatively, Eq.
(2) could be motivated by interpreting the presence of limiting-
current phenomena as an additional series resistance to current in
the equivalent circuit for an electrochemical cell1. Most generally,
this model can describe any physical phenomenon that imposes a
“speed limit” on the passed current24.

Typically, the parameters in a model like Eq. (2) would be
adjusted to achieve optimal agreement between the model and
experimental data. Despite the nonlinearity inherent to the
model, numerical optimization schemes for determining the
optimal set of parameters are mature and well-studied. Here, we
employ a different approach based on Bayesian sampling that can
quantify not only an optimal set of parameters but also a
distribution over the likely values of the model parameters given
the available experimental data25. Before carrying out any
current–voltage measurements, we generally have at least some
idea of the reasonable values of parameters in Eq. (2). For
example, one would be very leery of a Tafel slope mT∉ [101, 103]
mV/decade, and one can use tabulated values of a species
diffusion coefficient and an estimate of the cell boundary layer
thickness to compute a ballpark estimate of a limiting current,
ilim, arising from diffusive transport limitations1,24. For a general
set of parameters θ, this knowledge is encoded in a prior
distribution over the parameters p(θ). Upon observing some data
y, we can compute an updated posterior distribution p(θ∣y) (the
probability of the parameters given the observed data) using
Bayes’ rule26,

pðθjyÞ ¼ pðyjθÞ ´ pðθÞ
pðyÞ : ð3Þ

The likelihood p(y∣θ) is supplied by a model like Eq. (2), in
conjunction with an assumption about the distribution over the
error at each data point. Here, we assume that the error at each
data point is independently normally distributed with a standard
deviation σ= 0.10 log units, although our approach is flexible in
this respect (see Supplementary information for sensitivity
analysis with respect to the σ parameter).

Despite the fact that the partition function p(y) is an unknown
constant, Eq. (3) yields a prescription for sampling from the
posterior distribution over parameters p(θ∣y). Briefly, one can use
a Markov chain Monte Carlo sampling scheme27 to glean several
parameter samples from the posterior distribution, which are
expected to concentrate in density around the optimal values of
the parameters (additional detail on implementation can be found
in the Supplementary information). As depicted in the lower
panel of Fig. 1, this Bayesian posterior sampling technique reveals
both the optimal values of the model parameters and a
distributional uncertainty estimate over their values, accounting
for all sources of uncertainty in the model. If we truly want to
collapse this distributional information to a single value of the
parameter, say for quoting a Tafel slope associated with a catalyst,
we can compute,

hθi �
Z

dθ � θ � pðθjyÞ; ð4Þ

where 〈θ〉 is termed the mean a posteriori (MAP) parameter
estimate. When the posterior distribution p(θ∣y) is strongly
peaked around an optimal set of parameters, the MAP estimate
will line up with the parameters gleaned from a nonlinear
optimization technique. When the posterior distribution is broad
or multimodal, the MAP estimate and the optimal parameter
values may differ, signaling a high degree of uncertainty
associated with the optimal parameter estimate.

The Bayesian posterior sampling approach offers several key
advantages over the traditional approach to Tafel slope estima-
tion. First, it removes subjectivity from the analysis of Tafel data:
users of our algorithm need to only select a model such as Eq. (2)
to interpret the observed data, which can be justified on the basis
of rigorous physical arguments, unlike a subjective delineation
between linear and plateau regimes. Second, our approach yields
accurate quantification of the uncertainty associated with a Tafel
slope estimate. Specifically, we believe the distributional uncer-
tainty quantification afforded by our algorithm will be useful
when assessing and discriminating between disparate sets of
experimental data. Finally, because the model in Eq. (2)
analytically extrapolates away curvature-related attenuation of
the kinetic current, our approach is free of the systematic bias
present in current literature practice.

