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Large organized chromatin lysine domains help
distinguish primitive from differentiated cell
populations
Seyed Ali Madani Tonekaboni1,2, Benjamin Haibe-Kains1,2,3,4 & Mathieu Lupien 1,2,4✉

The human genome is partitioned into a collection of genomic features, inclusive of genes,

transposable elements, lamina interacting regions, early replicating control elements and cis-

regulatory elements, such as promoters, enhancers, and anchors of chromatin interactions.

Uneven distribution of these features within chromosomes gives rise to clusters, such as

topologically associating domains (TADs), lamina-associated domains, clusters of cis-

regulatory elements or large organized chromatin lysine (K) domains (LOCKs). Here we

show that LOCKs from diverse histone modifications discriminate primitive from differ-

entiated cell types. Active LOCKs (H3K4me1, H3K4me3 and H3K27ac) cover a higher

fraction of the genome in primitive compared to differentiated cell types while repressive

LOCKs (H3K9me3, H3K27me3 and H3K36me3) do not. Active LOCKs in differentiated cells

lie proximal to highly expressed genes while active LOCKs in primitive cells tend to be

bivalent. Genes proximal to bivalent LOCKs are minimally expressed in primitive cells. Fur-

thermore, bivalent LOCKs populate TAD boundaries and are preferentially bound by reg-

ulators of chromatin interactions, including CTCF, RAD21 and ZNF143. Together, our results

argue that LOCKs discriminate primitive from differentiated cell populations.
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The diverse phenotypic identities of each cell type found in
multicellular organisms are encoded by lineage-specific
biochemically active genomic features, such as transcribed

genes1, active transposable elements2, anchors of chromatin
interactions setting distal boundaries for loop extrusions defining
the three-dimensional genome3, DNA-to-lamin points of contact
linking discrete genomic regions to the nuclear lamina4, early
replicating control elements5 and other cis-regulatory elements
(CREs) such as promoters and enhancers6–10. The uneven dis-
tribution of these biochemically detectable features across the
genome of any individual cell type underlies an aggregation that
gives rise to genomic features of higher order. For instance,
clusters of DNA-to-lamin points of contact establish lamina-
associated domains (LADs)4 commonly associated with domains
of gene repression11. Clusters of contact frequencies between
distal genomic regions establish topologically associating domains
(TADs)12 related to active versus inactive chromatin compart-
ments and early versus late origins of DNA replication12,13.
Similarly, clusters of cis-regulatory elements (COREs), defined
based on chromatin accessibility, associate with lineage-specific
transcription factors and form in proximity of highly expressed
lineage-specific essential genes14. Moreover, clusters of nucleo-
somes with post-translationally modified histone lysine residues
define large organized chromatin lysine (K) domains (LOCKs)
associated with inactive domains when consisting of dimethylated
lysine 9 on histone 3 (H3K9me2)15 or H3K27me316. The com-
prehensive characterization of post-translationally modified his-
tone lysine residues across the genome of diverse cells, including
primitive and differentiated cells, allows to test the relationship
between LOCKs with lineage-specific functions.

Here, we show how LOCKs from six post-translational mod-
ifications to histone tails (H3K4me1, H3K4me3, H3K27ac,
H3K9me3, H3K27me3 and H3K36me3) discriminate primitive
from differentiated cells, forming bivalent LOCKs at TAD
boundaries in primitive cells enriched for regulators of chromatin
interactions. Bivalent LOCKs transit to an H3K9me3-only state as
they lose H3K27me3 and H3K4me1 in differentiated cells.

Results
Genomic coverage of active LOCKs discriminate ESCs from
mature phenotypes. The Roadmap Epigenomics Project released
the complete epigenomes (H3K4me1, H3K4me3, H3K27ac,
H3K9me3, H3K27me3 and H3K36me3 from ChIP-seq) across 13
primitive cell types, including embryonic stem cells (ESCs) and
induced pluripotent stem cells (iPSCs) as well as 9 ES-derived and
77 differentiated cell types from diverse tissue or origin6.
Expanding previous work comparing ChIP-seq profiles of histone
modifications across stem and differentiated cells conducted on
individual elements17, we used the CREAM tool14 to identify
LOCKs across all 99 aforementioned cell types. Overall, LOCKs
of active marks including H3K4me1, H3K4me3 and H3K27ac
cover a maximum of 297mbp of the human genome within one
cell type, while LOCKs of H3K9me3, H3K27me3 and H3K36me3
repressive marks cover at most 138mbp of the human genome
within one cell type (Fig. 1A). Comparing between cell types,
LOCKs of the H3K4me1, H3K4me3 and H3K27ac active marks
cover a larger proportion of the genome in primitive cells,
including ESCs and iPSCs, compared to differentiated cells (non-
ESCs and -iPSCs and -ES-derived; FDR < 0.05; Wilcoxon signed-
rank test; fold change > 3.1) (Fig. 1A, B). In comparison, the
genomic coverage of individual elements for these active histone
modifications does not discriminate primitive from differentiated
cells (Fig. 1B). In contrast, H3K36me3-, H3K27me3- and
H3K9me3-derived LOCKs do not show any significant differ-
ences in the proportion of the genome covered between primitive

