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Nontrivial band geometry in an optically
active system
Jiahuan Ren 1,2, Qing Liao 1✉, Feng Li 3,4✉, Yiming Li3, Olivier Bleu5, Guillaume Malpuech5, Jiannian Yao2,

Hongbing Fu 1,2✉ & Dmitry Solnyshkov 5,6✉

Optical activity, also called circular birefringence, is known for two hundred years, but its

applications for topological photonics remain unexplored. Unlike the Faraday effect, the

optical activity provokes rotation of the linear polarization of light without magnetic effects,

thus preserving the time-reversal symmetry. In this work, we report a direct measurement of

the Berry curvature and quantum metric of the photonic modes of a planar cavity, containing

a birefringent organic microcrystal (perylene) and exhibiting emergent optical activity. This

experiment, performed at room temperature and at visible wavelength, establishes the

potential of organic materials for implementing non-magnetic and low-cost topological

photonic devices.
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The exploration of photonic systems involving the concepts
of topology and non-reciprocity has become a mainline of
scientific activity in recent years, driven by both funda-

mental and applied motivation. Indeed, the implementation of
microscopic optical isolators is absolutely crucial for the devel-
opment of integrated photonics1 and robust quantum optical
circuits2. Photonic topological insulator analogs3–5 and topolo-
gical lasers6–10 with topological edge modes represent a solution
to this stringent request. There are two great families of 2D
topological insulators11. One is based on the Quantum Hall effect
(QHE), either normal or anomalous (QAHE), in systems with
broken time-reversal symmetry (TRS). The energy bands possess
non-zero integrated Berry curvature (Chern numbers), which
leads to non-reciprocal transport on the edges. Of course, QAHE
is not limited to photonics: it has been originally proposed12 and
recently demonstrated in electronics13,14 and atomic lattices15.
The other family is based on the Quantum Spin Hall effect
(QSHE). The total band Chern number is zero, but the band
geometry remains non-trivial. In particular, it is possible to
separate two spin or pseudo-spin domains, each being char-
acterized by a non-zero Berry curvature, opposite between the
two. The integration over the (pseudo)-spin subbands gives non-
zero (pseudo)-spin Chern numbers. If the corresponding
(pseudo)-spins are protected by a symmetry, such as the TRS,
which protects the electron’s spin, non-reciprocal (pseudo)-spin
transport on the edge or interface states can take place. This type
of effect has been demonstrated in photonics with various types
of pseudo-spin realizations, each being approximately protected
by a specific symmetry16–20.

Photonic QAHE requires the combination of photonic spin-
orbit coupling (SOC)21, which is an intrinsic property of 2D
confined photonic media like waveguides and planar cavities,
with TRS breaking by the Faraday effect22 induced by an applied
magnetic field. Because of these two contributions, the photonic
modes of a 2D continuous medium exhibit a non-zero Berry
curvature23,24, with the possibility to define the associated topo-
logical invariants, such as the Chern numbers25 and the Z2
invariant26, and to observe the edge states and a non-zero angular
momentum27. Once inserted in an appropriate 2D lattice, these
modes demonstrate topological gaps and non-reciprocal trans-
port on the lattice edge3,4,7,9,28,29. However, the Faraday effect is
usually small at optical wavelengths. It requires large magnetic
fields, hindering practical applications. The so-called optical
activity (OA) is another type of optical response discovered at the
beginning of the XIXth century30,31, leading (similar to the
Faraday effect) to the rotation of the linear polarization of light
during its propagation. Unlike the Faraday effect, OA is an
intrinsic property linked with the chirality of a structure. It does
not require magnetic field and preserves the TRS, as sketched in
Fig. 1. In the Faraday effect (Fig. 1a), the angle of rotation of the
polarization α0 continues to increase for inverted propagation
direction. With OA (Fig. 1b), the polarization starts to rotate
backwards to its original position, thus preserving the TRS.
Because of this symmetry property, OA does not allow to obtain
non-zero Chern numbers and thus cannot be used to obtain the
QAHE. However, it does lead to a local non-zero Berry curvature
of the bands, and thus it can lead to the anomalous Hall effect,
important for optovalleytronics.

The OA can arise from the presence of chirality at different
scales: from the structure of single molecules or crystal unit
cells32,33, from the stacking of monolayers34, or, finally, at the
macroscopic scale of the structure as a whole. The latter config-
uration has been demonstrated recently in a cavity exhibiting a
degeneracy of orthogonally polarized modes of opposite parity35,
as shown in Fig. 1c, d. In this regime, the active region behaves as
a λ/2 plate, which is known to invert the Stokes polarization

vector of a propagating beam with respect to the ordinary-
extraordinary axis (marked “OE” on the Poincaré sphere in
Fig. 1d). The initial polarization of the beam is marked “0”, and
the state after the propagation is marked “1”. But the reflection on
a metallic mirror also leads to the polarization inversion with
respect to a different axis (TE-TM or HV in this case, also marked
in Fig. 1c, d), except the normal incidence case, which gives the
final polarization state marked “2”. Mathematically, two inver-
sions (black dashed arrows) are equivalent to a rotation (blue
arrow) by the double of the angle ϕ between the axes of inversion
(also marked in Fig. 1d), which means that any linear polarization
is not an eigenstate of this system for a beam with non-zero in-
plane wave vector. On the contrary, the circular polarization,
inverted twice, recovers the original state (“2”=“0”, marked in
Fig. 1d), which shows that the eigenstates are circular-polarized.
The details of the derivation can be found in Rechcińska et al.35

and in Methods section. Such degeneracy requires a strong
birefringence of the active region of the cavity in order to split the
polarization eigenmodes of the same parity and bring them close
to the modes of opposite parity. This birefringence can be pro-
vided by organic materials, for example, perylenes (C20H12)36.
Perylenes are nowadays widely used in optics due to their intense
light absorption and luminescence in the visible range, high sta-
bility, and quantum yield37. Their optical properties are pro-
mising for solar cells38, energy harvesting, temperature control39,
lasers40, and other nanophotonic applications41. Perylenes are
also used in the field of 2D materials to hold together van der
Waals heterostructures42 or by themselves43.