As a caveat, we stress that while the model in Eq. (2) is
appropriate for fitting some current–voltage data in the CO2

reduction literature, experimental and theoretical studies have
noted the possibility of multiple kinetic control regimes with
distinct Tafel slopes before a limiting-current plateau
regime3,28,29. This phenomenon can arise due to potential-
dependent surface coverage effects or a potential-dependent
switch in the microscopic reaction mechanism. When multiple
distinct Tafel regimes are present, the experimental data must be
interpreted under a model that allows for this possibility; once a
suitable model is selected, the Bayesian posterior sampling
approach can still be employed (see Supplementary information
for additional discussion on model flexibility).

Identifying and addressing data insufficiency. As mentioned
previously, practical throughput considerations imposed by pro-
duct quantification and other experimental requirements limit the
amount of data generally used in a Tafel analysis to 3–10 points.
In a survey of Tafel data reported in CO2 reduction studies in the
literature, we found that a significant number of papers conduct
Tafel analyses on a set of 3–5 data points within a narrow
overpotential window. With such few data points, trends often
appear linear, and so many studies simply extract the Tafel slope
from a linear fit to all the data. While seemingly benign, esti-
mating a Tafel slope without accounting for the possibility of
limiting-current nonlinearity can lead to systematic error arising
from data insufficiency. This phenomenon is elegantly identified
and addressed by our Bayesian posterior sampling approach. For
the sake of clarity, we illustrate how this systematic error can
emerge by analyzing a set of synthetic data. The parable narrated
by these data is easily relatable to a specific set of experimental
data, and it emphasizes another distinct advantage of the Baye-
sian posterior sampling approach.

The inset of Fig. 2A depicts a set of (synthetic) Tafel data
measured over a 100 mV overpotential window. To the eye, the
data looks entirely linear, and fitting a Tafel slope to the entire
dataset using OLS regression yields a Tafel slope of 130 mV/
decade, with a standard error of 10 mV/decade. However, Fig. 2A
illustrates the issue with this traditional Tafel analysis. Indeed, the
original set of green data in the narrow overpotential regime is
essentially entirely consistent, within experimental error, with two
models possessing very different Tafel slopes. Model I has a Tafel
slope of 80 mV/decade, while Model II has a Tafel slope of 120
mV/decade. Despite this wide berth in Tafel slope, the models
align in the initial overpotential window because of their distinct
limiting currents ilim, which differ by a modest half order of
magnitude. Clearly, the set of data measured in the inset of
Fig. 2A is insufficient to distinguish between the two models, but
these data insufficiency is entirely hidden by the traditional
analysis approach.
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Unlike the traditional analysis approach, Bayesian posterior
sampling correctly identifies the Tafel slope ambiguity present in
the original data. The green trace in Fig. 2B depicts the posterior
distribution over the Tafel slope using solely the green data. This
distribution is broad and markedly multimodal, with concentra-
tions of probability density around the Model I and II Tafel
slopes. In this manner, Bayesian posterior sampling correctly
surmises that the original data are insufficient to pin down a value
of the Tafel slope with high certainty. One possible solution to
this issue is to measure additional data over a wider range of
overpotentials. Depending on the true parameters of the
electrochemical system under measurement, this experiment
could yield either the blue data or the red data in Fig. 2A. When
the Bayes posterior sampling algorithm is fed a combination of
the green data and the red data, it correctly predicts a posterior
distribution of Tafel slopes concentrated around the Model I
Tafel slope. Conversely, when fed a combination of the green data
and the blue data, it correctly predicts a posterior distribution of
Tafel slopes concentrated around the Model II Tafel slope. In
other words, multimodality in the posterior distribution predicted
by our algorithm is a hallmark of data insufficiency; when the
underlying insufficiency is addressed, the algorithm neatly splits
the distributional modes according to the observed data.