and differentiated cells (FDR > 0.05; Wilcoxon signed-rank test;
fold change < 1.1) (Fig. 1A, B).

LOCKs of active histone marks are predictive of primitive cell
identity. To further assess the specificity of active histone mod-
ifications in identifying primitive from differentiated cellular
identity, we developed a k nearest neighbor (k-NN) classifier
using LOCKs of each mark as features. Starting from the cata-
logue of LOCKs for each histone modification we assessed the
presence/absence of LOCKs from each histone modification
within each cell type over this catalogue. This model shows that
LOCKs from active histone modifications stratify primitive from
differentiated cell types and cluster each sample according to its
tissue of origin (average Matthews Correlation Coefficient (MCC)
of active marks= 0.85; repressive marks= 0.71) (Fig. 2). These
results parallel previously reported stratification of primitive from
differentiated cells using individual active compared to repressive
elements6.

LOCKs of active histone marks map to cell type-specific bio-
logical pathway genes. Cis-regulatory elements (CREs) defined
by discrete histone modifications are important players in
defining cellular identity by setting lineage-specific gene expres-
sion profiles6–10. We therefore assessed if LOCKs of active versus
repressive marks were related to pathways of relevance to ubi-
quitous or cell-type-specific biological processes. Cell-type-
specific pathways showed higher enrichment among genes in
proximity of LOCKs of active marks compared to LOCKs of
repressive marks across all cell types (Fig. 3). For example, among
the enriched pathways associated with H3K4me1 and H3K4me3
LOCKs we found EMBRYONIC ORGAN MORPHOGENESIS in
stem cells as well as LEUKOCYTE CELL CELL ADHESION in
hematopoietic cell populations (FDR < 0.05) (Fig. 3). On the
other hand, H3K9me3 LOCKs were enriched in proximity to
genes involved in ubiquitous biological processes like GENE
SILENCING across multiple tissue types (FDR < 0.05) (Fig. 3).

Bivalency of LOCKs of active histone marks in stem cells.
Coexistence of active and repressive histone modifications at the
same loci were reported in primitive cells as bivalent chromatin
states associated with genes poised for expression or repression
upon cellular differentiation18. Hence, we assessed if bivalency is
also related to LOCKs19. Overlapping repressive marks signal
with LOCKs from active and repressed chromatin across our
collection of cell types revealed that bivalent LOCKs populate
primitive cells, mapping in proximity to genes highly expressed,
compared to genes in proximity of individual elements, only in
differentiated cells, such as GM12878 and K562 as opposed to
primitive H1-hESCs (Fig. 4A). We specifically observed the
coexistence of the H3K27me3 repressive LOCKs with H3K4me1
and H3K4me3 active LOCKs in primitive cells (FDR < 0.05)
(Fig. 4B). Notably, the H3K27me3 signal intensity did not differ
within H3K27me3 LOCKs from the primitive H1-hESC versus
the mature GM12878 and K562 cell types (Fig. 4B). We finally
assessed the functional classification of genes proximal to bivalent
versus active LOCKs found in the H1-hESC primitive cell type
through Gene Set Enrichment Analysis. This identified an
enrichment of genes proximal to bivalent LOCKs with pathways
relevant to embryonic development and stem cell differentiation
(FDR < 0.05) (Fig. 4C). Collectively, these results suggest that
bivalent LOCKs behave similarly to individual bivalent elements,
populating the genome of primitive as opposed to differentiated
cell types and being assigned to genes repressed in primitive cells
of relevance to differentiation.
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Bivalent LOCKs populate boundaries of TADs. In addition to
LOCKs, the genome is organized into clusters of chromatin
interactions defining its three-dimensional organization20,21.
Clusters of chromatin interactions establish TADs12 that further
cluster into A or B compartments according to the active versus
repressed nature of the chromatin within them13,22. The three-
dimensional genome organization is regulated by DNA binding
proteins, namely CTCF, YY1 and ZNF14323–25 as well as the
cohesin complex20,21. Previous reports demonstrated the pro-
pensity of clusters of CREs and homotypic clusters of