In this work, we establish the potential of OA structures for
topological photonics. We study a basic photonic element – a planar
cavity with a birefringent crystal, exhibiting chirality at the

Fig. 1 Faraday effect and optical activity. Scheme showing the rotation α0
of the linear polarization (red double arrow) of light while making a back and
forth trip, in the Faraday effect (a, TRS broken by magnetic field B

!
- green)

and in a chiral OA structure (b, TRS not broken, screw axis in blue). Black
arrows indicate the propagation direction. c Propagation and reflection of light
in a cavity with a birefringent active region; d Poincaré sphere showing the
polarization states (“0” - initial, “1” - after propagation, “2” - after reflection)
and the inversion axes (TE-TM - transverse-electric/transverse-magnetic,
OE - ordinary-extraordinary, rotated by ϕ), as well as the polarization basis
(H-horizontal, V - vertical, D - diagonal, A -anti-diagonal, R - right-circular,
L - left-circular). After propagation and reflection, linear polarization is rotated
by 2ϕ.
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macroscopic scale. We provide a direct measurement of the com-
plete band geometry, namely the Berry curvature and the quantum
metric of the photonic bands. We show that their non-trivial dis-
tribution can be interpreted with a two-by-two effective Hamilto-
nian accounting for the interplay of the polarization effects involved.

Results
Photonic spin–orbit coupling. We start by embedding the per-
ylene crystal within a metallic microcavity (Fabry–Perot reso-
nator) as sketched in Fig. 2a. The quantization of the
z-component of the wave vector leads to the formation of 2D
bands parametrized by the in-plane 2D wave vector k ¼ ðkx; kyÞT .
The modes we consider are above the light cone. They have small
in-plane wavevector, parabolic dispersion, and are radiatively
coupled to the outside of the cavity44. The experimental setup (see
Methods for details), allowing to make a full optical state tomo-
graphy out of which the band geometry (Berry curvature and
quantum metric) can be reconstructed23, is shown in Fig. 2b. All
experiments are performed at room temperature. The reflection
of the sample is measured versus energy and in-plane wave vector
for the six different light polarizations (left and right circular,
horizontal-vertical, and diagonal-anti-diagonal), which allows a
full determination of the three Stokes vector components (light
polarization pseudo-spin) of the modes. The axes of the polarizer
are aligned with the crystal axes and with the axes of the reci-
procal space defined by the CCD camera. The orientation of the
Stokes vector S(k) on the Poincaré sphere is given by the polar
angle θ(k) and the azimuthal angle ϕ(k). The measurement of
these quantities allows to extract the Berry curvature45 Bz and the
quantum metric46 gij of a given mode as47:

gij ¼
1
4
ð∂kiθ∂kjθ þ sin2θ∂kiϕ∂kjϕÞ ð1Þ

Bz ¼
1
2
sin θð∂kxθ∂kyϕ� ∂kyθ∂kxϕÞ ð2Þ

The Stokes vector can be found as an eigenstate of an effective
2 × 2 Hamiltonian, accounting for the polarization effects arising
in the structure. It can describe two modes which are close to each
other, whether they are of the same parity (as in inorganic
microcavities) or not (as is the case here). To facilitate the
understanding, we decompose the combination of polarization
effects into a set of individual contributions. The first contribu-
tion is the TE-TM splitting, ubiquitous in 2D photonic systems24.
In general, the TE-TM splitting appears in any inhomogeneous
system, in presence of any gradient allowing to define the
transverse directions for the field32. In particular, in planar
cavities it appears because of the polarization-dependent reflec-
tion coefficients48. In an ideal case, the above-mentioned
quantized modes of an empty cavity are doubly polarization
degenerate at zero in-plane wavevector. This polarization
degeneracy is lifted by different contributions sketched in Fig. 2c.
The TE-TM splitting of the bare cavity21,48 characterized by β is
zero at k= 0 and then grows quadratically with k:

ETE;TM ¼ _2k2

2mTE;TM
¼ _2k2

2m
± βk2 ð3Þ

with mTM and mTE corresponding to the longitudinal and
transverse effective masses (m�1 ¼ ðm�1

TE þm�1
TMÞ=2 and

β ¼ _2ðm�1
TE �m�1

TMÞ=4). The parameter β thus describes the
cavity TE-TM splitting. The difference of this splitting for the
modes of different order that we consider can be neglected,
because this order is sufficiently high and thus the variation of all
parameters with the mode number is small. The second
contribution is the linear birefringence of the perylene crystal,
described by β0, which splits the linearly polarized different-parity
modes H and V at k= 0: EH,V(k= 0)= ±β0. We note that β0= 0
does not mean zero birefringence, on the contrary, it means that
the polarization splitting for two modes of the same order is equal
to the splitting between the modes of the same polarization and

Fig. 2 Combining the spin-orbit couplings. a The sample consists of a perylene crystal embedded in a microcavity. b Experimental setup allowing to obtain
polarization-resolved complete state tomography. BS: beam splitter; L1–L4: lenses; M1: mirror. The red beam traces the optical path of the reflected light
from the sample at a given angle. c Embedding the perylene crystal in a planar cavity combines TE-TM splitting βk2, linear birefringence β0, and emergent
OA ζkx. d Reflection of an empty cavity versus energy and wave vector, which evidences the k-dependent TE-TM splitting βk2. e Reflection of a cavity filled
with perylene, which is inducing linear birefringence β0 on top of the cavity-induced TE-TM splitting, leading to emergent OA ζkx (black arrows). Dashed
lines show a fit of the two coupled bands with the Hamiltonian (4). The axes of the polarizer and the excitation direction kx are aligned with the fast axis of
the crystal. The figures are measured for a fixed angle range; white regions appear due to angle-to-wave vector conversion.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20845-2 ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:689 | https://doi.org/10.1038/s41467-020-20845-2 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


different order (sometimes called free spectral range). The
important difference between the TE-TM and the H–V splittings
is that the orientation of TE-TM is defined by the in-plane wave
vector (the orientation of the incidence plane with respect to the
polarization-resolving detector), while the orientation of the H–V
splitting is linked with the crystal axes and thus stays constant,
because the sample is not rotated in our experiments.