We highlight a couple of important conclusions from the
synthetic data analysis presented in Fig. 2. First, current–voltage
data used for Tafel slope estimation should ideally be measured
until clear curvature is observed. If such a measurement is
unnecessarily inconvenient or impossible, one should attempt to
quantify the limiting current either through back-of-the-envelope
estimates or through direct experimental control over the limiting
current (e.g., with a rotating-disk electrode), and ensure that data
used to estimate Tafel slopes is collected well below the limiting-
current density. Without information that elucidates the
magnitude of the limiting current, it is impossible to ascertain
the degree of limiting-current-induced attenuation suffered by the
current measured in the Tafel regime. Consequently, Tafel slopes
estimated on the basis of a linear Tafel plot measured in a small

overpotential window are likely systematically unreliable, and can
harbor significant unquantified uncertainty. Second, the synthetic
data analysis illustrates how the Bayesian posterior sampling
approach can be employed iteratively with data acquisition
efforts. Since the posterior distributions accurately quantify the
uncertainty associated with a Tafel slope estimated given available
data, an experimentalist can use this uncertainty information to
guide future data acquisition until a desirable uncertainty
threshold is achieved.

Evaluating cardinal preferences in literature data. In addition to
being an important metric in assessing catalyst performance, the
Tafel slope can be valuable because it may yield insight into the
mechanism of a catalyzed electrochemical reaction. The con-
nection between the Tafel slope, a macroscopically measurable
quantity, and the microscopic reaction mechanism is derived
using microkinetic analysis invoking a whole host of ideality
assumptions2,3. For an electrochemical reaction that proceeds
through a number of elementary steps, one must assume that a
single step determines the rate, and that all steps prior to the rate-
determining step (RDS) are in quasi-equilibrium. Each of the
quasi-equilibrated elementary steps carries an associated equili-
brium constant, which is possibly dependent on the applied
potential. For potential-dependent equilibrium constants, one
must additionally assume that the potential dependence goes
exponentially in the (strictly integer) number of electrons trans-
ferred in the elementary step. The RDS has an associated forward
rate constant, which is assumed to have a Butler–Volmer-like
dependence on the applied potential, with a symmetry coefficient
α= 1/21. Under these restrictive assumptions, one can derive
(see Supplementary information) an equation for the Tafel slope
of the entire chemical reaction (at T= 298 K),

Tafel slope ¼ 60mV=decade
nþ q=2

; ð5Þ

where n is the total number of electrons transferred in elementary

Fig. 2 Bimodal posterior distributions signify Tafel slope ambiguity that cannot be clarified by the available data. A (inset) Synthetic current–voltage
data collected in hypothetical Experiment 1 appears linear over a 100mV overpotential region, with a Tafel slope of 130 ± 10mV/decade. A Synthetic
current–voltage data over a broader range of overpotentials. The dashed lines show two models (I, II) with different Tafel slopes and plateau currents that
could both reasonably fit the Experiment 1 data. Synthetic error bars represent one standard error of the mean of uncertainty in the synthetic data.
Experiment 2A (blue triangles) and 2B (red squares) represent two possible outcomes of experiments that probe a broader range of overpotentials, which
can clearly distinguish between Model I and Model II. B Bayes posterior distributions over the Tafel slope determined by our algorithm given various sets of
observed data. If the algorithm is fed just the Experiment 1 data, the posterior distribution over the Tafel slope is broad and weakly bimodal, indicating that
the Experiment 1 data is insufficient to discriminate between Model I and Model II. When fit to the Experiment 2A or 2B data in addition to the Experiment 1
data, this bimodality splits cleanly into two separate modes centered at the Model I and Model II Tafel slopes. Note that the Tafel slope extracted from a
linear fit to just the Experiment 1 data is distinct from both the Model I and Model II Tafel slopes.
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steps prior to the RDS, and q is the number of electrons trans-
ferred in the RDS.