transcription factor binding regions (HCTs) to map at TAD
boundaries14,26. We therefore investigated the relation between
LOCKs, independently from individual elements, and the three-
dimensional genome organization of primitive versus differ-
entiated cells. Focusing on H1-hESC, GM12878 and K562, we
found that H3K4me1 LOCKs in H1-hESCs were enriched in
proximity of TAD boundaries, while the H3K4me1 LOCKs from
GM12878 and K562 did not enrich at TAD boundaries (Fig. 5A).
This preferentially related to H3K4me1 LOCKs with strong
H3K27me3 signal, i.e. bivalent LOCKs (Fig. 5B). H3K4me3 and

Fig. 1 Genomic coverage of LOCKs discriminates primitive from differentiated cell types. A Genomic coverage of LOCKs identified using H3K4me1,
H3K4me3, H3K27ac, H3K9me3, H3K27me3 and H3K36me3 histone modification profiles across 13 primitive, 9 ES-derived and 77 differentiated cell types.
B Comparison of genomic coverage by LOCKs and individual regions (Ind. elements) post-translationally modified with histone marks in 9 primitive and 77
differentiated cell types (ES-derived excluded). Each dot corresponds to one cell type investigated.
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H3K27ac LOCKs from primitive and differentiated cell types did
not relate to TAD structures (Fig. 5A). We further characterized
the H3K4me1 LOCKs with regards to the chromatin occupancy
by regulators of chromatin interactions, namely CTCF, YY1,
ZNF143 and the cohesin complex component RAD21. This
revealed an enrichment of all regulators of chromatin interaction
except YY1 at H3K4me1/H3K27me3 bivalent LOCKs from H1-
hESC but not over H3K4me1 LOCKs from GM12878 and K562
cell lines (Fig. 5B), exemplified at the chromosome 16q22.1 locus
(Fig. 5C). We further showed that the bivalent LOCKs in pri-
mitive cells transit to a repressed state in differentiated cells
characterized by the gain of the H3K9me3 repressive mark and
the loss of H3K4me1 and H3K27me3 (Fig. 5D). Altogether, these
results suggest that changes in LOCKs composition discriminat-
ing primitive from differentiated cells occur at TAD boundaries.

Discussion
The human genome is partitioned into diverse genomic features,
including transcribed genes, active transposable elements,
anchors of chromatin interactions, DNA-to-lamin points of
contact, early replicating control elements and other CREs such
as promoters and enhancers. These can organize in either indi-
vidual or clusters4,12–16. Here, we studied the transition of clus-
ters of active and repressive histone modifications forming
LOCKs across a collection of 13 primitive, 9 ES-derived and 77
differentiated cell types. We show that LOCKs with active marks
cover a greater proportion of the genome in primitive cells, such
as ESCs, compared to differentiated populations, defining a fea-
ture to discriminate the primitive versus differentiated nature of
samples. In contrast, LOCKs of repressive histone modifications
(H3K9me3, H3K27me3 and H3K36me3) do not discriminate
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Fig. 4 Bivalent LOCKs are observed only in primitive cell types and associated with genes repressed in primitive cell types. A Expression level of genes
in proximity of LOCKs versus individual regions (Ind. elements) marked by H3K4me1, H3K4me3, H3K27ac, H3K9me3 or H3K27me3 in the primitive H1-
hESC versus differentiated GM12878 and K562 cell types. The boxplots represent the distribution of the expression level of genes (The boxes correspond
to the upper and lower quartiles from the median defined by the horizontal line. The whiskers represent the variability outside in gene expression found
above or below the quartiles). B Quantification of H3K27me3 ChIP-seq signal overlap in LOCKs of active histone modifications (H3K4me1, H3K4me3 and
H3K27ac) for H1-hESC, GM12878 and K562 cell types. The signal is normalized (divided by median) to the H3K27me3 ChIP-seq signal overlapped in the
Ind. elements of the corresponding profiles in each cell line. Wilcoxon signed-rank test was used to compare distribution of signals in different cell lines
(*FDR < 0.05; ****FDR < 0.0001). The boxplots depict the distribution of overlapped ChIP-seq signal bound to be greater than zero and median to be less
than 1 (The boxes correspond to the upper and lower quartiles from the median defined by the horizontal line. The whiskers represent the variability
outside the lower and upper quartiles). C Gene set enrichment analysis (GSEA) reporting the enrichment of pathways in active LOCKs (H3K4me1,
H3K4me3 and H3K27ac) and LOCKs of H3K27me3 repressive mark associated or not with elevated H3K27me3 signal in the H1-hESC primitive cell type. In
this analysis, the catalogue of genes associated with all the individual elements, with corresponding H3K27me3 signal level, were used as background
gene lists.
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primitive from differentiated cells. Collectively, these results align
with the permissive as opposed to the restrictive nature of the
chromatin reported based on chromatin accessibility in primitive
versus differentiated cell types19.