The two contributions introduced above cancel each other at
two points ± k0 ¼

ffiffiffiffiffiffiffiffiffiffi
β0=β

p
along the kx axis. Together, they

determine the linear polarization of the modes (S1, S2 Stokes
components). Finally, the third contribution is the emergent
optical activity (chirality) of the structure, described by the
parameter ζ. As shown in Rechcińska et al.35, for almost
degenerate modes of opposite parity, the induced chirality
appears as a splitting between the circular-polarized modes,
linear in kx:

E ± ¼ E0 ± ζkx ð4Þ
It therefore determines the circular polarization degree of the
modes (S3). We note that the form of this term does not depend
on the origin of the optical activity: because of the time-reversal
symmetry, the expression must be an odd power of a certain in-
plane wave vector projection. All these effects are combined in an
effective 2 × 2 Hamiltonian describing the polarization eigen-
states. We write it on the circular polarization basis:

Hk ¼
_2k2

2m þ ζkx β0 þ βk2e2iφ

β0 þ βk2e�2iφ _2k2

2m � ζkx

 !
ð5Þ

where φ is the polar angle. The energy dispersion of this
Hamiltonian as a function of wave vector E(k) is shown in Fig. 2e
with dashed lines. As any 2 × 2 Hermitian Hamiltonian, it is a
linear combination of Pauli matrices that can be physically
interpreted as an effective magnetic field acting on the Stokes
vector, that is, Hk=H0+Ω ⋅ σ, where H0 is the diagonal kinetic
energy part, σ is a vector of Pauli matrices and Ω is the effective
field, which reads:

ΩðkÞ ¼
β0 þ βk2 cos 2φ

�βk2 sin 2φ

ζkx

0
B@

1
CA ð6Þ

As defined above, β0, β, and ζ determine the strength of the
effective fields corresponding respectively to linear birefringence,
the k-dependent TE-TM splitting, and emergent OA, which can
be viewed as an effective Zeeman splitting. The k-dependent
effective fields can both be interpreted as photonic SOCs. The
Stokes vector of the eigenmodes is either aligned or anti-aligned
with the effective field Ω. This picture allows to find these modes
easily and to predict their Berry curvature and quantum metric.
In vicinity of the points kx= ±k0, the Hamiltonian (5) can be
written as a Rashba Hamiltonian with a constant Zeeman
splitting, which was shown to be equivalent to a Hamiltonian of a
non-relativistic quantum particle coupled to a non-Abelian Yang-
Mills field49–51.

Figure 2d shows the total reflection coefficient of an empty
cavity with bare TE and TM modes with different effective masses
(because of β), but degenerate at k= 0. The cavity filled with the
active material (Fig. 2e) shows a radically different mode
dispersion. The first visible consequence is that the cavity is
optically thicker due to the perylene crystal refractive index (n ≈
2). More importantly, the splitting between linearly polar-
ized modes at k= 0 becomes comparable with that of the modes
of different orders, because of the significant linear birefringence
of perylene (refractive indices 1.7 and 2.552). These modes
anticross at a finite wave vector (instead of simply crossing)

because of the emergent OA ζ which can be associated with an
effective optical activity coefficient: α ≈ ζkxn2/2ℏc (see Methods
for more details and Supplementary Fig. 6 for the polarization-
resolved image of the dispersion). The key difference with respect
to a cavity with TRS broken by the Faraday effect24 is that here,
the effective Zeeman field changes sign with kx. This Hamiltonian
shows two gapped tilted Dirac cones at the two reciprocal space
points where the in-plane components of the field cancel. The
sign of the mass term, opposite for the two cones, is given by the
sign of the effective Zeeman field. We note that Fig. 2e
corresponds to the direction with the smallest gap, kx. We have
mapped the whole reciprocal space and we can therefore exclude
the possibility that the observed anticrossing is simply due to a tilt
of an optical axis which could shift the crossing point away.

The Stokes vector and the quantum geometric tensor. The
validity of the effective Hamiltonian is confirmed by the mea-
sured 2D wave vector maps of the Stokes vector components of
the lower branch, shown in Fig. 3a–c compared with theoretical
predictions shown in panels (d–f). We note that the experimen-
tally measured Stokes components are zero outside an elliptic
region where the detection is efficient. Inside this region (marked
with a white dashed line), the experiment and the theory exhibit a
good agreement. As expected, the linear birefringence is com-
pensated by the k-dependent TE-TM field at the anticrossing
points53. The two components S1 and S2 of the Stokes vector
cancel and change sign around these points, forming 2D mono-
poles. The third Stokes vector S3 component is maximal at these
two points but is changing sign at kx= 0 because of the TRS. The
cross-sections of the dispersion close to the anticrossing points
together with the pseudospin orientation for the two branches are
shown in Supplementary Fig. 1. The opposite circular polariza-
tion of the branches is also directly visible in Supplementary
Fig. 6, showing the circular polarization degree of the reflection at
different energies without any extraction.

The measurements of the Stokes vector allow to extract the Berry
curvature and the quantum metric of the modes, as shown in
Fig. 4a, b. As expected from the TRS (encoded in the Zeeman SOC
and the S3 texture), the Berry curvature shows two maxima of
opposite signs, which means that the integrated Berry curvature
over the band is zero. However, by separating the reciprocal space
in two regions, like in the quantum valley Hall effect20, it is possible
to associate non-zero pseudo-spin Chern numbers to each of these
two regions. These regions can viewed as being analogs of valleys,
which emerge in this optically active system without the need of
using a lattice. The trace of the quantummetric (Fig. 4b) is maximal
in the regions of the anticrossing, where the Stokes vector rotation is

Fig. 3 Experimentally measured and theoretically calculated Stokes
parameters.Measured Stokes parameters of the mode E0 from Fig. 2e: a S1,
b S2, c S3. The boundary of the meaningful (non-zero) signal is shown with
a white line; Theoretically calculated Stokes parameters for the lowest
eigenstate of (5): d S1, e S2, f S3.
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the fastest. The experimentally extracted geometry (a,b) corre-
sponds very well to the theoretical predictions (c, d) based on the
2 × 2 effective Hamiltonian (5) with parameters β0= 0.18 eV,
β= 9 × 10−4 eVμm2, ζ= 2.5 × 10−3 eVμm, extracted from the
experimental dispersion (Fig. 2e). The distortion of the maxima
of the Berry curvature in experiment could be explained by the
contribution of the exciton resonance (see Methods section and
Supplementary Fig. 3) and by the difference of the experimental
resolution in the two directions. The OA coefficient obtained from
the splitting at the anticrossing point demonstrates a remarkably
high value of α= 1.4 × 104 degrees/mm. This is a crucial ingredient
which has allowed room temperature measurements. Indeed, for a
typical OA material such as the tartaric acid, the mode splitting at
the anticrossing point would be of the order of 10−4 meV, much
smaller than the broadening kBTRT ≈ 26meV. The room tempera-
ture operation at optical wavelengths is highly favorable in the
prospect of using such non-trivial band geometry for implementing
practical topological photonic devices.