Equation (5) gives rise to the so-called “cardinal values” of the
Tafel slope, which arise from evaluating the Tafel slope for
different values of (n, q). Tafel slope values of 120, 60, and 40 mV/
decade are familiar to most electrochemists, and arise from
(n, q)= (0, 1), (1, 0), and (1, 1), respectively. Researchers
routinely appeal to cardinal values to extract microscopic insight
from experimentally measured Tafel slopes. A common
argumentative thrust goes: “my catalyst has a Tafel slope of
110 mV/decade, which is reasonably close to 120 mV/decade,
indicating that the reaction proceeds through a rate-limiting first
electron transfer step.” This line of reasoning is only truly valid if
the typical catalyst satisfies the ideality assumptions involved in
deriving Eq. (5), a point that has been emphasized several times
in the literature3–5. Comprehensive analysis of literature Tafel
data can shed light on whether a typical catalyst satisfies these
strict assumptions; if this is indeed true, then literature Tafel
slopes should tend to cluster around the cardinal Tafel values
predicted by Eq. (5).

Our Bayesian posterior sampling algorithm for Tafel slope fitting
allows us to carry out an unbiased, automated survey of literature
Tafel data to quantitatively test whether Tafel slope values reported
in the literature show any preference for cardinal values. In this
study, we choose to focus on reanalyzing Tafel data from the CO2

reduction literature. We focus on this subsection of the literature
because CO2 reduction is a burgeoning field with diverse catalyst
materials and morphologies30, and because product quantification
requirements place Tafel analysis in this field in the low-data
regime, as discussed previously. To carry out the literature survey,
we digitized 344 distinct Tafel datasets from the CO2 reduction
literature and fed the resultant data to the Bayesian posterior
sampling algorithm to produce reanalyzed estimates of the Tafel
slope. Further information on the data mining and analysis
procedure can be found in the “Methods” section.

Our re-analysis procedure uses Eq. (2) to interpret the
literature Tafel datasets. As mentioned earlier, this model is only
truly appropriate in the case of one kinetic control regime
associated with a single Tafel slope; it cannot accurately capture
current–voltage behavior under multiple kinetic regimes, which
may be operative in at least some of the datasets we have
analyzed. However, absent independent experimental confirma-
tion of the physical mechanism underlying the observed multiple
kinetic regimes (e.g., from spectroscopy or surface imaging), it is
difficult to rigorously select a single model from the plethora that
arise from enumerating microkinetic possibilities for intermedi-
ates in CO2 reduction. Since the papers from the literature that we
have reanalyzed fit a single Tafel slope to their data, and because
they lack the experimental evidence required to pin down a richer
physical model describing their data, we believe that uniform
application of the model in Eq. (2) is an appropriate choice for
our literature survey study. Our usage of Eq. (2) to interpret the
data should not be construed as a blanket endorsement of this
model in Tafel analysis. Indeed, if there is solid experimental
evidence motivating the usage of a different kinetic model for a
specific CO2 reduction catalyst system, it can and should be
employed under our Bayesian framework.

Figure 3A depicts a correlation plot of the MAP Tafel slope
estimated by the Bayes posterior sampling approach versus the
literature-reported Tafel slope. A significant fraction of the
datasets fall within the 20% parity line, a strong sign that our
algorithm produces Tafel slopes that are consistent with literature
values when seeing identical data. In addition, the MAP Tafel
slope does not seem to systematically overestimate or under-
estimate the literature-reported value over a wide range of
reported Tafel slopes. We note that complete parity between the

MAP and literature Tafel slopes should not be expected; as
explained previously, due to the possibility for subjectivity and
systematic error with current literature practice for Tafel
estimation, the MAP estimates derived by our algorithm are
arguably more trustworthy than the literature-reported values.

Figure 3B, C depicts estimates of the distributional tendencies
of the MAP and literature-reported Tafel slopes. Figure 3B plots
the empirical cumulative distribution function (CDF) of the MAP
Tafel slope (red trace) and the literature-reported Tafel slopes
(blue trace). The low-opacity intervals in both Fig. 3B, C span one
standard deviation of several bootstrapped resamples drawn with
replacement (see “Methods” section for additional detail on the
bootstrapping procedure), and are useful for examining the
sensitivity of our distributional results to the specific subsampling
of literature data we have chosen to analyze31. The CDF value for
a given Tafel slope value mT tallies the running fraction of
datasets that have a Tafel slope value of at most mT. If Tafel slopes
truly cluster around cardinal values, the running fraction should
increase sharply around those preferred values, and one would
expect to see sigmoidal features in the CDF at the cardinal values.
Figure 3 shows little evidence of such locally sigmoidal behavior;
rather, we see something resembling a straight line, correspond-
ing to a roughly uniform distribution over the range of Tafel
slopes considered.