Although LOCKs with H3K27me3 do not discriminate pri-
mitive from differentiated cell types, the co-occurrence of
H3K27me3 LOCKs over H3K4me1 LOCKs reflects a bivalent
broad chromatin state observed in primitive cell types. Globally,
bivalent LOCKs are enriched in proximity to genes involved in
stem cell development and differentiation pathways. These
results parallel previous reports of bivalent chromatin states at
individual regions in primitive versus differentiated cell types

and their relationship with gene expression18. Bivalent LOCKs
in primitive cell types composed of H3K4me1 and H3K27me3
preferentially map to TAD boundaries and are bound by reg-
ulators of chromatin interactions, including CTCF, RAD21 and
ZNF143. We also show that these bivalent LOCKs are replaced
with H3K9me3 repressive LOCKs in differentiated cells,
arguing for a differential role of LOCKs toward the chromatin
structure in primitive versus differentiated cells. Altogether,
our results demonstrate the utility of studying LOCKs to
deepen our understanding of the chromatin-based features
discriminating primitive from differentiated populations
of cells.

Fig. 5 Bivalent LOCKs in primitive cells are enriched at TAD boundaries and bound by regulators of chromatin interactions. A Enrichment of LOCKs of
active marks with low or high H3K27me3 ChIP-seq signal at TAD boundaries defined within H1-hESC, GM12878 or K562 cell types (−log10(FDR)).
B Enrichment of regulators of chromatin interactions (CTCF, RAD21, ZNF143 and YY1) in H3K4me1 LOCKs with low or high H3K27me3 ChIP-seq signal in
H1-hESC, GM12878 and K562 cell types (−log10(FDR)). C Case example of a bivalent LOCK at a TAD boundary in H1-hESC cells on the chromosome
16q22.1 locus. The ChIP-seq signal intensities for H3K4me1, H3K27me3 and regulators of chromatin interactions are shown. D Comparison of the median
of H3K4me1, H3K27me3 and H3K9me3 ChIP-seq signal overlap of H1-hESC, GM12878 and K562 cell lines on the H3K4me1 bivalent LOCKs (with high
H3K27me3 signal overlap) in H1-hESC. The signal is normalized to the depth of ChIP-seq profiles and size of the LOCKs. In the heatmap, every value for
each ChIP-seq profile is also divided by the maximum value of that profile across the cell lines.
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Methods
LOCK identification. We used CREAM algorithm14 to identify LOCKs. CREAM is
used to identify LOCKs in six steps: (1) grouping the individual elements in clusters
of varying number of individual elements (referred to as Order); (2) identifying the
threshold for the stitching distance between individual elements within the clusters
of the same Order; (3) identifying the maximum Order of clusters (LOCKs in this
case); (4) clustering individual elements as LOCKs starting from the highest Order;
and (5) filtering out low-Order LOCKs with a stitching distance close to the cor-
responding stitching distance threshold of the same Order. (6) Steps 1–5 are
repeated till the relative sum, defined as the sum of coverage of LOCKs by indi-
vidual elements over the sum of total genomic coverage of LOCKs, starts large
oscillations (> 5%).

The code for identifying LOCKs is available in https://codeocean.com/capsule/
6911149/tree/v1.

Our approach for LOCK identification relies on identifying clusters of
individual elements (peaks) identified by MACS27 as opposed to the ChIP-seq
signal files. This limits the reported challenges in identifying broad domains for
certain histone modifications from ChIP-seq signal profiles28–30.

Machine learning model for cell type classification. Similarities between two
samples were identified using Jaccard index for the commonality in localization of
their identified LOCKs throughout the genome. Then this Jaccard index is used as
the similarity statistics in a 1-nearest-neighbor classification approach. The per-
formance of the classification was assessed using the leave-one-out cross-validation.

Association with genes. A gene is considered associated with a LOCK or indi-
vidual element marked by a histone modification if found within 10 kb from each
other, with an anchor on the transcription start site (TSS) for genes. This distance
was chosen to avoid false-positive association of elements with gene TSSs31.