Discussion
While our study belongs to the field of classical optics, since we
are dealing with classical photonic beams, it can nevertheless have
important implications for quantum mechanics. Indeed, it is well
known that the transverse behavior of a light beam in the paraxial
approximation is well described by the Schrödinger equation,
with the propagation axis playing the role of time. The same
applies to planar cavities, but with the meaning of the temporal
axis restored. Our system represents therefore a model of a
quantum system in many senses. The Stokes vector of light is an
equivalent of the spin of an electron, and the non-zero Berry
curvature of both the Poincaré sphere and the Bloch sphere is the
most direct consequence of this analogy. The degrees of freedom
provided by the direct and the reciprocal space are also equivalent
to quantum mechanics, which allows to use both the languages of
Maxwell and Schrodinger equations for topological photonics.

The original antisymmetric distribution of the Berry curvature
that we have observed for an OA system crucially affects the
numerous phenomena driven by the band geometry, the emble-
matic one being the anomalous Hall effect family which includes
valley Hall effects at the heart of valleytronics54. With broken TRS
(same-sign Berry curvature), the anomalous Hall drift does not
change sign upon time reversal (like the Faraday rotation angle
α0). With conserved TRS (opposite Berry curvature for ±kx), the
anomalous Hall drift is reversed and the system returns to its
original position upon time reversal. These valleys can be selec-
tively excited by simply controlling the beam incidence angle. The
precision of such control is very high, since each valley spans
~10°, while a typical beam spans ~4 arc minutes.

Another important quantity which our measure allows to
access is the quantum metric46. Quantum metric has been
recently found to be associated with many phenomena and it
became a hot research topic55. In optics, it allows to quantify the
non-adiabaticity of realistic transport experiments23, which is
certainly crucial to operate devices based on geometrically non-
trivial bands such as valleytronic or opto-valleytronic systems.
The large value of the emergent OA coefficient provides a strong
protection against the non-adiabaticity, allowing to use very high
spatial gradients: the maximal anomalous Hall drift of 0.6 μm for
our parameters can be achieved at a propagation distance of
only 45 μm.

Quantum geometry is currently a subject of active studies. It is
studied both globally, at the level of topological invariants, and
locally, as a distribution of the Berry curvature and quantum
metric in a certain parameter space. Topological invariants with
their discrete integer values and associated global effects, such as
the presence of edge states determined via the bulk-edge corre-
spondence, are easier to be measured experimentally56–59. The
local distribution of the Berry curvature and, later, the quantum
metric, have usually been measured via the related dynamical
effects60–66, such as the anomalous Hall drift. Recently, the
quantum geometry has been extracted from the eigenstates of a
photonic system, like in the present work, with an additional
confirmation of the results by the anomalous Hall
measurements24.

With the Berry curvature localized in analogs of valleys which
are well represented mathematically by tilted Dirac cones, it could
be possible to create interface states of the Jackiw-Rebbi type67

between regions of opposite topology defined by the sign of the
emergent optical activity ζ, with a single chiral state for each
“valley”. These states exhibit valley-dependent group velocity,
whose direction (in the reference frame of the tilted Dirac cone)
can be inverted by changing the order of the topological mate-
rials, as in the quantum valley Hall effect17,68. This behavior,
confirmed by our preliminary simulations, will be a subject of a
separate future work.

One more interesting outcome of our work is the possible
implementation of an artificial magnetic field acting on pho-
tons35. Indeed, the effect of the OA in the Hamiltonian (4) with
zero β0 can be represented as an action of a vector potential,
opposite for the two spin components (±)

Ĥ
± ¼ 1

2m
p̂� eA±ð Þ2 ð7Þ

where the vector potential is given by A±
x ¼ ±mζ=e. Making the

in-plane OA position-dependent, for example ζ(y)= ζ0y, leads to
the emergence of a magnetic field B±=∇ ×A± of opposite sign
for the two circular polarizations. This field gives rise to the
formation of Landau levels or Harper-Hofstadter-like energy
spectra in periodic structures. We note that this field is Abelian,
in spite of being spin-dependent. This synthetic magnetic field is
similar in spirit to the one realized in refs. 16,35, but with the use
of the intrinsic polarization pseudospin, which does not require
the presence of an artificial lattice. In order to induce such spatial
dependence, one can introduce a slight variation of the back-
ground refractive index in the cavity or of the cavity thickness,
which then affects the ζ contribution in the Hamiltonian (1).
Tuning the coefficients of the Hamiltonian by choosing different
materials would allow to deeply modify the band geometry. In
Gianfrate et al.24, a system described by a similar effective
Hamiltonian was studied, except that the OA was replaced by an
effective Zeeman splitting. The bands were showing two split
Dirac cones, like in the present work, but with the same sign of
the Berry curvature in a given band. By tuning the linear bire-
fringence β0 to zero in Eq. (5), the dispersion bands would exhibit

Fig. 4 Experimentally extracted and theoretically calculated Berry
curvature and quantum metric. Quantum geometry extracted from the
measured Stokes vector: a Berry curvature Bz, b trace of the quantum
metric gxx+ gyy; Calculated quantum geometry for the lowest eigenstate of
(5): c Berry curvature Bz, d trace of the quantum metric gxx+ gyy.
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a crossing at k= 0, but the reciprocal space nevertheless remains
split into two “valleys” of opposite Berry curvature because of the
OA. Instead of being concentrated at the anticrossing points, the
Berry curvature exhibits a crescent shape in this case. If both OA
and birefringence are set to zero, which is the case of an empty
cavity shown in Fig. 2d, the dispersion represents two touching
parabola, which are characterized by two Berry monopoles of
opposite charges at k= 0.