We can visualize the distributional data in a different way by
examining the empirical probability distribution function (PDF)
of the Tafel slopes. Estimating the PDF of a distribution given a
set of samples is a notoriously difficult problem in statistics
because relatively small amounts of sampling noise can result in
the presence of spurious peaks in the PDF. Several techniques
exist for tackling this problem; here, we employ Gaussian kernel
density estimation, which constructs an estimate of the PDF by
summing appropriately normalized Gaussian kernel functions
centered at each of the observed data points. Additional details on
the kernel density estimation procedure are reported in the
“Methods” section. Figure 3C shows a kernel density estimate of
the PDF of the MAP (red trace) and literature-reported (blue
trace) Tafel slopes. Based on the shape of the PDFs and their
corresponding standard errors, we conclude that there is a slight
preference to assign Tafel slope values around 70 and 125 mV/
decade in the literature that essentially disappears when the same
data are reanalyzed with our approach. While a small peak
persists ~125 m /decade in the MAP Tafel slopes, the height of the
peak is roughly within the error bound. We also note that any
residual preference for cardinal values in the MAP Tafel slopes
can possibly be explained by data acquisition biases. While the
Bayesian approach we develop removes subjectivity from data
analysis, we cannot remove biases introduced during data
collection; it is at least plausible that such biases exist given that
the literature-reported values significantly overestimate the
concentration of Tafel slopes ~120 mV/decade compared to the
MAP values.

The results presented in Fig. 3 combine data from several
studies using different catalyst materials to assess whether or not
a preference for cardinal Tafel slopes exist broadly across all CO2

reduction catalysts. In order to confirm that this apparent lack of
cardinal preference in the entire dataset is not simply an artifact
introduced by pooling together separate catalyst materials, which
each individually exhibit a cardinal preference, we broke out the
PDF analysis in Fig. 3 according to catalyst material identity.
Upon examining the results from the breakout analysis
(see Supplementary information), we conclude that the apparent
lack of cardinality we find in Fig. 3 indeed persists when
separately examining Tafel slopes from common materials used
in CO2 reduction catalysts: Ag, Au, Cu, Sn, and Zn. Curiously, it
appears that Bi-based materials do show a preference for Tafel
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slope values ~120 mV/decade, which may inform future mechan-
istic studies on these catalysts. As a caveat, we note our Bi results
comprise only 27 distinct Tafel datasets, and are hence subject to
a high degree of variability arising from the specific set of studies
we chose to reanalyze; future work that attempts to weigh in on
this question should ideally perform new experiments on well-
controlled Bi surfaces and use the data acquisition and analysis
recommendations identified in this work. Taken together, the
results presented in Fig. 3 and the material breakout analysis in
the Supplementary information lead us to conclude that, when
analyzed in an unbiased fashion, experimental data in the
literature does not support a systematic preference for cardinal
values of the Tafel slope among CO2 reduction catalysts.

While we are not in a position to identify the cause for deviation
from cardinal Tafel slope values in each specific Tafel dataset
comprising Fig. 3, we advance the hypothesis that these deviations
could originate from physical nonidealities that violate the
assumptions involved in deriving Eq. (5). To test this hypothesis,
we attempt to ascertain the manner in which a select few simple
physical nonidealities can adjust the PDF of Tafel slopes that would
otherwise be concentrated around cardinal values. In this regard, we
consider three possible physical effects that violate the ideality
assumptions used to arrive at Eq. (5). These three effects comprise a
very small subset of the menagerie of physical nonidealities that
could operate in CO2 reduction electrocatalysis; our goal is simply
to show that these effects can spoil a preference for cardinal values
of the Tafel slope, not to single out these particular effects as the
only nonidealities present in CO2 reduction.