Gene expression comparison. RNA sequencing profiles of GM12878, K562 and
H1-hESC cells lines, available in The ENCODE Project database32, were used to
identify expression of genes in proximity of LOCKs and individual elements
marked by a histone modification. Expression levels of genes were compared using
the Wilcoxon signed-rank test.

Pathway enrichment analysis. Hypergeometric test was used to identify P-values
for enrichment of gene sets using dhyper function in stats R package (version
3.5.1). LOCK-associated genes in each sample are considered as query gene sets. In
case of pathway enrichment per tissue type, a catalogue of genes associated with all
the individual elements was used as the background gene list. This catalogue
ensures that the identified pathways are specific to LOCKs compared to individual
elements.

For the pathway enrichment analysis across LOCKs with different
H3K27me3 signal intensity in H1-hESC, all genes in proximity of LOCKs of the
same histone mark in H1-hESC are considered as background gene lists. The
considered background gene list ensures the specificity of enriched stem cell-related
pathways to high H3K27me3 signal LOCKs compared to all LOCKs for a given
histone modification.

Assigning LOCKs to each phenotype. A LOCK is assigned to each tissue type if it
exists in more than 50% of samples from that tissue type.

H3K27me3 signal intensity measurement over active LOCKs. We identified an
overlap of the signal from bedgraph files of ChIP-Seq data of H3K27me3 with the
identified LOCKs and individual elements in GM12878, K562 and H1-hESC using
bedtools (version 2.23.0). The signal over LOCKs was normalized (divided by
median) to the H3K27me3 ChIP-seq signal overlapped in the Ind. elements of the
corresponding profiles in each cell line. The identified signal intensity within each
LOCK was then further normalized to the length of the element. The distributions
of the normalized scores were then compared between H1-hESC and GM12878
and K562 cell lines using Wilcoxon signed-rank test.

Enrichment of LOCKs at boundaries of TADs. TAD boundaries identified from a
collection of Hi-C profiles from GM12878, K562 and H1-hESC that were processed
for genome assembly GRCh37 are available in the Hi-C browser33. LOCKs iden-
tified from ChIP-seq profiles of histone modification in a cell line were categorized
to be at TAD boundaries if within 10 kb from each other. A hypergeometric test
was then used to identify enrichment of LOCKs from a histone modification of a
cell line with a defined H3K27me3 overlap level, low or high. The LOCKs in each
category of high, low or intermediate H3K27me3 signal overlap are considered as
the query set and all the LOCKs at TAD boundaries as the background. Con-
sidering all LOCKs as the background list ensures the specificity of the enrichment
at TAD boundaries to high H3K27me3 signal LOCKs compared to all LOCKs of a
given histone modification.

Enrichment of binding sites for regulators of chromatin interactions at LOCKs.
The number of individual binding sites for regulators of chromatin interactions
within H3K4me1 LOCKs associated with low or high H3K27me3 signal from H1-
hESC cells was normalized to the size of the LOCKs. The normalized binding value
was then used as a query set in a hypergeometric test to measure their enrichment
score. The normalized binding value of regulators of chromatin interactions over
all H3K4me1 LOCKs in H1-hESC is considered as the background list within the
hypergeometric test.

Multiple hypothesis correction. P-values were corrected for multiple hypothesis
testing using the Benjamini–Hochberg procedure34.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the histone modification ChIP-seq data used in this manuscript have been publicly
available through ENCODE and Roadmap project Consortiums and can be accessed at
“ChIP-seq [https://www.encodeproject.org/search/?type=Experiment&related_series.%
40type=ReferenceEpigenome&replicates.library.biosample.donor.organism.scientific_
name=Homo+sapiens&replicates.library.biosample.life_stage=adult&replicates.library.
biosample.life_stage=embryonic&award.project=Roadmap&assay_title=Histone+ChIP-
seq]”. In addition, for transparency and reproducibility purposes, we provide a copy of all the
call peak files used to generate figures of the manuscript in the Supplementary Software. We
also provide the data and our analytical pipeline in the cloud-based computational
reproducibility platform CodeOcean (https://codeocean.com/capsule/6911149/tree/v1). All
other relevant data supporting the key findings of this study are available within the article
and its Supplementary Information files or from the corresponding author upon reasonable
request. A Reporting Summary for this Article is available.

Code availability
All the codes for generating the results of this manuscript are available in cloud-based
computational reproducibility platform CodeOcean (https://codeocean.com/capsule/
6911149/tree/v1).
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