Our results show that the organic microcrystals, such as per-
ylene, which are promising for the implementation of classical
photonic elements because of their remarkable basic optical
properties, are also appealing to implement topological photonic
devices, because such devices do not necessarily require broken
TRS69. The polarization tomography measurements allowed us to
fully characterize the quantum geometry of photonic bands.
These measurements have revealed that the optical activity of a
system, independent of its origin, renders the TRS photonic
bands geometrically non-trivial, exhibiting gapped Dirac cones
with non-zero Berry curvature. The precise measurements of the
quantum geometry of these bands favor the development of
quantitative optovalleytronics.

Methods
Material structure and fabrication. The perylene (99%+) and TBAB (Tetra-
butylammonium bromide) used in the experiment were purchased from Acros and
Innochem respectively without further purification. The 2D square sheet of crys-
talline perylene was prepared by space-confined strategy70: 50 μL of 0.5 mg/ml
perylene/chlorobenzene was first added onto 1mg/ml TBAB/water solution. After
the complete evaporation of chlorobenzene, 2D square sheets of crystalline per-
ylene were formed on the solution surface, exhibiting a thickness of 200–1000 nm.
The molecule arrangement of the perylene film is illustrated in Supplementary
Fig. 2.

Cavity structure. For the empty microcavities characterized by Fig. 2d, 80 nm
silver film was first evaporated on a glass substrate, followed by a spin-coating of
300 nm polystyrene (PS) film and a final vacuum evaporation of 50 nm silver film.
The reflectance of the 80-nm and 50-nm silver films were 99.4% and 87%
respectively, enabling easier light extraction from the top mirror of the cavity. For
the active microcavity embedding perylene, 25 nm PS film was first spin-coated on
80 nm silver film, then the prepared 2D perylene sheets (thickness ~ 750 nm for the
studied cavity) were transferred onto the PS film by bringing them in contact at the
surface of the TBAB/water solution. A final evaporation of 20 nm SiO2 and 50 nm
silver film was made to form the microcavity sketched in Fig. 2a.

Spectroscopy. The angle-resolved spectroscopy was performed at room tem-
perature by the Fourier imaging using a ×100 objective lens of a NA 0.95, corre-
sponding to a range of collection angle of ±70∘. As sketched in Fig. 2b, an incident
white light from a Halogen lamp was focused on the area of the microcavity
containing perylene, and the k-space or angular distribution of the reflected light
was located at the back focal plane of the objective lens. Lenses L1-L4 formed a
confocal imaging system together with the objective lens, by which the k-space light
distribution was first imaged at the right focal plane of L2 through the lens group of
L1 and L2, and then further imaged, through the lens group of L3 and L4, at the
right focal plane of L4 on the entrance slit of a spectrometer equipped with a
liquid-nitrogen-cooled CCD. The use of four lenses here provided flexibility for
adjusting the magnification of the final image and efficient light collection.
Tomography by scanning the image (laterally shifting L4) across the slit enabled
obtaining spectrally resolved 2D k-space images. In order to investigate the
polarization properties, we placed a linear polarizer, a half-wave plate and a
quarter-wave plate in front of the spectrometer to obtain the polarization state of
each pixel of the k-space images in the horizontal-vertical (0∘ and 90∘), diagonal
(±45∘), and circular (σ+ and σ−) basis71,72.

Extraction of the Stokes parameters and the quantum geometry. The experi-
mental tomography images represent a set of intensities in six polarization com-
ponents measured in reflection as a function of in-plane wave vector (kx, ky) and
wavelength λ. To obtain the maps of the Stokes vector components for a given
mode, shown in Fig. 3a–c, we proceed as follows. We consider a reflectivity
spectrum measured under white light excitation for total intensity, such as shown
in Supplementary Fig. 7 (black circles) for a single point of the reciprocal space. We
first determine the wavelength λ0 and the energy E0 corresponding to the particular
mode, by fitting the total reflection spectrum with Lorentzian-broadened reso-
nances over an approximately linear background (red solid line). We then fit the
individual intensity components to determine the relative weight of resonance

(taking into account the magnitude and the width of the peak) in each of the six
polarizations (blue and violet triangles in Supplementary Fig. 7 for experimental
circular polarization and red dashed and dash-dotted lines for theory), which
allows finally to determine the three components of the Stokes vector. In our
example, we show only two polarization projections of the six (to avoid overloading
the figure). We note that the positions of the reflectivity minima detected in two
polarizations under a non-polarized excitation do not necessarily correspond to the
positions of the modes: their position depends on the linewidth and the polar-
ization degree, and the maximal deviation can be of the order of the linewidth. As
an example, the reflectance in the two circular polarizations is given by:

R± ðEÞ ¼ 1�
E � _2k2

2m � ðβ0 � βk2Þ � ζk
� �2

þ Γ2

E2 � _2k2

2m

� �2
� ðβ0 � βk2Þ2 � ðζkÞ2 � Γ2

� �2

þ ð2EΓÞ2
ð8Þ

where Γ is the linewidth, and all other terms have been introduced in the
Hamiltonian (5).

The quantum geometric tensor components gij and Bz are extracted from the
Stokes vector according to Eq. (1) of the main text. Lowpass Fourier-transform
smoothing is applied to the maps of the angles θ and ϕ before calculating the partial
derivatives numerically.

Coupling with excitons. The high exciton oscillator strength in perylene is
known52 to cause the strong coupling effect: in vicinity of the exciton resonance,
the eigenstates are not purely photonic or excitonic, but become a mixture of the
two. The strong coupling is characterized by the Rabi splitting, which is the
splitting of the mixed exciton-polariton modes. In ref. 52, it has been estimated as
VR= 140 meV, more than enough for the observation of the effect at room
temperature.

There are numerous consequences of the strong coupling: the non-parabolicity
of the polariton dispersion and the dependence of the polarization splittings on the
wave vector. While a detailed study of the strong coupling in a cavity with perylene
is beyond the scope of the present work, we note that these effects do show up in
our experimental measurements. The dispersions shown for the cavity with an
active region deviate from parabolicity for high wave vectors, and the observed
distribution of the Berry curvature and the quantum metric deviates from the
predictions of a simple model based on a 2 × 2 effective Hamiltonian. The strong
coupling could be one of the possible reasons of these deviations, which we
demonstrate in the Supplemental Fig. 3, calculated with a 4 × 4 Hamiltonian taking
into account the strong coupling of the excitonic and photonic states. Indeed, this
figure exhibits a better agreement with the experiment (Fig. 4a) thanks to the
elongated shape of the modes. We note, however, that all the essential physics of
the system is already captured by the 2 × 2 effective Hamiltonian, which is why we
have used it throughout in our work.