First, we consider the possibility that the symmetry coefficient
α ≠ 1/2. Such deviations could arise, for example, due to disparate
local slopes of the Marcus free energy surfaces at their crossing
point, or reactant species position fluctuations in the electrochemi-
cal double layer32–35. Second, we examine the effect of partial
charge transfer or surface dipole formation in the adsorption of
CO2 to the electrode surface, phenomena that have been
hypothesized and characterized in prior studies on CO2 reduc-
tion29,36. Mathematically, the formation of a surface dipole
introduces a potential dependence in the adsorption equilibrium
constant, which mathematically resembles a partial charge transfer
parameter γ. Third, we introduce a possible Frumkin correction f
originating from the protrusion of an electrode-adsorbed species
into the electrochemical double layer, which attenuates the applied
potential due to electrostatic screening effects1. The Frumkin
correction is most important at low supporting salt concentration
(and hence large resultant electrolyte screening length), but it has
been considered in the context of CO2 reduction electrocatalysis29.

Each of these nonidealities depends on the value of a nonideality
parameter. Of course, we have no idea, at least a priori, about the
distribution of values these nonideality parameters can take in
typical CO2 reduction catalyst systems. In the absence of
information, we make the maximally ignorant choice, and assume
that the nonideality parameters are drawn from uniform distribu-
tions within a reasonable set of bounds. Once we postulate these
uniform distributions, we can examine how randomly selected
nonideality parameters deform a distribution of Tafel slopes that
begins concentrated around cardinal values.

The blue trace in Fig. 4B shows a distribution of Tafel slopes
concentrated around the cardinal values predicted by Eq. (5). The
relative heights of the cardinal value peaks are selected by
artificially binning the distribution over MAP Tafel slopes into
buckets centered around the cardinal values. The effects of
randomly drawn physical nonidealities on this distribution can be
examined using Monte Carlo simulation. Briefly, we sample a
Tafel slope from the distribution depicted in the blue trace,
sample the values of one or more nonideality parameters, and
finally calculate the resultant Tafel slope in the presence of
nonidealities (see “Methods” section for additional details).
Repeating the sampling procedure several times yields distribu-
tions over the Tafel slope, depicted as multicolored traces in
Fig. 4B for different sets of nonidealities. Evidently, even rather
mundane pieces of additional physics like the ones discussed
above can produce stark changes in the distribution of Tafel
slopes, spanning a range of behavior from moving certain peaks
away from cardinal values to smearing out the entire distribution.
While we cannot prove with certainty that physical nonidealities
are responsible for the lack of observed Tafel cardinality in the
literature, the results in Fig. 4B demonstrate that this is at least a
plausible explanation for the observed behavior.

Alternatively, the observed lack of cardinality may also be a
consequence of interpreting current–voltage data measured under
several disparate kinetic regimes through the lens of Eq. (2),
which cannot capture these intricacies. As illustrated schemati-
cally in Fig. 4C, the kinetic regimes may exhibit different Tafel
slopes; in this case, mechanistic interpretation of a single Tafel
slope extracted by fitting Eq. (2) to the data is inappropriate.
Indeed, as examined in more detail in the Supplementary
information, fitting synthetic data generated from a model with
multiple cardinal Tafel slope regimes using Eq. (2) can produce
an off-cardinal Tafel slope value. This underscores the need to
rigorously characterize the several physical complexities present
in catalytic systems for CO2 reduction, as they can complicate
mechanistic interpretation guided solely by the Tafel slope.

Fig. 3 Unbiased refit of literature data using our Bayesian analysis approach reveals little preference for cardinal values of the Tafel slope for CO2

reduction catalysts. A Correlation plot of reported Tafel slopes from the literature against MAP Tafel slopes fitted by our algorithm on identical data. The
solid red line represents a perfect agreement, while the red filled intervals are lines representing 10% and 20% relative error. B Cumulative distribution
function of the Tafel slopes reported in literature data (blue), and those refitted by our algorithm (red). Error intervals correspond to one standard deviation
of bootstrapped resamples. C Kernel density estimates (KDEs) of the empirical probability distribution function of Tafel slopes reported in literature data
(blue) and MAP Tafel slopes refitted by our algorithm (red). Error intervals correspond to one standard deviation of bootstrapped resamples. Green dashed
lines in both (B, C) correspond to cardinal values of the Tafel slope predicted by Eq. (5).
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Taken in their entirety, the results presented in Figs. 3 and 4
present some compelling reasons for the community to rethink the
current approach of deducing mechanistic information purely from
Tafel slope data. Indeed, the prevalence of Tafel slopes in the CO2

reduction literature that do not fall neatly on cardinal values
suggests that physical nonidealities, omitted by Eq. (5), may be
commonplace in typical catalytic systems. The familiar approach of
“rounding” experimentally measured Tafel slopes to their nearest
cardinal value to guide mechanistic interpretation, then, leaves one
prone to interpreting experimental data in an overly simplistic
manner. Rather than hand-wave away the physical complexities
present in catalytic systems with strong ideality assumptions, we
believe it is important to interpret Tafel data alongside several other
pieces of experimental data (e.g., more diverse electrochemical
kinetic data, surface-sensitive spectroscopy, materials characteriza-
tion, etc.). In this manner, one can take a non-cardinal Tafel slope
(and its associated uncertainty based on the data) at face value, and
build a holistic physical picture that attempts to explain the
deviation from cardinality in a manner consistent with all other
experimental observations. Ideally, all these observations can be
interpreted in the context of a richer model that allows one to
determine the true breadth of physical phenomena present across a

wide range of operating parameters, as has been done in some select
studies in the literature2,28,37. We believe our Bayesian data analysis
approach will be equally useful for rigorously quantifying
parametric uncertainties in the suggested new paradigm for kinetic
data interpretation.

Methods
Data mining and reanalysis. We built up a dataset of Tafel measurements
reported in the literature by manually extracting figures from published papers and
digitizing them using the WebPlotDigitizer tool.38 A full accounting of all papers
and corresponding figures can be found in the Supplementary information. When
selecting datasets to analyze, we excluded those that reported continuous
current–voltage data, because it is difficult to ascertain the underlying data density
associated with a continuous curve, because our method is meant to address the
unique challenges of estimating Tafel slopes with a small amount of data, and
because continuous current–voltage data may be unreliable because product
selectivity is not always 100%, especially in CO2 reduction. We also excluded
datasets that reported current–voltage data but did not report an explicit value of
the Tafel slope. We assumed that all datasets were collected with appropriate
experimental techniques (IR correction for solution resistance has already been
applied, etc.), and did not modify or omit any data from a figure during the
digitization process. After digitization, each dataset was tagged with manually
entered metadata to facilitate reanalysis. A full accounting of the metadata fields, as
well as a complete record of all scraped data and metadata, is available in
the Supplementary information.

Fig. 4 Physical hypotheses for the lack of observed cardinality in literature Tafel slopes. A Schematic of three selected physical nonidealities that can
affect the measured Tafel slope. B (blue trace) Synthetic kernel density estimate of the probability distribution over Tafel slopes for a random CO2