Optical activity. Different formalisms have been developed for the description of
the optical properties of crystals. We start with the equation of the optical indi-
catrix or the index ellipsoid32,33, obtained from the relations between D and E in
the medium, which for a crystal with indices n1 and n2 in the absence of the OA
reads

n2 � n21
� �

n2 � n22
� � ¼ 0 ð9Þ

where n is the refractive index for a given direction. For an OA medium, the optical
gyration vector is introduced as a small correction to this equation:

n2 � n21
� �

n2 � n22
� � ¼ G ð10Þ

Near an optical axis, where n1 ≈ n2, this equation can be rewritten in the first order
as

n ± ¼ �n ±
G
2�n

ð11Þ

where �n is the average refractive index, whereas n+ and n− are the refractive indices
for the two circular polarizations. The same result can be obtained using various
other formalisms, for example using the Berreman matrices73. The difference of the
refraction indices leads to the rotation of the polarization plane of linearly polar-
ized light, which is the most well-known signature of OA. This rotation is usually
characterized by the optical activity coefficient α expressed in degrees/mm or in
rad/mm. Its link with difference in the refractive indices n+ and n− is given by the
formula Δn= αλ/π where λ= 2π/k0. Here, k0 is the total wavevector of light
composed of its in-plane (k, used in the main text) and vertical (kz) projections

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2

q
. The OA coefficient can be written in terms of the gyration vector

G as α ¼ πG=λ�n and in terms of the gyration tensor ηij (usually called g, but here
we use η not to be confused with the quantum geometric tensor of the main text) as
α ¼ πηijNiNj=λ�n (Ni are the direction cosines). These different representations of
OA are used in different fields: the OA coefficient α is used to characterize the angle
of rotation in the transmission configuration, whereas the gyration tensor η, being a
part of the dielectric permittivity tensor ϵ, is used for the calculation of confined
optical modes, like in our case.
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The gyration tensor value corresponding to the experimentally measured
dispersion is ηxz ≈ 0.14, much larger than any of the tensor components of quartz
ηQ ~ 10−5, which guarantees that our observations are not due to the optical
activity of quartz, a layer of which is present inside the microcavity. At the
anticrossing wavelength λ ≈ 500 nm, the splitting between the energies is E+−
E− ≈ 50 meV, which gives an equivalent value of α= 500 rad/mm or α= 2.8 × 104

degrees/mm. This is comparable with the values observed in metamaterials, such as
chiral photonic crystals74. It starts to approach the optical activity of chiral stacks of
2D materials, where the rotation of tens of degrees can be observed for only 10
monolayers of material, and the corresponding αchir ~ 5 × 106 degrees/mm34.

Origin of the optical activity. The optical activity is an effect which stems from
non-locality32. As such, it can also stem from inhomogeneities in non-chiral
structures, for example, from a transverse thickness gradient75. We have made all
possible efforts to exclude the possibility that the optical activity observed in our
experiments stems from this origin. For this, on the one hand, we have measured
the thickness gradient of the structure experimentally, obtaining an average value
of ≈1.3 nm/μm (see Supplementary Fig. 4). On the other hand, we have estimated
the energy splitting which could stem from such gradient analytically and
numerically, using full 3D electrodynamic simulations in COMSOL(R), and
obtained no measureable splitting. To play any role in the effect, the gradient has to
be at least 10 times higher.

As discussed in the main text, the OA arises in our sample at the scale of the whole
structure, which becomes chiral because of the degeneracy of the modes of opposite
parity. To confirm this statement, we perform a full numerical simulation with
COMSOL(R), taking the parameters of the structure (perylene and mirror thickness)
shown in Fig. 2. We did not include any microscopic optical activity in the model. In
particular, we did not add the quartz layer, which could provide this activity (albeit
small). We take the ordinary and extraordinary refractive indices of 1.7 and 2.5,
respectively52. The excitonic effects are neglected. The results of the simulations are
shown in Supplementary Fig. 5, showing the transmittivity as a function of in-plane
wave vector kx and energy (similar to Fig. 2e). A clear anticrossing of the modes of
opposite parity is observed at approximately the same energy and wave vector as in
experiment. This confirms our interpretation of the effect in question.

Data availability
The datasets generated during and/or analysed during the current study are available in
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Code availability
The codes used for numerical simulations are available from the corresponding authors
on reasonable request.

Received: 16 December 2019; Accepted: 17 November 2020;

References
1. Stadler, B. J. H. & Mizumoto, T. Integrated magneto-optical materials and

isolators: a review. IEEE Photon. J. 6, 1–15 (2014).
2. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668

(2018).
3. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical

waveguides in photonic crystals with broken time-reversal symmetry. Phys.
Rev. Lett. 100, 013904 (2008).

4. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon.
8, 821–829 (2014).

5. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
6. St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice.

Nat. Photon. 11, 651–656 (2017).
7. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary

geometries. Science 358, 636–640 (2017).
8. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359,

1231 (2018).
9. Klembt, S. et al. Exciton-polariton topological insulator. Nature 562, 552–556

(2018).
10. Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum

light. Nature 561, 502–506 (2018).
11. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod.

Phys. 82, 3045–3067 (2010).
12. Haldane, F. D. M. Model for a quantum hall effect without landau levels:

condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61,
2015–2018 (1988).

13. Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z. & Zhang, S.-C. Quantum anomalous
Hall effect in Hg(1-y)Mn(y)Te quantum wells. Phys. Rev. Lett. 101, 146802
(2008).

14. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall
effect in a magnetic topological insulator. Science 340, 167–170 (2013).

15. Jotzu, G. et al. Experimental realization of the topological Haldane model with
ultracold fermions. Nature 515, 237–240 (2014).

16. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological
edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

17. Ma, T., Khanikaev, A. B., Mousavi, S. H. & Shvets, G. Guiding electromagnetic
waves around sharp corners: topologically protected photonic transport in
metawaveguides. Phys. Rev. Lett. 114, 127401 (2015).

18. Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a
photonic topological insulator. Nat. Mater. 15, 542–548 (2016).

19. Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat.
Photon. 11, 763–773 (2017).

20. Gao, F. et al. Topologically protected refraction of robust kink states in valley
photonic crystals. Nat. Phys. 14, 140–144 (2018).

21. Kavokin, A., Malpuech, G. & Glazov, M. Optical spin Hall effect. Phys. Rev.
Lett. 95, 136601 (2005).

22. Faraday, M. Athenaeum 1080 (1845).
23. Bleu, O., Malpuech, G., Gao, Y. & Solnyshkov, D. D. Effective theory of

nonadiabatic quantum evolution based on the quantum geometric tensor.
Phys. Rev. Lett. 121, 020401 (2018).

24. Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the
anomalous Hall drift. Nature 578, 381–385 (2020).

25. Silveirinha, M. G. Chern invariants for continuous media. Phys. Rev. B 92,
125153 (2015).

26. Silveirinha, M. G. Z2 topological index for continuous photonic materials.
Phys. Rev. B 93, 075110 (2016).

27. Silveirinha, M. G. Quantized angular momentum in topological optical
systems. Nat. Commun. 10, 1–8 (2019).

28. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of
unidirectional backscattering-immune topological electromagnetic states.
Nature 461, 772–U20 (2009).

29. Nalitov, A. V., Malpuech, G., Terças, H. & Solnyshkov, D. D. Spin-orbit
coupling and the optical spin hall effect in photonic graphene. Phys. Rev. Lett.
114, 026803 (2015).

30. Arago, J. D. F. Mémoire sur une modification remarquable qu’éprouvent les
rayons lumineux dans leur passage à travers certains corps diaphanes, et sur
quelques autres nouveaux phénomènes d’optique. Mem. Inst. 1, 93–134
(1811).

31. Pasteur, L. Mémoire sur la relation qui peut exister entre la forme cristalline et
la composition chimique, et sur la cause de la polarisation rotatoire. (Extrait
par l'auteur). C. R. Acad. Sci. Paris 26, 535–539 (1848).

32. Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media
(Butterworth-Heinemann, 1984).

33. Newnham, R. E. Properties of Materials: Anisotropy, Symmetry, Structure.
(Oxford University Press, Oxford, 2005).

34. Poshakinskiy, A. V., Kazanov, D. R., Shubina, T. V. & Tarasenko, S. A. Optical
activity in chiral stacks of 2D semiconductors. Nanophotonics 7, 753–762
(2018).

35. Rechcińska, K. et al. Engineering spin-orbit synthetic Hamiltonians in liquid-
crystal optical cavities. Science 366, 727–730 (2019).

36. Donaldson, D. M., Robertson, J. M. & White, J. G. The crystal and molecular
structure of perylene. Proc. R. Soc. Lond. 220, 311–321 (1953).

37. Huang, C., Barlow, S. & Marder, S. R. Perylene-3,4,9,10-tetracarboxylic acid
diimides: Synthesis, physical properties, and use in organic electronics. J. Org.
Chem. 76, 2386–2407 (2011).

38. Meng, L. et al. Organic and solution-processed tandem solar cells with 17.3%
efficiency. Science 361, 1094–1098 (2018).

39. Russ, B., Glaudell, A., Urban, J. J., Chabinyc, M. L. & Segalman, R. A. Organic
thermoelectric materials for energy harvesting and temperature control. Nat.
Rev. Mater. 1, 16050 (2016).

40. Rulliere, C., Laughrea, M. & Denariez-Roberge, M. M. Action Laser dans le
Perylene a 4730 A. Opt. Commun. 6, 407–409 (1972).

41. Weil, T., Vosch, T., Hofkens, J., Peneva, K. & Müllen, K. The rylene colorant
family-tailored nanoemitters for photonics research and applications. Ang.
Chem. Int. Ed. 49, 9068–9093 (2010).

42. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D
materials and van der Waals heterostructures. Science 353, 461 (2016).

43. Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der waals
heterostructures. Nat. Mater. 16, 170–181 (2017).

44. Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities
(Oxford University Press, 2011).

45. Berry, M. V. Quantal phase factors accompanying adiabatic changes. In Proc.
Royal Society of London A: Mathematical, Physical and Engineering Sciences,
Vol. 392, 45–57 (The Royal Society, 1984).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20845-2 ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:689 | https://doi.org/10.1038/s41467-020-20845-2 | www.nature.com/naturecommunications 7

https://osf.io/exhw2/?view_only=8000d5a60be1430986e6f24fa8c99cd1
https://osf.io/exhw2/?view_only=8000d5a60be1430986e6f24fa8c99cd1
www.nature.com/naturecommunications
www.nature.com/naturecommunications


46. Provost, J. & Vallee, G. Riemannian structure on manifolds of quantum states.
Commun. Math. Phys. 76, 289–301 (1980).

47. Bleu, O., Solnyshkov, D. D. & Malpuech, G. Measuring the quantum
geometric tensor in two-dimensional photonic and exciton-polariton systems.
Phys. Rev. B 97, 195422 (2018).

48. Panzarini, G. et al. Exciton-light coupling in single and coupled
semiconductor microcavities: polariton dispersion and polarization splitting.
Phys. Rev. B 59, 5082–5089 (1999).

49. Jin, P.-Q., Li, Y.-Q. & Zhang, F.-C. Su(2)xu(1) unified theory for charge, orbit
and spin currents. J. Phys. A Math. Gen. 39, 7115–7123 (2006).

50. Yang, Y. et al. Synthesis and observation of non-Abelian gauge fields in real
space. Science 365, 1021–1025 (2019).

51. Fieramosca, A. et al. Chromodynamics of photons in an artificial non-Abelian
magnetic Yang-Mills field. Preprint at http://arxiv.org/abs/1912.09684 (2019).

52. Rangel, T. et al. Low-lying excited states in crystalline perylene. Proc. Natl
Acad. Sci. USA 115, 284–289 (2018).

53. Terças, H., Flayac, H., Solnyshkov, D. D. & Malpuech, G. Non-Abelian gauge
fields in photonic cavities and photonic superfluids. Phys. Rev. Lett. 112,
066402 (2014).

54. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in
MoS2 transistors. Science 344, 1489–1492 (2014).

55. Kolodrubetz, M., Sels, D., Mehta, P. & Polkovnikov, A. Geometry and non-
adiabatic response in quantum and classical systems. Phys. Rep. 697, 1–87 (2017).

56. Poshakinskiy, A. V., Poddubny, A. N. & Hafezi, M. Phase spectroscopy of
topological invariants in photonic crystals. Phys. Rev. A 91, 043830 (2015).

57. Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with
ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2015).

58. Mittal, S., Ganeshan, S., Fan, J., Vaezi, A. & Hafezi, M. Measurement of
topological invariants in a 2d photonic system. Nat. Photon. 10, 180–183 (2016).

59. Asteria, L. et al. Measuring quantized circular dichroism in ultracold
topological matter. Nat. Phys. 15, 449–454 (2019).

60. Price, H. & Cooper, N. Mapping the Berry curvature from semiclassical
dynamics in optical lattices. Phys. Rev. A 85, 033620 (2012).

61. Hauke, P., Lewenstein, M. & Eckardt, A. Tomography of band insulators from
quench dynamics. Phys. Rev. Lett. 113, 045303 (2014).

62. Ozawa, T. & Carusotto, I. Anomalous and quantum Hall effects in lossy
photonic lattices. Phys. Rev. Lett. 112, 133902 (2014).

63. Fläschner, N. et al. Experimental reconstruction of the Berry curvature in a
Floquet Bloch band. Science 352, 1091–1094 (2016).

64. Wimmer, M., Price, H. M., Carusotto, I. & Peschel, U. Experimental
measurement of the Berry curvature from anomalous transport. Nat. Phys. 13,
545–550 (2017).

65. Ozawa, T. & Goldman, N. Extracting the quantum metric tensor through
periodic driving. Phys. Rev. B 97, 201117 (2018).

66. Yu, M. et al. Experimental measurement of the quantum geometric tensor
using coupled qubits in diamond. Natl Sci. Rev. 7, 254–260 (2019).

67. Jackiw, R. & Rebbi, C. Solitons with fermion number. Phys. Rev. D 13,
3398–3409 (1976).

68. Gao, F. et al. Topologically protected refraction of robust kink states in valley
photonic crystals. Nat. Phys. 14, 140–144 (2018).

69. Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J. & Segev, M. Topological
protection of biphoton states. Science 362, 568–571 (2018).

70. Wang, Q. et al. Space-confined strategy toward large-area two-dimensional
single crystals of molecular materials. J. Am. Chem. Soc. 140, 5339–5342 (2018).

71. Dufferwiel, S. et al. Spin textures of exciton-polaritons in a tunable
microcavity with large TE-TM splitting. Phys. Rev. Lett. 115, 246401 (2015).

72. Manni, F., Léger, Y., Rubo, Y. G., André, R. & Deveaud, B. Hyperbolic spin
vortices and textures in exciton-polariton condensates. Nat. Commun. 4, 2590
(2013).

73. Berreman, D. W. Optics in stratified and anisotropic media: 4x4-matrix
formulation. J. Opt. Soc. Am. 62, 502–510 (1972).

74. Takahashi, S. et al. Giant optical rotation in a three-dimensional
semiconductor chiral photonic crystal. Opt. Express 21, 29905–29913 (2013).

75. Shelykh, I. A., Nalitov, A. V. & Iorsh, I. V. Optical analog of Rashba spin-orbit
interaction in asymmetric polariton waveguides. Phys. Rev. B 98, 155428 (2018).

Acknowledgements
We acknowledge useful discussions with M. Glazov. This work was supported by the
National Key R&D Program of China (Grant No. 2018YFA0704805, 2018YFA0704802
and 2017YFA0204503), the National Natural Science Foundation of China (22090022,
21833005, 21873065, 21790364, 12074303, 11804267 and 21673144), the Beijing Natural
Science Foundation of China (2192011), the High-level Teachers in Beijing Municipal
Universities in the Period of 13th Five-year Plan (IDHT20180517 and
CIT&TCD20180331), Beijing Talents Project (2019A23), the Open Fund of the State Key
Laboratory of Integrated Optoelectronics (IOSKL2019KF01), Capacity Building for Sci-
Tech Innovation-Fundamental Scientific Research Funds, Beijing Advanced Innovation
Center for Imaging Theory and Technology. We acknowledge the support of the projects
EU “QUANTOPOL” (846353), “Quantum Fluids of Light” (ANR-16-CE30-0021), of the
ANR Labex Ganex (ANR-11-LABX-0014), and of the ANR program “Investissements
d’Avenir” through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25). OB
acknowledges support from the Australian Research Council Centre of Excellence in
Future Low-Energy Electronics Technologies (CE170100039).

Author contributions
J.R. – investigation, formal analysis, visualization, methodology, and writing;
Q.L. – conceptualization, funding acquisition, methodology, resources, and supervision;
F.L. – conceptualization, funding acquisition, methodology, supervision, writing, and
project administration; Y.L. – methodology and writing; H.F. – conceptualization,
funding acquisition, methodology, resources, and supervision; J.Y. – funding acquisition
and supervision. D.S. – conceptualization, funding acquisition, formal analysis, metho-
dology, visualization, and writing; G.M. – conceptualization, funding acquisition,
methodology, writing, and supervision; O.B. – conceptualization, validation, methodol-
ogy, visualization, and writing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-020-20845-2.

Correspondence and requests for materials should be addressed to Q.L., F.L., H.F. or
D.S.

Peer review information Nature Communications thanks Jacek Szczytko and the other
anonymous reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20845-2

8 NATURE COMMUNICATIONS |          (2021) 12:689 | https://doi.org/10.1038/s41467-020-20845-2 | www.nature.com/naturecommunications

http://arxiv.org/abs/1912.09684
https://doi.org/10.1038/s41467-020-20845-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Nontrivial band geometry in an optically active�system
	Results
	Photonic spin–nobreakorbit coupling
	The Stokes vector and the quantum geometric tensor

	Discussion
	Methods
	Material structure and fabrication
	Cavity structure
	Spectroscopy
	Extraction of the Stokes parameters and the quantum geometry
	Coupling with excitons
	Optical activity
	Origin of the optical activity

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