reduction catalyst, peaked around the cardinal values predicted by Eq. (5). B (other traces) Several synthetic kernel density estimates of the probability
distributions over the Tafel slope generated from including random values of different parameters governing physical nonidealities. C Schematic illustrating
the possibility of measuring data across separate kinetic regimes in a Tafel analysis. Due to a switch in mechanism, different overpotential regimes exhibit
different Tafel slopes, complicating interpretation of a single Tafel slope value fit straddling both regimes.
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Reanalysis of the data was carried out using the Python-based julius
package, developed in-house to handle data collation and Bayesian posterior
sampling workflows. In order to determine prior distributions for the parameters,
we first find an optimal set of parameters θ* for the limiting-current model using
an implementation of the trust-region reflective algorithm implemented in the
optimization and root finding package included in SciPy39. For each model
parameter θi, we select uniform prior distributions supported on the interval
½0; a � θ�i �, with a= 10 (note that all parameters we fit in this study are strictly
nonnegative). For all models studied here, we find that the posterior distribution
does not depend on the value of a, indicating that the data imposes strong
preferences on the optimal model fit (see Supplementary information for detailed
sensitivity analysis). For each dataset, we draw N= 4 × 104 total samples (104

samples from four independent chains, each burning their first 2000 samples) from
the posterior distribution using the No-U-Turn Hamiltonian Monte Carlo sampler
implemented in the PyMC3 probabilistic programming package40.

In total, we reanalyzed 344 distinct Tafel datasets. Figure 3A restricts to both
reported and MAP Tafel slopes mT∈ [0, 200], which comprises 300 distinct Tafel
datasets. A correlation plot including all analyzed Tafel datasets is reported in
the Supplementary information.

Kernel density estimation. We use kernel density estimation (KDE) to estimate
probability distributions given a finite set of samples. KDEs are used in the dis-
tributional visualizations in Figs. 2, 3, and 4. We use the Gaussian KDE function in
the statistics package included in SciPy, and use Scott’s rule for bandwidth selection
in Figs. 2 and 3. Since the estimates in Fig. 4 are meant to emulate the result of a
single simulated experimental observation with some associated error, here we use
a pre-specified bandwidth of 6 mV/decade.

Bootstrap resampling. We carry out a bootstrap resampling procedure to quantify
the degree of variability of the results in Fig. 3 associated with our choice of a
specific subset of literature data31. Essentially, we posit that the observed dis-
tribution over the Tafel slope is a good estimate of the true underlying distribution,
and then resample several datasets of the same size as the original dataset from this
distribution with replacement (i.e., samples can show up more than once, or not at
all). The error intervals presented in Fig. 3A, B are gleaned from one standard
deviation of 20 such bootstrapped resamples.

Monte Carlo simulation. We use Monte Carlo simulation to estimate the dis-
tributional changes precipitated in a Tafel slope distribution by the physical non-
idealities identified in the main text. To carry out this procedure, we begin with the
distribution presented in Fig. 4A, which is generated by artificially bucketing the MAP
Tafel slopes from the literature analysis into the bins {[0, 50), [50, 90), [90, ∞)}. We
sample the physical nonideality parameters according to α ~Unif[0.20, 0.80], γ ~Unif
[0, 1], f ~Unif[0.50, 1.00], where Unif[a, b] signifies a uniform distribution supported
on the interval [a, b]. For each set of nonidealities, we draw N= 4 × 104 total posterior
samples (104 samples from four independent chains, each burning their first
500 samples). The equations governing modifications to the Tafel slope based on
physical nonidealities are worked out in the Supplementary information. A sensitivity
analysis of the Tafel slope distributions including nonidealities with respect to the
bounds of the uniform distributions over nonideality parameters is also reported in
the Supplementary information. All Monte Carlo simulation is again carried out using
the PyMC3 probabilistic programming package40.

Data availability
Data that supports the findings of this study is available under CC BY 4.0 (https://
creativecommons.org/licenses/by/4.0/) in Zenodo (https://doi.org/10.5281/zenodo.3995021),
with the exception of the excerpted figures from other articles as described in the Supporting
information. The excerpted figures are reused under an agreement between MIT and the
publishers of the articles (https://libraries.mit.edu/scholarly/publishing/using-published-
figures/), where the copyright is owned by the publishers.

Code availability
Code that supports the findings of this study is available under the MIT License (https://
opensource.org/licenses/MIT) in Zenodo (https://doi.org/10.5281/zenodo.3995021).
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